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Abstract: We consider mixed boundary control systems inducted by non-isothermal
axial dispersion chemical tubular reactors. We characterize the well-posedness, ap-
proximate controllability, and transfer function of the mixed boundary control system.
There exists an admissible operator control such that the mixed boundary control
system is well-posed. By constructing an extended space, the classical solution can
be obtained explicitly. Sufficient conditions for approximate controllability of the
mixed boundary control system are identified by the eigenvalues and eigenvectors of
the Sturm-Loiuville operator using an equivalence in the extended space. A proper
transfer function of the associated boundary control system equipped with an output
can be constructed. The proper transfer function shows that the associated boundary
control system is well-posed.
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1 Introduction

A non-isothermal reaction is a reaction in the process taking place at a temperature
varying from one point to another. Dynamical analysis of non-isothermal tubular re-
actors has been studied massively recently, see [1–6]. The dynamics of non-isothermal
axial dispersion chemical tubular reactors are described by nonlinear partial differential
equations (PDEs) derived from mass and energy balance equations. The nonlinearities
are usually located in the kinetic terms due to the Arrhenius law for non-isothermal
reactors. In particular, let L be the length of the tubular reactor and if the reaction is
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characterized by first-order kinetics with respect to the reactant concentration C = 1,
then the reactor temperature T (ξ, τ) at the position ξ, 0 ≤ ξ ≤ L, and the time τ govern
the boundary problem of the nonlinear PDEs:

∂T

∂τ
= D

∂T

∂ξ2
− υ

∂T

∂ξ
− ∆H

ρCp
k0e

−E/RT − 4h

ρCpd
(T − Tc(τ)),

D
∂T

∂ξ
(0, τ) = υ[T (0, τ)− Tin(τ)],

∂T

∂ξ
(L, τ) = 0,

(1)

where D, υ, ∆H, ρ, Cp, k0, E, R, h, d, Tc, and Tin denote the energy dispersion coef-
ficients, the superficial fluid velocity, the heat of reaction, the density, the specific heat,
the kinetic constant, the activation energy, the ideal gas constant, the wall heat transfer
coefficient, the reactor diameter, the coolant temperature, and the inlet temperature,
respectively.

Well-posedness for the nonlinear problem (1) is crucial. There is a complex problem
when dealing with the nonlinearity of infinite dimensional system. Linearization about
the steady state is an approximate solution to the problem. The linearization transforms
the system into a boundary control system, specifically, a mixed boundary control system
with inner and boundary controls u and v, respectively, see (5). Therefore, we will focus
on the linearized system, addressing its well-posedness, approximate controllability, and
the well-posedness of the related input-output system.

In general, the well-posedness for the control systems is determined by the well de-
finability and boundedness of the mappings of input to state, input to output, initial
state to input, and initial state to final state [7]. For the mixed boundary control system
of the linearized system of system (1), the well-posedness requires the boundedness of
the existence of the admissible control operator (input-state map) B, see Definition 2.1
below. Thus, the well-posedness of the linearized system depends on the well-posedness
of the state-space formulation (A,B). In the state-space, sufficient and necessary condi-
tions for (approximate) controllability have been investigated, see [8–11]. However, for
sufficiently smooth inputs, we can redefine the state space to be an extended state space,
for illustration, see (15). By this construction, the sufficiency for the well-posedness and
controllability of the associated problems (systems) with respect to some state space have
been investigated, see [8, 12–14]. These facts guide investigations to the well-posedness
and controllability for the linearized system of system (1).

Henceforth, we consider the associated state-space (A,B,C) of the linearized system
of system (1), where C is the input-output map. In this space, the boundedness of C
implies the well-posedness for the control system [15]. On the other hand, the bounded-
ness of C can be identified by a system transfer function. Curtain and Weiss [16] proved
that C is bounded if and only if the transfer function is uniformly bounded in a right
half-plane. Therefore, to prove the well-posedness, it is enough to show that the transfer
function is bounded in some right half-plane. Unfortunately, this approach is for only a
few systems. In a class of structural control systems that measure acceleration at a point,
the boundedness of C is proved by showing that the transfer function is proper [17]. In
the paper, the justification of the transfer function was not computed directly but the
properness of the transfer function is shown due to the fact that the infinitesimal gener-
ator generates an analytic semigroup. Now, one should justify the transfer function of
the state-space (A,B,C) for the linearized system of system (1).
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2 A Mixed Boundary Control Problem of Chemical Reactor

To facilitate analysis, the dynamic model (1) will be converted into an equivalent dimen-
sionless distributed parameter system. By putting the new state variables

t =
τυ

L
, x =

ξ

L
, Pe =

υ

D
,

B = −∆Hk0LDe
−E/RT0

υT0
, γ =

E

RT0
, β =

4hD2L

dυ
,

z =
T − T0
T0

, u =
Tc − T0
T0

, v =
Tin − T0
T0

,

where T0 is a reference temperature and Pe is a Peclet number, we get the nonlinear
dimensionless model

zt(x, t) =
1
Pe
zxx(x, t)− zx(x, t) +Beγz(x,t)/(1+z(x,t)) + β[u(t)− z(x, t)],

z(0, t)− 1
Pe
zx(0, t) = v(t),

zx(1, t) = 0.

(2)

Let zs(x), us, vs be the steady states of the system (2), so these functions satisfy

0 =
1

Pe

d2zs
dx2

(x)− dzs
dx

(x) +Beγzs(x)/(1+zs(x)) + β[us − zs(x)],

vs = zs(0)−
1

Pe

dzs
dx

(0),

0 =
dzs
dx

(1).

(3)

By linearizing the nonlinear system (2) about the steady states and using the same
symbols again, we have the linearized system

zt(x, t) =
1
Pe
zxx(x, t)− zx(x, t) + J(x)z(x, t) + βu(t),

z(0, t)− 1
Pe
zx(0, t) = v(t),

zx(1, t) = 0,

(4)

where J(x) = eγzs(x)/(1+zs(x))/(1 + zs(x))
2. We note that this problem is a distributed

parameter system controlled both internally and at the boundary, and referred to as
the mixed boundary control problem. We will focus on analyzing the mixed boundary
control problem (4) with the interior control u = u(t) and the boundary control v = v(t),
t ≥ 0.

We recall the abstract mixed boundary control problem [8,18]

ż(t) =Az(t) +Bdu(t), z(0) = z0,

Bz(t) = v(t),
(5)

where A : D(A) ⊂ Z → Z, Bd ∈ L(U,Z), B : D(B) ⊂ Z → V such that D(A) ⊂ D(B),
and Z,U, V are separable Hilbert spaces. We simplify the mixed boundary control system
(5) by (A,B).
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Definition 2.1 The mixed boundary control system (A,B) (5) is said to be well-
posed if:

(a) The operator A : D(A) → Z, where D(A) = D(A) ∩ ker (B) and

Az = Az, for all z ∈ D(A), (6)

is the infinitesimal generator of a C0-semigroup T (t) on Z;

(b) There is an admissible control operator B ∈ L(V,Z) for T (t) such that for each
v ∈ V , Bv ∈ D(A), AB ∈ L(V,Z) and

BBv = v. (7)

Condition (b) implies that the operator B is onto on V . Therefore, B has at least one
bounded right inverse F ∈ L(V,Z). In this case, we can put B = (A − A)F . Further,
we can show that

A = A+BB and B(sI −A)−1B = I (8)

for all s ∈ ρ(A).
We begin to analyze the linearized system (4). We set Z = L2(0, 1), U = V = C, and

define the operator A : D(A) ⊂ Z → Z as

A :=
1

Pe

d2

dx2
− d

dx
+ J(x) (9)

with
D(A) =

{
h ∈ L2(0, 1) : h and dh

dx are a.c., d2h
dx2 ∈ L2(0, 1),

dh
dx (1) = 0

}
,

where a.c. denotes ”absolutely continuous”.
We define an operator B : D(B) ⊂ Z → V by

Bh := h(0)− 1

Pe

dh

dx
(0) with D(B) = D(A) (10)

and an operator A : D(A) ⊂ Z → Z by

A :=
1

Pe

d2

dx2
− d

dx
+ J(x) (11)

with D(A) = D(A) ∩ kerB.

Theorem 2.1 The linearized system (4) is a well-posed mixed boundary control prob-
lem.

Proof. Let Z = L2(0, 1), U = V = C. We consider the operators A,B, and A
defined in (9), (10), and (11) on their domains, respectively. It is clear that Az = Az
for all z ∈ D(A). We see that A = −A0, where A0 is the Sturm-Liouville operator,
where ρ(x) = Pee

−Pex and p(x) = e−Pex, see [8]. Therefore, A is closed, negative, and
self-adjoint with respect to the weighted inner product

⟨h1, h2⟩ρ :=

∫ 1

0

h1(x)h2(x)ρ(x) dx.
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Additionally, the eigenvalues of A are real, simple, and form a decreasing sequence. The
corresponding eigenfunctions are also orthogonal with respect to the weight function w.
Therefore, A is the infinitesimal generator of an exponentially stable semigroup T (t) on
Z and T (t) ≥ 0 for all t ≥ 0. Let (λn, ϕn), n ∈ N ∪ {0}, be the pairs of the eigenvalue
and the corresponding eigenfunction of A, we have

T (t)z =

∞∑
n=0

eλnt⟨z, ϕn⟩ρϕn for all z ∈ Z. (12)

Henceforth, if we define an operator Bv = b(x)v for all v ∈ V , where b(x) = 1 + cePex

for some constants c, then B satisfies (7). We confirm that the operators A, A, B, and
B satisfy Definition 2.1 on Z, U , and V . We conclude that the mixed boundary control
problem (4) is well-posed.

To investigate the solution explicitly, we need to reformulate equation (5) to be an
abstract Cauchy problem. In this context, we have a relationship of the solution of the
mixed boundary control problem (5) and the solution of the related Cauchy problem.
For this purpose, several assumptions are required.

Consider the mixed boundary control system (A,B) (5) of problem (4) for v̇ ∈
L1([0, τ ], V ) and u ∈ L1([0, τ ], U), where A,B and A are defined in (9), (10) and (11),
respectively. The related abstract Cauchy problem of (5) is

ẇ(t) =Aw(t)−Bv̇(t) +ABv(t) +Bdu(t),

w(0) =w0.
(13)

The assumptions guarantee the existence and uniqueness of a classical solution to problem
(13) for w0 ∈ D(A).

Theorem 2.2 If v ∈ C2([0, τ ], V ), u ∈ C1([0, τ ], U), and w0 ∈ D(A), where w0 =
z0 −Bv(0), then problems (5) and (13) have the classical solutions related by

w(t) = z(t)−Bv(t). (14)

Moreover, problem (5) has a unique classical solution.

Proof. Let w be the classical solution of problem (13). This gives w(t) ∈ D(A) ⊂
D(A) ∩ D(B) and Bv(t) ∈ D(B). Since w(t) ∈ ker (B), (7) gives

Bz(t) = B[w(t) +Bv(t)] = Bw(t) + BBv(t) = v(t).

Further, from equations (13) and (14), we have

ż(t) = ẇ(t) +Bv̇(t) = Az(t) +Bdu(t).

Thus, the function z in (14) is the classical solution of problem (5) when w is the classical
solution of problem (13).

The converse is shown similarly and the uniqueness of z follows from the uniqueness
of w.

Alternately, we can reformulate problem (5) to be the abstract Cauchy problem (13)
without the derivative of the boundary control term. In this context, we define an
extended state space P := V ⊕ Z and reformulate problem (13) on P:

ṗ(t) = Ap(t) +Bu(t),

p(0) = p0,
(15)
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where A =

[
0 0

AB A

]
, B =

[
I 0

−B Bd

]
, p(t) =

[
v(t)
w(t)

]
, u(t) =

[
v̇(t)
u(t)

]
, and

p0 =

[
v0
w0

]
. We verify that the operator A generates a C0-semigroup K(t) on P, given

by

K(t) =

[
I 0
S(t) T (t)

]
, (16)

where S(t)p1 =
∫ t

0
T (t− s)ABp1 ds, p1 ∈ V .

Theorem 2.3 If v ∈ C2([0, τ ], V ), ud ∈ C1([0, τ ], U), and w0 ∈ D(A), then p(t) =[
v(t)
w(t)

]
is the unique classical solution of problem (15), where w is a unique classical

solution of problem (13). Moreover, if z0 = w0 + Bv(0), then the classical solution of
problem (5) is defined by

z(t) =
[
B I

]
p(t)

= Bv(t)− T (t)Bv(0) + T (t)z0 −
∫ t

0

T (t− s)Bv̇(s) ds+

∫ t

0

T (t− s)ABv(s) ds

+

∫ t

0

T (t− s)Bdu(s) ds. (17)

Proof. We see that A :=

[
0 0

AB A

]
on D(A) = V ⊕ D(A) is the infinitesimal

generator of a C0-semigroup on P and

[
I 0
B Bd

]
∈ L(V ⊕ U,P). This gives that

system (15) is well-defined. Moreover, the mild solution of problem (15) is given by

p(t) =

[
I 0
S(t) T (t)

] [
v0
w0

]
+

∫ t

0

[
I 0

S(t− s) T (t− s)

] [
I 0

−B Bd

] [
v̇(s)
u(s)

]
ds, (18)

where S(t)p1 =

∫ t

0

T (t− s)ABp1 ds, p1 ∈ V . The first component of (18) is

p1(t) = v0 +

∫ t

0

v̇(s) ds = v(0) +

∫ t

0

v̇(s) ds = v(t).

Since p(0) = p0 =

[
v0
w0

]
∈ D(A), the hypothesis and uniqueness theorem gurantee that

p(t) is the unique classical solution of problem (15) satisfying ṗ1(t) = v̇(t). Also, from
the second component of (18), we have

ṗ2(t) = ABv(t) +Aw(t)−Bv̇(t) +Bdu(t).

Since p2(0) = w0, problem (13) has a unique classical solution p2(t) = w(t).
Next, if z0 = w0 +Bv(0), then Theorem 2.2 gives[

B I
]
p(t) = Bv(t) + p2(t) = Bv(t) + w(t) = z(t).
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On the other hand, the mild solution of (13) is given by

w(t) =T (t)w0 −
∫ t

0

T (t− s)Bv̇(s) ds+

∫ t

0

T (t− s)ABv(s) ds+
∫ t

0

T (t− s)Bdu(s) ds.

The last two results give (17).

3 Approximate Controllability for Mixed Boundary Control System

We will investigate an approximate controllability for the mixed boundary control system
(4). If v is a differentiable control satisfying v̇ ∈ L2([0, τ ], V ), then the mild solution of
problem (4) is well-defined. We define the customized reachability subspace:

Rb =
{
z ∈ Z : there are a τ > 0 and a differentiable control v, with v(0) = 0,

v, v̇ ∈ L2([0, τ ], V ) and z(τ) is the classical solution (17)
}
.

The mixed boundary control system is said to be approximately controllable if Rb is
dense in Z. Let Re be the reachability subspace of the extended system (A,B) on P,
i.e.,

Re =
{
p ∈ P : there exists a τ > 0 and u ∈ L2([0, τ ], V ⊕ U) such that

p(τ) =

∫ τ

0

K(τ − s)Bu(s)ds
}
.

Theorem 3.1 If the extended system (A,B) is approximately controllable, then the
mixed boundary control system (4) is also approximately controllable.

Proof. Refer to the proof of Theorem 2.3, we have Rb =
[
B I

]
Re. This implies

that if Re is dense in P, then Rb is dense in Z.
We recall that A has real eigenvalues {λn : n ≥ 1} and a biorthogonal pair {(ϕn, ϕn) :

n ≥ 1} due to A is self-adjoint. We consider that the operator B is finite-rank defined
by

Bv =

m∑
i

bivi, bi ∈ Z, (19)

where v = (v1, v2, . . . , vm) ∈ V = Cm and bi(x) = 1 + cie
Pex for some constants ci. In

the following, we have some results of system (15) on P = V ⊕ Z.

Lemma 3.1 The operator A in (15) has the biorthogonal pair {(ϕ̃n, ψ̃n) : n ≥ 1},
where

ϕ̃n =

[
0
ϕn

]
and ψ̃n =

[
1
λn

(AB)∗ϕn
ϕn

]
,

whenever λn ̸= 0.

Proof. From the hypothesis, we see that Aϕn = λnϕn, where λn is real for all n ∈ N.
For µn ̸= 0, let ϕ̃n =

[
ϕ̃1n ϕ̃2n

]tr
and ψ̃n =

[
ψ̃1
n ψ̃2

n

]tr
, where Qtr denotes the

transpose of Q. Taking into account Aϕ̃n = µnϕ̃n gives ϕ̃1n = 0, ϕ̃2n = ϕn and µn = λn.
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Similarly, A∗ψ̃n = µnψ̃n = λnψ̃n gives (AB)∗ψ̃2
n = λnψ̃

1
n and A∗ψ̃2

n = λnψ̃
2
n. This forces

that ψ̃2
n = ϕn and ψ̃1

n = 1
λn

(AB)∗ϕn.
This lemma stresses that the operators A and A have common nonzero eigenvalues.

However, if 0 is not an eigenvalue of A (0 ∈ ρ(A)), where ρ(A) is the resolvent set of A,
we have the following.

Lemma 3.2 If 0 ∈ ρ(A), then λ0 = 0 is the eigenvalue with multiplicity m of A and
the corresponding biorthogonal pair

ϕ̃i0 =

[
ei

−A−1(AB)ei

]
, ψ̃i

0 =

[
ei
0

]
,

where {ei : i = 1, 2, . . . ,m} is the usual orthonormal basis of V = Cm.

Proof. The fact that 0 ∈ ρ(A) implies that A is invertible. Let ϕ̃i0 =
[
ϕ̃i10 ϕ̃i20

]tr
and ψ̃i

0 =
[
ψ̃i1
0 ψ̃i2

0

]tr
, i = 1, 2, . . . ,m, be the corresponding biorthogonal pair of A

associated with λ0 = 0. The equation Aϕ̃i0 = 0 gives ϕ̃i20 = −A−1(AB)ϕ̃i10 . Chooshing
ϕ̃i10 = ei gives the assertion. Finally, A∗ψ̃i

0 = 0 gives ψ̃i2
0 = 0 and ψ̃i1

0 = ei for i =
1, 2, . . . ,m.

Next, we assume the interior control Bd in (5) is given by

Bdu =

m∑
i=1

diui, di ∈ Z, (20)

where u = (u1, u2, . . . , um) ∈ V = Cm. The following theorem gives the sufficiency for
the approximate controllability of system (5).

Theorem 3.2 Let 0 ∈ ρ(A). The mixed boundary control system (5) with the interior
control (20) is approximately controllable if for each n ∈ N,

rank (⟨Ab1 − λnb1 + λnd1, ϕn⟩ρ, · · · , ⟨Abm − λnbm + λndm, ϕn⟩ρ) = 1. (21)

Proof. According to Theorem 3.1, we prove the approximate controllability of system
(15) in P. Following the proof of Theorem 4.2.3 of [8], we need to prove that Re = P.

However, Re = P is equivalent to for each n ≥ 1, there is a u(t) =

[
v̇(t)
u(t)

]
, where

v(t) = te0, u(t) = e0, e0 = (1, 1, . . . 1) ∈ Cm, implying ⟨Bu, ψ̃n⟩ ≠ 0. From the definitions
of B, u in (15) and ψ̃n in Lemma 3.1, we have

⟨Bu, ψ̃n⟩ =
〈
v̇, 1

λn
(AB)∗ϕn

〉
ρ
+ ⟨−Bv̇ +Bdu, ϕn⟩ρ

= ⟨v̇, (AB)∗ϕn⟩ρ + ⟨−λnBv̇ + λnBdu, ϕn⟩ρ
= ⟨ABv̇, ϕn⟩ρ + ⟨−λnBv̇ + λnBdu, ϕn⟩ρ
= ⟨ABv̇ − λnBv̇ + λnBdu, ϕn⟩ρ .

Equations (19) and (20) give ⟨Abi − λnbi + λndi, ϕn⟩ρ ̸= 0, i = 1, 2, . . . ,m, for each
n ∈ N, and (21) follows.

Lemma 3.3 Assume that A has the eigenvalue λ1 = 0 with the eigenvector ϕ1.
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(a) If ⟨Abi, ϕ1⟩ρ = 0 for i = 1, 2, . . . , r, then A has the corresponding eigenvectors ϕ̃i0 =[
ei
yi

]
and biorthogonal pairs ψ̃i

0 =

[
ei
0

]
, where yi = −

∑∞
n=2

1
λn

⟨Abi, ϕn⟩ρϕn,

for i = 1, 2, . . . , r.

(b) If ⟨Abi, ϕ1⟩ρ ̸= 0 for i = r + 1, . . . ,m, then A has the generalized eigenvectors

ϕ̃i0 =

[
⟨Abi, ϕ1⟩−1

ρ ei
xi

]
of order 2 satisfying Aϕ̃i0 =

[
0
ϕ1

]
with the biorthogonal

pair ψ̃i
0 =

[
⟨Abi, ϕ1⟩ρei

0

]
, where xi = −

∑∞
n=2

⟨Abi,ϕn⟩ρ
λn⟨Abi,ϕ1⟩ρϕn for i = r+1, . . . ,m.

Proof. (a) Lemma 3.2 implies that λ1 = 0 is the eigenvalue of A with multiplicity r.

Let the corresponding eigenvector of A have the form ϕ̃i0 =

[
ei
yi

]
. It gives Abi+Ayi = 0.

Multiplying this equation by ϕnρ and simplifying, we have ⟨yi, ϕn⟩ρ = − 1
λn

⟨Abi, ϕn⟩ρ.

The form of yi follows. Then the direct calculation of A∗ψ̃i
0 = 0 gives ψ̃i

0 =

[
ei
0

]
.

(b) For i fixed, r < i ≤ m, we can verify that

A2ϕ̃i0 =

[
0

A(Abi)
⟨Abi,ϕ1⟩ρ +A2xi

]
.

The facts that Abi ∈ D(A) and A is self-adjoint with respect to the inner product
⟨·, ·⟩ρ give the second component of A2ϕ̃i0 is 0. This confirms that ϕ̃i0 is the generalized

eigenvector of A of order 2. Further, A(Abi)
⟨Abi,ϕ1⟩ρ + A2xi = 0 implies that ⟨xi, ϕn⟩ρ =

− ⟨A(Abi),ϕn⟩ρ
λn⟨Abi,ϕ1⟩ρ . The required form of xi follows. The biorthogonal ψ̃i

0 is found easily.

Finally, since Abi can be expanded in ϕn, we have

Aϕ̃i0 =

[
0

Abi
⟨Abi,ϕ1⟩ρ +Axi

]
=

[
0
ϕ1

]
.

Remark 3.1 For r < i ≤ m, the set {ϕ̃n, ϕ̃i0 : n ∈ N, i = 1, 2, . . . ,m} generates a
Riesz basis of P = Cm ⊕ Z and the operator A has a spectral decomposition

Ap =

m∑
i=r+1

⟨p, ψ̃i
0⟩

[
0
ϕ1

]
+

∞∑
n=2

λn⟨p, ψ̃n⟩
[

0
ϕn

]
, p ∈ P.

Theorem 3.3 Let λ1 = 0 and A = Ã + Ah, where Ã is a Riesz operator on Ỹ =
spann≥2{ϕ̃n} and the operator Ah is finite-rank on Yh = spani=1,...,m{ϕ̃1, ϕ̃i0}. If (21)
holds for all n ≥ 2 and ⟨Abi, ϕ1⟩ ≠ 0 for all i ≥ r + 1, then the mixed boundary control
system (5) with the interior control (20) is approximately controllable.

Proof. From Exercise 4.17 of [8], the extended system (A,B) is approximately
controllable if and only if the systems (Ã, B̃) and (Ah, Bh) are approximately controllable.
We verify that (Ah, Bh) is exactly controllable. By Theorem 3.2, (Ã, B̃) is approximately
controllable when (21) holds for all n ≥ 2 and ⟨Abi, ϕ1⟩ ≠ 0 for all i ≥ r+1. The assertion
follows by Theorem 3.1.
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4 Transfer Function for Boundary Control Systems

The mixed boundary control system allows to be converted to the boundary control sys-
tem. Therefore, without loss of generality, we consider the boundary control system (4)
with u(t) = 0. Moreover, we assume that the output y(x, t) is a substrate concentration
measured at x, 0 ≤ x ≤ 1. The system equations are

zt(x, t) =
1
Pe
zxx(x, t)− zx(x, t) + J(x)z(x, t),

z(0, t)− 1
Pe
zx(0, t) = v(t),

zx(1, t) = 0,

y(x, t) = Kz(x, t),

(22)

where K ∈ L(Z, Y ) and Y is the output space. System (22) is rewritten as the abstract
boundary control system

ż(t) =Az(t), z(0) = z0,

Bz(t) = v(t),

y(t) =Kz(t).

(23)

The triple (A,B,K) denotes the boundary control system (23) with the output operator
K.

In this paper, we focus on the boundedness of the input-output map from v ∈
L2([0, τ ], V ) to y ∈ L2([0, τ ], Y ).

Definition 4.1 Let ŷ(s) and v̂(s) be the Laplace transform of the output and input
of system (23), respectively. A system transfer function is an operator G(s) such that

ŷ(s) = G(s)v̂(s)

for all s, Re s > σ for some real σ.

The definition implies that the input-output map is well-defined and the output is Laplace
transformable. Further, the system transfer function can be used to determine the bound-
edness of the input-output map.

Theorem 4.1 ( [16]) Let (A,B,K) be any boundary control system. The input-
output map of the system is bounded if and only if there exists a real number σ such that
the transfer function G(s) associated with (A,B,K) satisfies

sup
Re s>σ

∥G(s)∥L(V,Y ) <∞.

The function G(s) is said to be proper if the above inequality holds.

The boundary control system (23) can be written in the state-space form (A,B,C),
see [19]. Here, the operators A and B satisfy Definition 2.1. The operator C ∈ L(W,Y )
is defined by C = K|W , where W = ker(B). The following refers to Theorem 2.6 of [19].

Theorem 4.2 The input-output map of boundary control system (23) is well-defined
for all inputs v ∈ H2([0, τ ], V ), v(0) = 0. The output can be written as

y(t) = g(t) ∗ v(t),
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where g(t) is a distribution with the Laplace transform G(s). For each s ∈ ρ(A), the
operator G(s) ∈ L(V, Y ) is the system transfer function given by

G(s) = K(sI −A)−1B.

Proof. We consider the state-space formulation (A,B,C) of the boundary control
system (A,B,K) (23) constructed by the procedure above:

ż(t) =Az(t) +Bv(t), z(0) = z0,

y(t) =Cz(t),
(24)

where A is the infinitesimal generator of a C0-semigroup T (t) on Z. Let z be the solution
of (24). For any µ ∈ ρ(A), we can rewrite

z(t) = (µI −A)−1(µI −A)z(t)

= (µI −A)−1(µz(t)− ż(t)) + (µI −A)−1Bv(t). (25)

For all initial conditions z(0) = 0 and smooth controls v ∈ H2([0, τ ], V ) with v(0) = 0, the
first term in (25) is inW ⊂ Z for each time t because Bv ∈ D(A), see Definition 2.1. Since
A is the infinitesimal generator on Z with the domain D(A), (µI−A)−1B ∈ L(V,D(A)).
Further, for any µ ∈ ρ(A), Range(µI − A)−1B ⊂ Z and so (µI − A)−1B ∈ L(V,Z). By
applying the operator K to the solution z, we obtain the output y:

y(t) = K(µI −A)−1(µz(t)− ż(t)) +K(µI −A)−1Bv(t). (26)

Since W ⊂ Z, K(µI − A)−1 ∈ L(D(A), Y ) and K(µI − A)−1B ∈ L(V, Y ). Since both v
and z are Laplace transformable and due to the fact that z is the solution of (24), the
Laplace transform of both sides of (26) gives

ŷ(s) = K(µI −A)−1(µ− s)(sI −A)−1Bv̂(s) +K(µI −A)−1Bv̂(s).

This gives the system transfer function

G(s) = K(µI −A)−1(µ− s)(sI −A)−1B +K(µI −A)−1B.

By replacing µ = s, we obtain

G(s) = K(sI −A)−1B (27)

for any s ∈ ρ(A).
On the other hand, the input-output map of system (23) is

y(t) = K

∫ t

0

T (t− r)u(r) dr.

From (27), the distribution of G(s) is g(t) = KT (t)B. Therefore, the output can be
written as

y(t) =

∫ t

0

g(t− r)u(r) dr = g(t) ∗ u(t).

Remark 4.1 The resolvent operator R(s) := (sI−A)−1, s ∈ ρ(A), is given explicitly
by Theorem 7.1 in [20]. The reference initiated the study of the maximal and minimal
Sturm–Liouville operators, all self-adjoint restrictions of the maximal operator Tmax.
Moreover, the spectrum properties of A have been also comprehensively characterized.
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The form of the transfer function can be based entirely on the boundary control
description (23) not on the construction of a state-space realization. The transfer function
is defined in terms of an elliptic problem associated with the boundary control system.

Definition 4.2 The abstract elliptic problem (A,B)e corresponding to the boundary
control system (A,B) in (23) is

Az =sz, s ∈ C,
Bz = v.

(28)

The solution z ∈ Z is denoted by z(s).

Let α be the growth bound of the semigroup associated with (A,B). The elliptic
problem (28) has a unique solution z(s) for all v and Re s > α. The system transfer
function may be described through the solution to the abstract elliptic problem (28).

Theorem 4.3 If (A,B,K) is the boundary control system (23), then there exists an
α ∈ C such that the system transfer function G(s) is given by

G(s)v = Kz(s) for all s ∈ C, with Re s > α, (29)

where z(s) is the solution to the abstract elliptic problem (28) with input v.

Proof. Let α be the growth bound of the C0-semigroup T (t) generated by A. From
Theorem 4.2, for all s ∈ C with Re s > α, s ∈ ρ(A), we have the transfer function
G(s) = K(sI − A)−1B. Here, we note that A = A + BB and B(sI − A)−1B = I, see
(8). Therefore, we obtain A(sI − A)−1B = s(sI − A)−1B. This implies that z(s) =
(sI −A)−1Bv is the solution of abstract elliptic problem (28). The assertion follows.

Alternatively, since B is onto, for any given v ∈ V , we can choose z ∈ Z such that
Bz = v. We define G ∈ L(V, Y ) by

G(s)Bz := Kz − C(sI −A)−1(sz −Az). (30)

The definitions of A and C guarantee that G is well-defined. If z solves the associated
elliptic problem, then for any v ∈ V and s ∈ C with Re s > α, (30) gives

G(s)v = Kz(s).

Example 4.1 If the desired steady-state temperature profile of system (22) is essen-
tially uniform and the output y(t) is measured at x1, 0 ≤ x1 ≤ 1, this shows that the
control system is well-posed.

From the assumptions, we may linearize about a uniform temperature zs(x) =
constant, so J(x) becomes a constant. Let J(x) = c. We use the notations relating
with (9), (10), and (11) for J(x) = c, Z = L2(0, 1) and V = C. We have the associated
C0-semigroup T (t) is given in the form (12), where λn is the solution of the transcendental
equation

tanβn =
4Peβn

4β2
n − P 2

e

,

ϕn(x) = Bne
Pe
2 x

[
2βn

Pe
cosβnx+ sinβnx

]
,

β2
n =

4Pe(c− λn)− P 2
e

4
,
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where Bn are some constants. We note that the eigenvalues λn, n ∈ N ∪ {0}, form the
decreasing sequence of negative real numbers, see Lemma 5.1 of [1].

The elliptic problem corresponding to system (22) when the output y(t) is measured
at x1, 0 ≤ x1 ≤ 1, is

1

Pe

d2z

dx2
− dz

dx
+ cz = sz, s ∈ C,

z′(1) = 0,

z(0)− 1

Pe
z′(0) = v,

(31)

with the output equation
y = Kz(x1).

The solution of the elliptic problem (31) is

z(x, s) = e
Pe
2 x [A(v, s) cosβx+B(v, s) sinβx] ,

where

A(v, s) =
v[4Peβ cosβ + 2(P 2

e − 4β2 + 4β) sinβ]

4Peβ cosβ + (P 2
e − 4β2) sinβ

,

B(v, s) =
2Pev[2 sinβ − Pe cosβ]

4Peβ cosβ + (P 2
e − 4β2) sinβ

,

β2 =
4Pe(c− s)− P 2

e

4
.

In this problem, we have ∥T (t)∥ ≤Meλ0t, where λ0 = supn≥0 λn. Therefore, the growth
bound α = λ0. For all s ∈ C with Re s > λ0, Theorem 4.3 gives the system transfer
function

G(s) = Ke
Pe
2 x1 [A(s) cosβx1 +B(s) sinβx1] ,

where

A(s) =
4Peβ cosβ + 2(P 2

e − 4β2 + 4β) sinβ

4Peβ cosβ + (P 2
e − 4β2) sinβ

,

B(s) =
2Pe[2 sinβ − Pe cosβ]

4Peβ cosβ + (P 2
e − 4β2) sinβ

.

We see that the transfer function is proper, and in virtue of Theorem 4.1, the input-
output map is bounded. This implies that the control system is well-posed.

Remark 4.2 In the case J(x) is not a constant, using the fact that the set {ϕn} is
a basis for the state space Z, we can assume that J(x)z(x, t) can be expressed by

J(x)z(x, t) =

∞∑
n=0

fn(t)ϕn(x).

Therefore, by solving for fn, we can use the procedure above to find the transfer function.
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5 Conclusions

We concern with the mixed boundary control systems inducted by non-isothermal axial
dispersion chemical tubular reactors. The well-posedness, approximate controllability,
and transfer function of the mixed boundary control system can be determined. The well-
posedness is identified by the operator control B = 1 + cePex. Moreover, the classical
solution can be obtained using the extended space. The sufficiency for approximate
controllability is justified by the eigenvalues and eigenvectors of the Sturm-Loiuville
operator using the equivalence in the extended space. The proper transfer function of the
associated boundary control system equipped with an output can be constructed. The
transfer function ensures the well-posedness for the associated boundary control system.
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