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1 Introduction

The purpose of this paper is to examine if it is possible to solve the following two functions:
{u(x, t), f(t)} fulfilling the fractional parabolic equation that follows:

CDα
t u−∆u+ βu+ u3 = f(t)g(x, t), x ∈ Ω, t ∈ (0, T ), (1)

with the initial condition
u(x, 0) = 0, x ∈ Ω, (2)

the boundary condition
u(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ], (3)

and the non-local condition∫
Ω

v(x)u(x, t)dx = E(t), t ∈ [0, T ], (4)

where ∂Ω is taken to be a regular boundary of a bounded domain Ω in Rn. There are
two known functions, g and E, and a positive constant, β.

Numerous real-world situations naturally give rise to inverse issues for the heat equa-
tions, see [1–3]. The integral condition (4) provides further information about how to
solve the inverse problem in this case. The integral condition is a crucial modeling tool
in the theory of PDEs in physics and engineering [4–9]. It is important to remember
that integral over-determination processes may not always be successful in addressing
non-local challenges [10,11]. Numerous approaches to solving issues brought on by non-
local issues have been put out thus far. The type of the involved non-local boundary
value dictates the chosen method [12–14]. Numerous authors have studied the inverse
parabolic problem and its unique solvability, focusing on conditions of type (4), see for
example, [2, 3, 15–18]. The existence and uniqueness of inverse problem solutions for
different parabolic equations with unknown source functions have also been the subject
of several studies. Reversing problems with a parabolic equation’s determination term
and over-determination condition were also considered in [19,20].

Fractional differential equations (FDEs) are created by generating differential equa-
tions to any desired order [21–25]. Because fractional differential equations are used to
simulate complicated phenomena, they are significant in the fields of engineering, physics,
and applied mathematics [26,27]. Because of this, engineers and scientists have shown a
growing interest in them in recent years. Since FDEs have memory and non-local relations
in space and time, they can be used to simulate complex phenomena [28–33]. Herein, the
tools, which will be used in our investigation, are the energy inequality method and the
fixed point theorem. The structure of the energy inequality approach can be summed up
as follows:

• First, we write the problem in the form of an operational equation

Lu = F, u ∈ D(L),

where a Banach space E is considered, and the operator L is studied from it to a
suitable Hilbert space F .

• The a priori estimate for the operator L is then established.

• Next, we establish the density of this operator’s collection of values in space F.

The results of the previous procedure will help us in investigating the existence, unique-
ness and continuous dependence of the problem at hand.
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2 Functional Spaces

When it comes to inverse coefficient problems for time fractional parabolic equations un-
der integral over-determination conditions, functional spaces are essential tools for delv-
ing into intricate mathematical difficulties. Unknown coefficient identification becomes a
difficult challenge when studying dynamic systems governed by partial differential equa-
tions, which gives rise to these problems. Function spaces are used in this study to give
the inverse coefficient superlinear problem a comprehensive framework for analysis and
solution. We shall include some definitions and lemmas pertaining to our study in the
sections that follow. Let us clarify the conventions and notations we will use:

g∗(t) =

∫
Ω

g(x, t) · v(x)dx, Q = Ω× (0, T ). (5)

• The left Caputo derivative is given by

cDα
t u :=

1

Γ(1− α)

∫ t

0

∂u(x, τ)

∂τ

1

(t− τ)α
dτ. (6)

• The left Riemann-Liouville derivative is given by

RDα
t u :=

1

Γ(1− α)

∂

∂t

∫ t

0

u(x, τ)

(t− τ)α
dτ. (7)

• The right Riemann-Liouville derivative is given by

R
t D

αu(x, t) :=
1

Γ(1− α)

∂

∂t

∫ T

t

u(x, τ)

(t− τ)α
dτ. (8)

Because the Caputo version is easier to handle under homogenous initial conditions,
several authors contend that it is more natural. A direct calculation can confirm the link
between the two concepts (6) and (7) as follows:

rDα
t u = cDα

t u+
u(x, 0)

Γ(1− α)tα
. (9)

Definition 2.1 [34] For each real α > 0, we define the space lHα
0 (I) as the closure

of C∞
0 (I) with regard to the norm ∥u∥lHα

0 (I)
as follows:

∥u∥lHα(I)
:=
(
∥u∥2L2(I) + |u|2lα

H0(I)

) 1
2

, (10)

where
|u|2lHα(I)

=
∥∥R
0 D

α
t u
∥∥
L2(I)

.

Definition 2.2 For each real α > 0, the space rHα
0 (I) is defined as the closure of

C∞
0 (I) with regard to the norm ∥u∥rHα

0 (I)
as follows:

∥u∥rHα
0 (I)

:=
(
∥u∥2L2(I) + |u|2rHα

0 (I)

) 1
2

, (11)

where
|u|2rHα

0 (I)
:=
∥∥R
t ∂

α
Tu
∥∥2
L2(I)

.



564 I. M. BATIHA et al.

Lemma 2.1 [8, 34] If u ∈ lHα(I) and v ∈ C∞
0 (I) for any real α ∈ R+, then(

RDα
t u(t), v(t)

)
L2(I)

=
(
u(t),Rt D

αv(t)
)
L2(I)

.

Lemma 2.2 [8, 34] For 0 < α < 2, α ̸= 1, u ∈ H
α
2
0 (I), we have

RDα
t u(t) =

RD
α
2
t

RD
α
2
t u(t).

Lemma 2.3 [8, 34] For α ∈ R+, the semi-norms |.|lHα(I)
, |.|rHα(I)

and |.|cHα(I)
are

equivalent, for which α ̸= n+ 1
2 . Thus, we have

|u|lHα(I)
∼= |.|rHα (I)

∼= |.|cHα(I)
.

Lemma 2.4 The space lHα
0 (I) is complete for every real α > 0 with respect to the

norm (10).

Definition 2.3 The space of square functions, in the Bochner sense, integrated with
the scalar product is represented by L2 (0, T, L2(0, d)), and it is given by

(u,w)L2(0,T,L2(0,d)) =

∫ T

0

(u,w)L2(0,d)dt. (12)

3 The Direct Fractional Parabolic Problem’s Solvability

One of the fundamental aspects of a more general study of inverse coefficient super-linear
problems related to time fractional parabolic equations under integral over-determination
conditions is the solvability of the direct fractional parabolic problem. Understanding
the forward dynamics regulated by partial differential equations is essential for compre-
hending the behavior of the underlying systems, and this is achieved through the study
of direct fractional parabolic problems.

3.1 Problem setting

In the rectangular domain Q = (0, d)× (0, T ), where d, T < ∞ and 0 < α < 1, we will
examine the existence and uniqueness of solution u = u(x, t) to the following fractional
parabolic problem:

cDα
t u−

(
∂2u(x,t)

∂x2

)
+ βu+ u3 = f̃(x, t) in Q,

u(x, 0) = 0, ∀x ∈ (0, d),
u(0, t) = u(d, t) = 0, ∀t ∈ (0, T ),

whose fractional parabolic equation is nonlinear and provided as follows:

Lu = cDα
t u− ∂2u

∂x2
+ βu+ u3 = f̃

with the initial condition
ℓu = u(x, 0) = 0, ∀x ∈ (0, d)

and
u(0, t) = u(d, t) = 0, ∀t ∈ (0, T ),
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where f̃ is a known function and b ∈ R+
∗ .

Within this segment, we exhibit the existence and uniqueness of the solution for the
problem (1)-(3) as a resolution of the subsequent operator equation

Lu = F , (13)

for which L = (L, ℓ), and the domain of definition D(L) = B that can be outlined as

D(L) =

{
u\u ∈ L2(Q) ∩ L4(Q), cDα

t u,
∂u

∂x
∈ L2(Q)

}
.

The operator L is defined in the space between B and F , where B is the Banach
space containing all functions u(x, t) with a finite norm of the form

∥u∥2B =
∥∥∥cD α

2
t u
∥∥∥2
L2(Q)

+

∥∥∥∥dudx
∥∥∥∥2
L2(Q)

+ ∥u∥2L2(Q) + ∥u∥4L4(Q),

and F is the Hilbert space consisting of all Fourier elements (f, 0) such that the norm
L2(Q) is finite.

Theorem 3.1 For each function u ∈ B, we have the inequality

∥u∥B ≤ C∥Lu∥L2(Q), (14)

where C is a positive constant independent of u.

Proof. We now employ the function Mu = u(x, t) together with the scalar product
in L2(Q) of (1), where Q = (0, d)x(0, T ). Consequently, we can have∫

Q

Lu ·Mudxdt =

∫
Q

cDα
t u(x, t) · u(x, t) dxdt−

∫
Q

(
∂2u(x, t)

∂x2

)
· u(x, t) dxdt

+ b

∫
Q

u2(x, t) dxdt+

∫
u4(x, t) dxdt

=

∫
Q

f(x, t)u(x, t) dxdt.

(15)

Due to u(x, 0) = 0, and by using Lemmas 2.1, 2.2 and 2.3, we get∫
Q

cDα
t u(x, t) · u(x, t)dxdt =(cDα

t u(x, t), u(x, t))L2(Q)

=
(
RD

α
2
t

RD
α
2
t u(x, t), u(x, t)

)
L2(Q)

=
(
RD

α
2
t u(x, t),Rt D

α
2 u(x, t)

)
L2(Q)

= |u|2cHα(Q)
∼= |u|2lHα(Q)

=
∥∥∥CD α

2
t u
∥∥∥2
L2(Q)

.
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With the use of the relationship (|ab| ≤ εa2

2 + b2

2ε ) coupled with the integral by parts, we
obtain

∥CD
α
2
t u∥2L2(Q) + ∥du

dx
∥2L2(Q) + (b− ε

2
)∥u∥2L2(Q) + ∥u∥4L4(Q) ≤

1

2ε
∥f∥2L2(Q).

So, for ε ≤ 2b, we can have

∥cD
α
2
t u∥2L2(Q) + ∥du

dx
∥2L2(Q) + ∥u∥2L2(Q) + ∥u∥4L4(Q) ≤ c∥f∥2L2(Q)

with

c =
1

2εmin
(
1, b− ε

2

) .
Consequently, we get

∥u∥B ≤ C∥Lu∥L2(Q),

where C =
√
c.

Proposition 3.1 There is a closure for the operator L from B to F .

Proof. Consider (un)n∈N ⊂ D(L) is a sequence in which un→0 in B, and Lun→F in
F . Herein, we should show f ≡ 0. To this end, we notice that in B, the convergence of
un to 0 causes

un→0 in (C∞
0 (Q))

′
. (16)

Given the continuity of the fractional derivative, the continuity distribution of the func-
tion u2, and 162 derivation of the first order of (C∞

0 (Q))
′
in (C∞

0 (Q))
′
as a special case

of the fractional derivative, the relationship (16) involves

Lun→0 in (C∞
0 (Q))

′
. (17)

Furthermore, in L2(Q), the convergence of Lvn to f yields

Lvn→f in (C∞
0 (Q))

′
. (18)

Due to the limit in (C∞
0 (Q))

′
is unique, we may infer from (17) and (18) that f ≡ 0.

Therefore, the operator L is closeable.
We will define D(L̄) as the domain of definition of L̄ and let L̄ be the closure of L in

the material that follows.

Definition 3.1 Problem (1)–(3) has a strong solution, which is the operator equation

L̄u = F .

Furthermore, we may expand the previous estimate to a strong solution, meaning we
would get the estimate

∥u∥B ≤ C∥L̄u∥F , ∀u ∈ D(L̄). (19)

Corollary 3.1 Problem (1)–(3) has a unique strong solution that is constantly de-
pendent on f ∈ F .

Corollary 3.2 The closure of R(L) and the range R(L̄) of the operator L̄ in F are
equal, i.e.,

R(L̄) = R(L).
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Proof. First, if the solution exists, we will show that it is unique. For this purpose,
we assume that u1 and u2 are two solutions such that η = u1 − u2. So, η will satisfy

cDα
t η(x, t)−

(
∂2η(x,t)

∂x2

)
+ bη(x, t) + u3

1 − u3
2 = 0, in Q,

η(x, 0) = 0, ∀x ∈ (0, d),
η(x, t) = 0, ∀(x, t) ∈ ∂Ω× (0, T )

·

,

for which
cDα

t η(x, t)−
(
∂2η(x, t)

∂x2

)
+ bη(x, t) + u3

1 − u3
2 = 0, in Q. (20)

Using the scalar product of (20) and η in L2(Ω), we obtain∫
Ω

cDα
t η(x, t) · η(x, t)dx−

∫
Ω

(
∂2η(x, t)

∂x2

)
· η(x, t) dx+ b

∫
Ω

η2(x, t) dx

+

∫
Ω

(u3
1 − u3

2)(u1 − u2) dx = 0.

Due to η(x, 0) = 0, with the use of Lemmas 2.1, 2.2 and 2.3 together with integrating by
parts, we obtain

∥cD
α
2
t η∥2L2(Ω) + ∥dη

dx
∥2L2(Ω) + ∥η∥2L2(Ω) +

∫
Ω

(u3
1 − u3

2)(u1 − u2)dx = 0. (21)

The last item on the left-hand side of equation (21) is positive since λ3 is a monotone
function in λ (on Ω = (0, d)), and this leads to the following conclusion from equation
(20):

∥η∥2L2(Ω) ≤ 0,

which implies u1 = u2 for all tϵ(0, T ). We will now go back and illustrate the result we
discuss. To this end, we let z ∈ R(l). Thus, there exists a sequence (zn)n∈N in R(L), for
which limn zn = z. So, just as (zn)n∈N in R(L), ∃ (un)n∈N in D(L), for which Lun = zn.
Assume that E , n ≥ n0, and m,m′ ∈ N, m ≥ m′, for which um and um′ satisfy

Lum = f and Lum′ = f.

We put y = um − um′, then y satisfies
cDα

t y(x, t)−
(

∂2y(x,t)
∂x2

)
+ by(x, t) + u3

m − u3
m′ = 0, in Q,

y(x, 0) = 0, ∀x ∈ (0, d),
y(x, t) = 0, ∀(x, t) ∈ ∂Ω× (0, T )

.

Using the same method we employed to demonstrate the solution’s uniqueness, we can
now obtain y = 0. This suggests that for every t ∈ (0, T ), we obtain

0 ≤ ∥um − um′∥ ≤ 0,

i.e.,
∀ε ≥ 0, ∃n0 ∈ N, ∀m,m′ ≥ n0, ∥um − um′∥ ≤ ε.

Therefore, since E is a Banach space and (un)n∈N is a Cauchy sequence, there exists
u ∈ E such that limn un = u. With the use of the definition of L̄ (limn un = u in
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E; given that limn un = limn zn = u, limn L̄un = z since L̄ is closed, implying that
L̄u = z), we find that the function u satisfies u ∈ D(L̄), for which L̄u = z. Thus, we
have z ∈ R(L̄), and so we obtain

R(L) ⊂ R(L̄).

We also conclude that it is closed since R(L̄) is Banach. It remains to show that this is
not the case. For this purpose, we assume that z ∈ R(L̄). Then, given the elements of
the set R(L̄), there exists a sequence of (zn)n in F such that

lim
n

zn = z.

Therefore, a matching sequence (un)n∈N exists such that

lim
n

L̄un = zn.

However, we have a Cauchy sequence in F , which is (un)n∈N. Thus, u ∈ E exists such
that

lim
n

un = u in E.

Consequently, we have limn L̄un = z. As a consequence, z ∈ R(L), and then we obtain

R(L) = R(L̄).

4 Existence of Solution

In order to prove that the solution exists, we show that for every u ∈ B and for any
arbitrary F = (f, 0) ∈ F , R(L) is dense in F .

Theorem 4.1 The problem (1)-(3) has a solution.

Proof. The definition of F ’s scalar product is

(Lv,W )F =

∫
Q

Lv · wdxdt, (22)

where W = (w, 0) in D(L). Set w ∈ (R(L))⊥, and the result is∫
Q

cDα
t u(x, t)w(x, t)dxdt−

∫
Q

(
∂2u(x, t)

∂x2

)
w(x, t)dxdt+ b

∫
Q

u(x, t)w(x, t)dxdt

+

∫
Q

u3(x, t) · w(x, t)dxdt = 0.

Letting w = u yields∫
Q

cDα
t u(x, t) · u(x, t) dx dt−

∫
Q

(
∂2u(x, t)

∂x2

)
· u(x, t) dx dt+ b

∫
Q

u2(x, t) dx dt

+

∫
Q

u4(x, t) dx dt = 0.
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After accounting for the condition of u and integrating by parts each term of (4), we get

∥∥∥cD α
2
t u
∥∥∥2
L2(Q)

+

∥∥∥∥dudx
∥∥∥∥2
L2(Q)

+ b∥u∥2L2(Q) + ∥u∥4L4(Q) = 0.

So, we get

∥∥∥cD α
2
t u
∥∥∥2
L2(Q)

+ b∥u∥2L2(Q) + ∥u∥4L4(Q) = −
∥∥∥∥dudx

∥∥∥∥2
L2(Q)

≤ 0.

Then, we have

∥u∥2L2(Q) ≤ 0.

Consequently, u = 0 in Q, providing w = 0 within Q, and this completes the proof.

5 Solvability of the Main Problem

We assume that the functions that show up in the problem’s data are quantifiable and
meet the following conditions:{

g ∈ C
(
(0, T ), L2(Ω)

)
, v ∈ W 1

2 (Ω) ∩ L4(Ω), E ∈ W 2
2 (0, T ),

∥g(x, t)∥ ≤ m, |g∗(t)| ≥ r > 0, for r ∈ R, (x, t) ∈ Q
.

The following linear operator provides the relationship between f and u:

A : L2(0, T ) → L2(0, ) (23)

such that

(Af(t)) =
1

g∗

{∫
Ω

du

dx

dv

dx
dx+

∫
Ω

u3(x, t) · v(x)dx
}
. (24)

Consequently, for the function f over L2(0, T ), the previous relationship between f and
u may be expressed as a second-order linear equation. In other words, we have

f = Af +W, (25)

where

W =
Dα

t

α + βE

g∗
, (26)

and E(0) = 0.

Theorem 5.1 Presume that the condition (H) is validated by the data functions (1)-
(4) of the inverse problem. Then we have the equivalent of the following statement:

1. If the inverse problem (1)-(4) can be solved, then equation (25) can be solved as
well.

2. The inverse problem (1)-(4) has a solution if equation (25) has a solution and the
compatibility requirement E(0) = 0 holds.
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Proof. Assume that problem (1)-(4) can be solved. We denote its solution as {u, f}
in this instance. Now, after integrating the outcomes over Ω and multiplying both sides
of (1) by v, the following is obtained:

cDα
t

∫
Ω

u(x, t) · v(x)dx+

∫
Ω

du

dx

dv

dx
dx+ β

∫
Ω

u(x, t) · v(x)dx

+

∫
Ω

u3(x, t) · v(x)dx = f(t)g∗(t).

(27)

By applying (4) and (24), we obtain

f = Af +
βE + cDα

t E

g∗
.

It is still necessary to demonstrate that u fulfills the integral over-determination condition
(4). The function u is subject to the following relation by equation (27):

cDα
t E +

∫
Ω

du

dx

dv

dx
dx+ βE +

∫
Ω

u3(x, t) · v(x)dx = f(t)g∗(t). (28)

Equation (27) is subtracted from equation (28) to obtain

cDα
t

∫
Ω

u(x, t) · v(x)dx+ β

∫
Ω

u(x, t) · v(x)dx = cDα
t E + βE. (29)

We determine that u meets the integral condition (4) by integrating the preceding equa-
tion and accounting for the compatibility constraint E(0) = 0. Consequently, we may
infer that the solution to the inverse problem (1)-(4) is {u, f}.

Lemma 5.1 If (H) is true, then A is a contracting operator in L2(0, T ) for some
positive δ.

Proof. Based on (24), the following estimate can be inferred

|Af(t)|2 ≤ 2

r2

[∥∥∥∥dudx
∥∥∥∥2
L2(Ω)

∥∥∥∥dvdx
∥∥∥∥2
L2(Ω)

+ ∥u∥6L4(Ω)∥v∥
2
L4(Ω)

]
.

Now, we suppose ∥u∥2L∞(0,T,L4(Ω)) = Υ ≥ 0. Then we obtain

|Af(t)|2 ≤ 2

r2

[∥∥∥∥dudx
∥∥∥∥2
L2(Ω)

∥∥∥∥dvdx
∥∥∥∥2
L2(Ω)

+Υ∥u∥4L4(Ω)∥v∥
2
L4(Ω)

]
.

Now, integrating the previous inequality over (0, T ) yields∫ T

0

|Af(t)|2dt

≤ 2

r2
max

(∥∥∥∥dvdx
∥∥∥∥2
L2(Ω)

, γ∥v∥2L4(Ω)

)[∫ T

0

∥∥∥∥dudx
∥∥∥∥2
L2(Ω)

dt+

∫ T

0

∥u∥4L4(Ω)

)
dt

]
.

(30)
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Consequently, we get

∥Af∥L2(0,T ) ≤ K

[∫ T

0

∥∥∥∥dudx
∥∥∥∥2
L2(Ω)

dt+

∫ T

0

∥u∥4L4(Ω)

)
dt

] 1
2

,

for which

K =

√√√√ 2

r2
max

(∥∥∥∥dvdx
∥∥∥∥2
L2(Ω)

, Y ∥v∥2L4(Ω)

)
.

After removing a few terms and applying the a priori estimate, we now have

∥du
dx

∥2L2(Q) + ∥u∥4L4(Q) ≤ C∥f∥2L2(Q).

Thus, we have

∥Af∥L2(0,T ) ≤ δ∥f∥L2(0,T ), (31)

where δ = K
√
C. The previous relation indicates that there exists a positive δ such

that δ ≤ 1. Hence, the operator A is a contracting mapping on L2(0, T ), as shown by
inequality (31).

Theorem 5.2 If the compatibility condition and assumption (H) are met, then there
is only one solution {u, f} to the inverse problems (1)-(4).

Proof. It is evident that there is only one solution f for equation (25) in L2(0, T ).
It is established by Lemma 2.3 that there is a solution to the inverse problem (1)-(4).
We still need to prove that this approach is unique. However, suppose that the inverse
problem under consideration has two distinct solutions, {u1, f1} and {u2, f2}. Now, the
theorem on the uniqueness of the solution of the main direct problem (1)-(3) produces
z1 = z2 if the linear operator A contracts on L2(0, T ) from Lemma 5.1, resulting in
f1 = f2.

Corollary 5.1 The solution f to equation (25) is continuously dependent on the data
W , under the presumptions of Theorem 5.1.

Proof. Let us assume two data sets that meet the conditions of Theorem 5.1: ω and
v. For each set of data, ω and v, let f and g represent the solutions to equation (25),
respectively. Now, based on (25), we can have

f = Af + v, g = Ag + ω.

In this regard, it is necessary to compute f − g. When utilizing (31), it is evident that

∥f − g∥L2(0,T ) = ∥(Af + v)− (Ag + ω)∥L2(0,T ) ≤ δ∥f − g∥L2(0,T ) + ∥v − ω∥L2(0,T ).

Consequently, we get

∥f − g∥L2(0,T ) ≤
1

1− δ
∥v − ω∥L2(0,T ).
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6 Discussion

When the initial condition is homogeneous, the inverse problem of finding the right-hand
side of a nonlinear fractional parabolic equation with an integral over-determination
condition has been examined. Theoretical analysis has been conducted for this inverse
problem. This study has established the conditions for the problem’s existence, unique-
ness, and continuous dependence on data. The work done in this paper can therefore
be continued from a variety of intriguing angles in numerical analysis, particularly with
regard to creating efficient numerical techniques that are compliant with integrative type
non-local conditions and considering how to solve the same problem but with incompat-
ible initial conditions.
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