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1 Introduction

Partial differential equations (PDEs) represent a mathematical tool that connect dif-
ferent functions and their derivatives. These functions reflect, generally, some physical
quantities like heat and waves [1]. Until now, their study is still very active, gathering
the resolution of systems, daily problems and the development of mathematics. The
problem for the majority of PDEs appears in the calculation of the analytic solution,
which is generally impossible. For this reason, mathematicians headed to other tools
such as numerical resolution to approximate the solution of such problems in an effective
way in terms of time and results.

In this paper, we focus on the numerical study of the advection-diffusion-reaction
equation. The latter brings together three important processes: advection, diffusion and
reaction. It is formulated as follows:

∂C

∂t
= D0

∂2C

∂x2 − V0
∂C

∂x
−K0C + f(x, t),

where D0 is the diffusion coefficient, V0 is the convective velocity, K0 is the reaction
constant and f(x, t) is a scalar function often called the source term. It models, according
to the problem, a heat source, chemical reaction, injection/production wells, etc.

This equation occurs in several scientific disciplines such as biology, astrophysics, and
industrial and environmental issues. It models many phenomena, for example energy
transfer, mass transfer and also the transfer of the heat through a permeable medium
and the transport of a chemical or biological pollutant through an underground aquifer
system [2–4]. Generally, it describes the phenomenon of the distribution of some quan-
tities in space and time. The advection-diffusion-reaction equation can be viewed as a
special case of a reaction-diffusion system (systems that describe the dynamics of chemi-
cal concentrations reacting and diffusing in space), where the process of advection is also
taken into account. In other words, this equation is an extension of reaction-diffusion
equations to include the effects of advection [5].

Moving to numerical solution, different methods have been introduced and show hight
accuracy to approximate the desired solution, we can cite: finite differences, finite vol-
umes and finite elements. The principle of these methods is the same for all the numerical
methods ”searching for discrete numerical values that approach the exact solution” [6].

Another branch of numerical methods recently appeared are the spectral methods
developed by D. Gottieb and S. Orszag in 1970, based on the use of a finite expansion
of certain eigenfunctions obtained from the Sturm-Liouville problem [7–10]. This devel-
opment gives a high level of precision which is superior to the other mentioned methods,
thus, it requires a small number of grid points to get the desired precision [11]. Another
advantage of these methods is that they are less intensive in terms of time and mem-
ory compared to finite elements, but they become less precise if we consider problems
with complex geometry. These approaches are applicable for the resolution of different
problems such as the resolution of ODEs, linear and nonlinear PDEs and eigenvalue
problems [10,12–14].

In this work, we develop an efficient numerical method basing on a coupling of spectral
methods and finite differences schemes. The model problem is posed with perturbed
boundary conditions of Robin type, so that we can apply a Legendre-Galerkin approach
according to the spatial variable and a Cranck-Nicolson scheme according to the temporal
one. The way in which the conditions are perturbed makes it possible to compare the
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obtained approximation and the exact solution of the same problem with the Dirichlet
boundary conditions.

The structure of this paper is as follows. In Section 2, we remind some preliminar-
ies and essential tools required for the elaboration of the presented study. Next, the
model problem is presented in Section 3 with the adaptative variational formulation, the
existence and uniqueness of the solution are also proved. In Section 4, we outline the
principle of the presented approach and we study its convergence and give an estimation
of the error of approximation. Then, in the same section, the implementation of the
proposed technique and the coupling with the finite differences scheme are exposed to
obtain the final system to solve. Section 5 addresses the proof of the efficiency of the
algorithm via different numerical examples by showing the convergence of the approxi-
mation to the analytic solution of the classic problem with the homogeneous Dirichlet
boundary conditions, when ε reaches zero.

2 Preliminaries

Let I = (−1, 1). We define

L2(I) = {v ; v is mesurable on I and ∥v∥ < +∞}.

The scalar product is ⟨u, v⟩ = (u, v)L2 =
∫
I
u(x)v(x) dx, and the norm is defined by

∥v∥L2 = (v, v)
1
2

L2 .
For every positive m, we define the Sobolev space by

Hm(I) =

{
v ;

∂kv

∂xk
∈ L2(I), 0 ≤ k ≤ m

}
,

and the standard semi-norm and norm are |v|L2 =
∥∥ ∂v
∂x

∥∥
L2 ; ∥v∥Hm =

∑m
k=0

∥∥∥ ∂kv
∂xk

∥∥∥
L2

.

Let (H1(−1, 1))∗ be the dual space of H1(−1, 1) with a norm defined by

∥g∥H1∗ = sup
v∈H1(I)

v ̸=0

⟨g, v⟩
∥v∥H1

.

Thus, and since ∥v∥L2 ≤ C∥v∥H1 for all v ∈ H1(I), we can write

∥g∥H1∗ ≤ C∥g∥L2 . (1)

We denote by PN the space of polynomials of degree that is less than or equal to N .
Let Ln(x) ; x ∈ I be the standard Legendre polynomial of degree n. The family of
Legendre polynomials Lk(x)k∈N constitutes a Hilbert basis of L2(I) and they are solutions
of the following differential Legendre equation:(

1− x2
)
L

′′

n(x)− 2xL
′

n(x) + n (n+ 1)Ln(x) = 0, n ≥ 0.

The polynomial Ln(x) is of degree n for all n ∈ N, and the coefficient of its highest degree

term is
(2n)!

2n(n!)2
. They satisfy

∀n ̸= m ∈ N,
∫ 1

−1

Ln(x)Lm(x) x. = 0 and

∫ 1

−1

L2
n(x) x. =

2

2n+ 1
.
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The Legendre polynomials satisfy the following recurrence relations [9]:

Ln(1) = 1 and Ln(−x) = (−1)nLn(x) =⇒ Ln(−1) = (−1)n,

(n+ 1)Ln+1(x)− (2n+ 1)xLn(x) + nLn−1(x) = 0, n ≥ 1,

(2n+ 1)Ln(x) = L
′

n+1(x)− L
′

n−1(x), n ≥ 1.

3 The Model Problem

We consider the advection-diffusion-reaction problem with mixed Robin-type boundary
conditions disturbed with a small parameter ε,

∂u

∂t
(t, x) + α

∂u

∂x
(t, x)− β

∂2u

∂x2
(t, x) + λu(t, x) = f(t, x); −1 < x < 1, t > 0,

u(t,−1)− ε
∂u

∂x
(t,−1) = 0;

u(t, 1) + ε
∂u

∂x
(t, 1) = 0,

(2)

where ε ∈]0, 1], and u(0, x) = u0 = g(x) is a given initial condition.
In this study, we focus on the case where the reaction, advection and diffusion coefficients
are scalars. Let α ∈ R, β ∈ R∗

+ and λ ∈ R.
Multiplying the equation of problem (2) by v which depends only on x, and integrating

by parts on I, we obtain∫ 1

−1

∂u

∂t
v(x) dx+ β

∫ 1

−1

∂u

∂x

dv

dx
dx+ α

∫ 1

−1

∂u

∂x
(t, x)v(x) dx+ λ

∫ 1

−1

u(t, x)v(x) dx

=∫ 1

−1

f(t, x)v(x) dx+ β

[
∂u

∂x
v(x)

]1
−1

.

The boundary conditions give

∂u

∂x
(−1) =

u(−1)

ε
,

∂u

∂x
(1) = −u(1)

ε
.

Hence the weak formulation of the problem (2) is{
Find u(t) ∈ H1(I) such that

d

dt
⟨u(t), v⟩+ a(u(t), v) = ⟨f(t), v⟩,

(3)

with the initial condition u(0) = g(x) and where

a(u(t), v) =β

∫ 1

−1

∂u

∂x
(t, x)

dv

dx
(x) dx+ α

∫ 1

−1

∂u

∂x
(t, x)v(x) dx+ λ

∫ 1

−1

u(t, x)v(x) dx

+
β

ε
(u(1)v(1) + u(−1)v(−1)). (4)
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Theorem 3.1 Let T > 0 be a final time, g ∈ L2(I) be an initial data and a(., .) be
the bilinear form given in (4). The following problem has a unique solution
u ∈ L2(]0, T [;H1(I)) ∩ C([0, T ];L2(I)):

d

dt
⟨u(t), v⟩+ a(u(t), v) = ⟨f(t), v⟩, ∀v ∈ H1(I), 0 < t < T,

u(t = 0) = g(x).
(5)

In addition, we have

1

2

∫ 1

−1

u2(x, t) dx+ β

∫ t

0

∫ 1

−1

∣∣∣∣∂u∂x (s, x)
∣∣∣∣2 dxds+ λ

∫ t

0

∫ 1

−1

u2(s, x) dx ds

+
α

2

∫ t

0

(u2(s, 1)− u2(s,−1)) ds+
β

ε

∫ t

0

(u2(s, 1) + u2(s,−1)) ds

=
1

2

∫ 1

−1

u2(0, x) x. +

∫ t

0

∫ 1

−1

f(s, x)u(s, x) dx ds.

This leads to the following energy estimate:

∥u∥2C([0,T ];L2(I)) +m∥u∥2L2(]0,T [;H1(I)) ≤ C
(
∥u0∥2L2 + ∥f∥2L2([0,T ];L2(I))

)
. (6)

Proof. It is clear that a(., .) is a symmetric bilinear form. So, we prove the continuity
and coercivity to ensure the existence and uniqueness.

The continuity is ensured by using the Cauchy-Schwarz inequality and the fact that

| u(±1) | ≤ sup
x∈[−1,1]

| u(x) | = ∥u∥L∞ .

So, ∃δ > 0, δ = θ + |α|+ 2β

ε
such that

∀u(t), v ∈ H1(I) | a(u(t), v) |≤ δ∥u(t)∥H1∥v∥H1

for θ = max
λ∈R, β∈R∗

+

{β, |λ|}.

The coercivity is also ensured. In fact, we have

a(u(t), u(t)) ≥ β

∥∥∥∥∂u∂x (t)
∥∥∥∥2
L2

+
α

2

(
u2(t, 1)− u2(t,−1)

)
+ λ∥u(t)∥2L2 .

So

• If α ≥ 0 and λ ≥ 0, we have M = min
λ∈R, β∈R∗

+

{β, λ} > 0 such that

∀u(t) ∈ H1(I), a (u(t), u(t)) ≥ M∥u(t)∥2H1 .

• If α ≥ 0 and λ ≤ 0, we have M = β > 0 and η = β − λ such that

a(u(t), u(t)) + η∥u(t)∥2L2 ≥ M∥u(t)∥2H1 , ∀u(t) ∈ H1(I).
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• If α < 0 and λ ≥ 0, we have η = −α

2
and M = min

λ∈R, β∈R∗
+

{β, λ} > 0 such that

a(u(t), u(t)) + η∥u(t)∥2L2 ≥ M∥u(t)∥2H1 , ∀u(t) ∈ H1(I).

• If α < 0 and λ ≤ 0, we have η = β − α

2
− λ and M = β such that

a(u(t), u(t)) + η∥u(t)∥2L2 ≥ M∥u(t)∥2H1 , ∀u(t) ∈ H1(I).

Hence the existence and uniqueness of the solution of the problem (5) is proved.
For the second equality, by integrating the formula (3) on [0,t] and for all t ∈ [0, T ], we
obtain the energy equality (6).

Using the previous energy equality and posing σ = min
β∈R∗

+,λ∈R
{β, λ}, we have

1

2
∥u(t)∥2L2 + σ

∫ t

0

∥u(s)∥2H1 ds+
α

2

∫ t

0

(u2(s, 1)− u2(s,−1)) ds

≤ 1

2
∥u0∥2L2 +

∫ t

0

∥f(t)∥L2∥u(s)∥L2 ds+
2β

ε

∫ t

0

∥u∥2H1 ds.

And from Young’s algebraic inequality, there exists k > 0 such that

∥u(t)∥2L2 + 2

(
σ − k − 2β

ε

)∫ t

0

∥u(s)∥2H1 ds+ α

∫ t

0

(u2(s, 1)− u2(s,−1)) ds

≤ ∥u0∥2L2 +
1

2k

∫ t

0

∥f(s)∥2L2 ds.

By a simple calculation, we show

∥u(t)∥2L2 + 2

(
σ − k − 2β

ε
− α

2

)∫ t

0

∥u(s)∥2H1 ds ≤ ∥u0∥2L2 +
1

2k

∫ t

0

∥f(s)∥L2 ds.

And the desired energy estimate (6) is obtained for m = 2

(
σ − k − 2β

ε
+

α

2

)
and

C = max
k≥0

{
1,

1

2k

}
.

4 Legendre-Galerkin Approximation for the Advection-Diffusion-Reaction
Equation

Let N be a positive integer, we consider

LN = [{L0, L1, . . . , LN}].

We define the finite dimensional space VN included in the space H1(I) by

VN = {v ∈ LN such that v(−1)− εv′(−1) = 0 and v(1) + ε v′(1) = 0}.

Then the Legendre spectral scheme for (3) is{
Find uN (t) ∈ VN such that

d

dt
⟨uN (t), vN ⟩+ a(uN (t), vN ) = ⟨f(t), vN ⟩; ∀ vN ∈ VN .

(7)
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At this stage, we choose as the basis functions for VN a family of polynomials constructed
from the orthogonal Legendre polynomials given as

φk(x) = Lk(x) + akLk+1(x) + bkLk+2(x); k = 0, 1, 2, . . . , (8)

where ak and bk are the coefficients that can be determined once φk verifies the boundary
conditions of the problem (2). Then, for k ≥ 0 and ε > 0, we obtain

ak = 0; bk = −
1 +

ε

2
k(k + 1)

1 +
ε

2
(k + 2)(k + 3)

.

Since the elements of the polynomial family {φk}k are linearly independent, we have
VN = [{φ0, φ1, . . . , φN−2}], and the desired approximation can be written as

uN (t, x) =

N−2∑
k=0

uk(t)φk(x). (9)

4.1 Convergence and error estimation

Theorem 4.1 Let uN be the solution of the problem (7). There exists a constant C
which depends on M and does not depend on N so that for any t > 0, we have

∥uN (t)∥2L2 +M

∫ t

0

∥uN (s)∥2L2 ds ≤ ∥uN (0)∥2L2 + C

∫ t

0

∥f(s)∥2L2 ds. (10)

Proof. By taking v = uN (t), in the problem (7), we obtain for every t > 0,

1

2

d

dt
∥uN (t)∥2L2 + a(uN (t), uN (t)) = ⟨f(t), uN (t)⟩L2 .

From the coercivity of the bilinear form a(., .) and by making use of Young’s algebraic
inequality, we obtain

d

dt
∥uN (t)∥2L2 +M∥uN (t)∥2L2 ≤ 1

M
∥f(t)∥2L2 . (11)

Finally, we integrate the expression (11) for t ∈ [0, T ] to have (10) with uN (0) = g(x)

and the constant C =
1

M
does not depend on N .

Now, to show the convergence of the proposed spectral method, we introduce the
following theorem. First, we define the function e by e(t) = RNu(t)− uN (t), where

RN : H1(I) −→ VN ; ∥u−RNu∥H1 −−−−−−→
N → +∞

0, ∀u ∈ H1(I).

Theorem 4.2 Let u be the solution of the problem (5) and uN be the solution of the
problem (7). Then we have the following error estimation:

∥e(t)∥2 +M

∫ t

0

∥e(s)∥2H1(−1,1) ds

≤ ∥e(0)∥2 + C

∫ t

0

∥∥∥∥∂u∂t −RN
∂u

∂t

∥∥∥∥2
H1∗

ds+ δ

∫ t

0

∥(u−RNu)∥2H1 ds,

where C and δ are two constants not depending on N .
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Proof. We can write (cf. Chapter 6 in [9])

1

2

d

dt
∥e∥2 +M∥e∥2H1 ≤

∣∣∣∣⟨∂u∂t −RN
∂u

∂t
, e⟩+ a(u−RNu, e)

∣∣∣∣ . (12)

From the continuity of a(., .) and the formula (1), we have∣∣∣∣⟨∂u∂t −RN
∂u

∂t
, e⟩+ a(u−RNu, e)

∣∣∣∣ ≤ ∥e∥H1

(
C

∥∥∥∥∂u∂t −RN
∂u

∂t

∥∥∥∥
H1∗

+ δ∥u−RNu∥H1

)
.

By replacing the latter inequality in (12) and integrating for t > 0, we obtain the desired
estimate.

4.2 Implementation

In order to solve the problem (7), we start by substituting the approximation given in
(9) and defined using the spectral basis (8). By taking the test functions vN as the basis
function, the spectral scheme becomes, for all j = 0, N − 2,

d

dt

N−2∑
k=0

uk(t)⟨φk, φj⟩+
N−2∑
k=0

uk(t)a(φk, φj) = ⟨f(t), φj⟩.

So

⟨φk, φj⟩ =
∫ 1

−1

φk(x)φj(x) dx, ⟨f(t), φj⟩ =
∫ 1

−1

f(t, x)φj(x) dx.

a(φk, φj) =β

∫ 1

−1

φ′
k(x)φ

′
j(x) dx+ λ

∫ 1

−1

φk(x)φj(x) dx+ α

∫ 1

−1

φ′
k(x)φj(x) dx

+
β

ε
(φk(1)φj(1) + φk(−1)φj(−1)).

Then we obtain the matrix form

d

dt
AU(t) +BU(t) = C(t), (13)

where U(t) = (u0(t), · · · , uN−2(t))
T
is the vector of the unknown coefficients and A and

B are the (N − 1)× (N − 1) matrices defined by

Akj = ⟨φk, φj⟩, Bkj = a(φk, φj) and C(t) = (⟨f(t), φ1⟩, · · · , ⟨f(t), φN−2⟩)T .

To solve the obtained system of ordinary differential equations (13), we propose a scheme
of Crank-Nicolson. For this, we discretize the domain [−1, 1] using a constant step ∆x
and the time domaine [0, T ] is discretized by a step ∆t. We denote by Un

i the value of
the solution U at node xi and at time tn and we write the scheme as follows:

(A+
∆t

2
B)Un+1

i = (A− ∆t

2
B)Un

i +
∆t

2
(C(tn) + C(tn+1)); U0

i = (g(x))i, (14)

where (g(x))i is the value of g(x) in each node xi of the discretization of [−1, 1].
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5 Numerical Results

In order to test the performance of the described method, we propose three examples
on [−1, 1], where we solve numerically the equation (2) and show the convergence of the
approximate solution, when ε reaches zero, to the analytic solution of the problem with
boundary conditions of Dirichlet type.

The figures are obtained for Nx = 16 nodes in the domain [−1, 1], and 100 nodes
in the time domain [0, T ]. The error of the approximation, in the case where the Robin
boundary conditions are considered, is calculated for ε fixed, according to the following
formula:

error = ∥uN − uN+2∥∞; N = 2, 4, . . . , 2ℓ, . . . (15)

Example 5.1 We consider the problem posed in (2) with α = λ = 0, β = 1, f(t, x) =
0, T = 3 and the initial condition is given by u(0, x) = cos(π2x). For the homogeneous
Dirichlet boundary conditions, the analytic solution is given by

u(t, x) = exp(−π2

4
t) cos(

π

2
x). (16)

In Figure 1, we observe the convergence of the obtained approximate solution, when
taking the decreasing values of ε, to the analytic solution (16). The values of ε are taken
between 0.08 and 0.0025 when t = 1.5 and between 0.25 and 0.04 when x = 0.2, to show
that its behaviour remains the same all over the domain [−1, 1] at different instances of
time.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

sol. anal.

sol. approx. ǫ=0.08

sol. approx. ǫ=0.05

sol. approx. ǫ=0.025

sol. approx. ǫ=0.0025

.
0 0.5 1 1.5 2 2.5 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sol. anal.

sol. approx. ǫ=0.25

sol. approx. ǫ=0.18

sol. approx. ǫ=0.1

sol. approx. ǫ=0.04

.

Figure 1: The behavior of the solution of (14) for t = 1.5 (left), and for x = 0.2 (right), when
ε reaches 0 and N = 6.

Example 5.2 We consider, in (2), α = 0, λ = 0.001, β = 1, T = 3. The initial con-
dition is given by u(0, x) = sin(πx). For the case of the homogeneous Dirichlet boundary
conditions, the analytic solution is given by

u(t, x) = sin(πx) exp(−λt). (17)

In Table 1, the error of approximation (15) is calculated for N = 10 at different points
from [−1, 1] using different values of ε. The obtained results show that the numerical
solution of (14) converges to the exact solution of the problem with the homogeneous
Dirichlet boundary conditions when ε approaches zero. The variations of the error of
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approximation (15) are given in Figure 2 as a function of N for fixed ε = 0.5. We mention
here that the error of approximation is calculated for N = 42 and is 8.129410e− 10.

x ε = 0.1 ε = 0.01 ε = 0.001 ε = 0.0001

−1.000000 2.847374 · 10−1 3.100927 · 10−2 3.128715 · 10−3 3.131517 · 10−4

−0.600000 1.708432 · 10−1 1.860373 · 10−2 1.874042 · 10−3 1.845087 · 10−4

−0.200000 5.693988 · 10−2 6.194439 · 10−3 6.184256 · 10−4 5.532692 · 10−5

0.066665 1.897638 · 10−2 2.061521 · 10−3 2.030002 · 10−4 1.532227 · 10−5

0.466667 1.328897 · 10−1 1.448028 · 10−2 1.467799 · 10−3 1.536447 · 10−4

0.866667 2.467852 · 10−1 2.688325 · 10−2 2.717881 · 10−3 2.774053 · 10−4

Table 1: The error of approximation as a function of x for N = 10.
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Figure 2: Logarithmic approximation error as a function of N with ε = 0.5.

Example 5.3 We consider, in (2), α = 0.3, β = 0.1, λ = −0.15, f(t, x) = 0 and
T = 1.The initial condition is given by u(0, x) = cos(π x

2 ).

Figure 3 presents, on the left side, the variations of the error as a function of N
taking ε = 0.1. We see the decrease in the error curve with the growth of N . Note
that the error for N = 80 is 2.460133e− 06. The same behavior of the error is depicted
in Figure 4 for ε = 0.001. Moreover, on the right side, for the same value of ε and for
N = 18, we represent the approximate solution of the problem. Finally, in Table 2, we
show different values of the approximation error calculated according to the formula (15)
and for ε = 0.001.
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Figure 3: Logarithmic approximation error as a function of N for ε = 0.1 (on the left), and
approximate solution of (2) for ε = 0.1 and N = 18 (on the right).
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Figure 4: Logarithmic approximation er-
ror as a function of N for ε = 0.001.

N error

2 1.009365 · 10−3

4 1.364608 · 10−4

6 9.846206 · 10−6

8 3.931209 · 10−6

10 2.996409 · 10−7

12 1.075871 · 10−6

14 7.827772 · 10−8

16 1.304010 · 10−6

18 2.071257 · 10−6

20 5.646181 · 10−8

Table 2: Error values as a function of N
for ε = 0.001.

6 Conclusion

In this work, a combined algorithm of numerical methods is proposed for treating the
advection-diffusion-reaction equation posed with the Robin boundary conditions per-
turbed with a small parameter ε. The technique is based on a Legendre-Galerkin method
devoted to the spatial descretization and a Crank-Nicolson scheme to treat the obtained
temporal system. The results obtained show high accuracy and good behavior, especially
when comparing the approximate solution to the analytical solution of the problem posed
with homogeneous boundary conditions allowing us to obtain the solution of the problem
treated for different types of boundary conditions. The presented study offers a new ac-
curate technique to approximate the solution of a partial differential equation which can
be applied to approximate the solution of reaction-diffusion systems, where the explicit
solution is unknown.
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