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1 Introduction

A shift in focus towards understanding three-species systems resulted from the recogni-
tion that two-species systems are insufficient [7]. In seminal works, it has been demon-
strated that models with three or more species can capture complex oscillatory dynamics
within certain parameter ranges [4], [11], [8]. However, earlier studies of three-trophic
level systems did not account for intraspecific rivalry at higher trophic levels, i.e., in
top predators or predators. Thus, it was necessary to consider the potential impact
of this rivalry on the system’s dynamic properties. In a recent study, Peet et al. [1]
added square terms to the equations for top predators and predators, thereby expanding
Hastings-Powell’s model. They demonstrated the importance of intraspecific rivalry in
the evolution of chaotic trajectories by showing the coexistence of a chaotic attractor and
a period-one cycle. They also showed how enhancing intraspecific competition among top
predators can stabilize the system and pull it out of a chaotic state. Nevertheless, a crit-
ical component was absent from earlier research: the examination of various timescales
at various trophic levels. Therefore, it is crucial that the modeling technique takes these
various timelines into consideration. The system becomes singularly perturbed by adding
several timescales, and geometric singular perturbation theory can be used to evaluate
the system mathematically. This approach was first used by Rinaldi and Muratori [9] to
examine slow-fast cycles in a three-species system on two timescales. They carried on
more research and showed that species with slow, intermediate, and fast variables might
cohabit oscillatory. In Hastings-Powell’s model with several timescales, this was accom-
plished by employing singular perturbation techniques. Including several timescales can
reveal far more complex dynamics like relaxation oscillations and canard cycles. These
dynamics provide important new information for researching the occurrence of intricate
chaotic oscillations. In our analysis, we used the method described in [6] to include
three distinct timescales: slow, intermediate, and fast, and we divided the system into
slow, intermediate, and fast subsystems. We investigated the three-species food chain
model [10]. The results of each subsystem were then concatenated in order to look into
the possibility of solitary slow-intermediate-fast cycles. Because of the intricacy of the
model, numerical simulations were used to show that a homoclinic orbit exists inside
a subsystem of the entire system. In the whole system, period-doubling cascades to
chaos were seen simultaneously. The dynamics of the system changed either gradually
or abruptly, depending on the degree of intraspecific rivalry among top predators. As
a result, our research provides a possible framework for identifying and evaluating cru-
cial changes that may cause an ecosystem to drastically change. This paper delves into
the intricacies of a tri-trophic food web model, dissecting its dynamics and behaviors.
Starting with the concept of a dimensionless model, the exploration seamlessly transi-
tions to a meticulous reformulation of the three-species model using two dimensionless
positive timescale parameters. In the subsequent section, the focus extends to a linear
investigation and dynamic features. Equilibrium points are explored within the context
of our study, contributing to a comprehensive understanding. Simultaneously, a detailed
stability analysis is conducted, unraveling the nuanced intricacies. Moving through the
paper, attention shifts to the dynamics of the subsystems, providing a granular perspec-
tive on their interplay and significantly contributing to the overall comprehension of the
tri-trophic food web model. The exploration takes an intriguing turn in the final sec-
tion, where chaos becomes the focal point. Introducing Lyapunov exponents as a lens
to understand chaos, the paper concludes with an examination of the gradual entry into



584 K. DAAS AND N. HAMRI

chaos. Through this meticulously organized framework, the aim is to provide a holistic
understanding of the tri-trophic food web model and its dynamic nuances.

2 A Tri-Trophic Food Web Model

2.1 Dimensionless model

The system under investigation in this work represents a mathematical model of a three-
level food chain, which was transformed into a dimensionless model in [10]. The second
order Holling pattern and the Crowley-Martin type functional response are combined in
this food chain to form a hybrid type of organism.

dX1

dT
= a1X1

(
1− X1

K

)
− cX2X3

X1 +D
,

dX2

dT
= −a2X2 +

c1X1X3

X1 +D1
− c2X2X3

1 + dX2 + bX3 + bdX2X3
,

dX3

dT
= −mX3 +

c3X2X3

1 + dX2 + bX3 + bdX2X3
,

(1)

where the population densities of the prey, predator, and top predator, respectively, as
a function of time T are represented by the variables X1(T ), X2(T ), and X3(T ).

As shown in Table 1, the model (1) is distinguished by the existence of 12 control
parameters that regulate the behavior of the system.

Parameter Description
a1 The prey’s intrinsic growth rate in the absence of predators
K The prey’s carrying capacity
D Prey environmental protection
D1 Predator environmental protection
c The maximum rate of prey reduction per capita
c1 Similar to c, the maximum rate of prey reduction per capita

c2, c3 Characteristics of the Crowley-Martin type functional response
b Parameter assessing predator interference
a2 Intermediate predator death rate X2

m Top predator death rate X3

Table 1: Tri-trophic level food chain model parameters.

We simplified this model, ignoring dimensional considerations, to make the mathe-
matical analysis easier. Table 2 contains dimensionless representations of the variables
and parameters, where the first line represents the dimensionless variables, and the sec-
ond line represents the corresponding environmental values.

t x1 x2 x3 c4 c5 c6 c7 c8 c9 c10 c11 c12

a1T
X1

K
cX2

a1K
cc2X3

a2
1dK

D
K

a2

a1

c1
a1

D1

K
a1b
c2

a2
1bdK
cc2

c
a1dK

c
a1

c3
a1d

Table 2: Variables and parameters without dimensions.
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As a result, we derived a dimensionless system characterized by nine parameters as
detailed below:

dx1

dt
= x1

[
(1− x1)−

x2

x1 + c4

]
= x1g1(x1, x2),

dx2

dt
= x2

[
−c5 +

c6x1

x1 + c7
− x3

x2 + (c8 + c9x2)x3 + c10

]
= x2g2(x1, x2, x3),

dx3

dt
= x3

[
−c11 +

c12x2

x2 + (c8 + c9x2)x3 + c10

]
= x3g3(x2, x3).

(2)

2.2 Reformulation of the three-species model

We employ two dimensionless positive timescale parameters, β1 and β2, to rescale the
three-species model (2), with 0 < β1, β2 ≪ 1. The rescaling is done so that the growth
rate of the predator is O(β1), and the growth rate of the top predator is O(β2). We
reformulate the model (2) as follows after making this adjustment:

dx1

dt
= x1

[
(1− x1)−

x2

x1 + c4

]
= x1g1(x1, x2),

dx2

dt
= β1x2

[
−c5 +

c6x1

x1 + c7
− x3

x2 + (c8 + c9x2)x3 + c10

]
= β1x2g2(x1, x2, x3),

dx3

dt
= β2x3

[
−c11 +

c12x2

x2 + (c8 + c9x2)x3 + c10

]
= β2x3g3(x2, x3).

(3)
The system’s fast, intermediate, and slow variables, denoted by the values x1, x2, and

x3, respectively, reflect the dimensionless densities of prey, predators, and top predators.
By putting the transformation τ1 = β1t into (3), we may define the system and obtain
the following results:

β1
dx1

dτ1
= x1g1(x1, x2),

dx2

dτ1
= x2g2(x1, x2, x3), β1

dx3

dτ1
= β2x3g3(x2, x3), (4)

and after additional changes τ2 = β2t, we obtain

β2
dx1

dτ2
= x1g1(x1, x2), β2

dx2

dτ2
= β1x2g2(x1, x2, x3),

dx3

dτ2
= x3g3(x2, x3), (5)

t, τ1, and τ2, the dimensionless time variables, represent the fast, intermediate, and
slow time scales, respectively. We divide the system into subsystems and use geometric
singular perturbation theory to study the dynamics of each one. For the systems (3),
(4), and (5), a typical solution trajectory consists of segments corresponding to slow,
intermediate, and fast processes. The total solution for the system is then obtained by
concatenating the solutions of each subsystem (3). We initially investigate the impact of
several time scales on the local dynamics of the system (3) before breaking it down into
its component subsystems.

3 Linear Investigation and Dynamic Features

3.1 Equilibrium points

The number of non-negative equilibrium points in the system described by equation (3)
can only be four. Table 3 summarizes the outcomes of the equilibrium point values and
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associated conditions.

Equilibrium point Values and conditions
P0 Trivial equilibrium point: (0, 0, 0)
P1 One-species equilibrium point: (1, 0, 0)
P2 Two-species equilibrium point: (x̃1, x̃2, 0), where x̃1 and x̃2

are:
x̃1 = c5c7

c6−c5
x̃2 = (1− x̃1)(x̃1 + c4)
Existence condition: 0 < c5c7

c6−c5
< 1

P3 Equilibrium point of coexistence of all three species (x∗
1, x

∗
2, x

∗
3)

where:
x∗
2 = (1− x∗

1)(x
∗
1 + c4)

x∗
3 =

(c12−c11)x
∗
2−c10c11

c11(c8+c9x∗
2)

Implicit equation for x∗
1:

−c5 +
c6x

∗
1

x∗
1+c7

− x∗
3

x∗
2+(c8+c9x∗

2)x∗
3+c10

= 0

Existence conditions: 0 < x∗
1 < 1, 0 < c10c11

c12−c11
< x∗

2

Table 3: Equilibrium points and conditions.

3.2 Stability analysis

Every equilibrium point’s Jacobian matrix was computed, and stability was examined
using each matrix’s characteristic polynomial. Table 4 summarizes the computation’s
findings.

Equilibrium
Point

Jacobian Matrix Eigenvalues

P0

1 0 0
0 −β1c5 0
0 0 −β2c11

 e1 = 1 > 0,

e2 = −β1c5 < 0,

e3 = −β2c11 < 0

P1

−1 −1
1+c5

0

0 β1(
c6

1+c7
− c5) 0

0 0 −β2c11

 e1 = −1

e2 = β1(
c6

1 + c7
− c5)

e3 = −β2c11

P2

 a11 −a12 0
β1a21 β1a22 −β1a23
0 0 β2a33


e0 = β2a33

e1,2(β1) =
a11 + β1a22

2
±

1

2

√
(a11 − β1a22)2 − 4a12a21

Table 4: Table of equilibrium points, Jacobian matrices, and eigenvalues.

Stability results and remarks:

• P0 is always a saddle point.

• For P1:
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– If c5 < c6
1+c7

, then λ2 < 0, and P1 is a saddle point.

– If c5 > c6
1+c7

, then λ2 > 0, and P1 is stable.

• For P2:

– The coefficients of the matrix JP2
are

a11 = 1− 2x̃1 −
c4(1− x̃1)

x̃1 + c4
, a12 =

x̃1

x̃1 + c4
, a21 =

(1− x̃1)(x̃1 + c4)c6c7
(x̃1 + c7)2

,

a22 = −c5 +
c6x̃1

x̃1 + c7
, a23 =

(1− x̃1)
2(x̃1 + c4)

2 + c10(1− x̃1)(x̃1 + c4)

[(1− x̃1)(x̃1 + c4) + c10]2
,

a33 = −c11 +
c12(1− x̃1)

2(x̃1 + c4)
2 + c10c12(1− x̃1)(x̃1 + c4)

[(1− x̃1)(x̃1 + c4) + c10]2

– We select c5 as the bifurcation parameter in order to find the instability thresh-
old for P2. The Hopf bifurcation causes the equilibrium point P2 to lose sta-
bility at c5 = ĉ5, where the real parts of the eigenvalues e1,2 = 0 are located.
We select the parameters discussed in [10] and arrange them in Table 5, taking
into account β1 = 1, β2 = 1.

Parameter c4 c6 c7 c8 c9 c10 c11 c12
Value 0.25 0.8 0.25 0.01 0.1 0.28 0.06 0.25

Table 5: Parameter values.

We find that the real part of the eigenvalues e1,2 equals zero at the value
ĉ5 = 0, 48, from this, we reach the following results:

∗ If c5 < 0, 48, the equilibrium point P2 is unstable.

∗ If c5 > 0, 48, the equilibrium point P2 is stable.

To emphasize these results further, we provide an example, we select two
values for c5, and based on them, we calculate the equilibrium point P2, and
we analyze the stability in each case.

We present the results in Table 6.

c5
Equilibrium

point P2

Jacobian matrix Eigenvalues and
stability

0.25 (0.1136, 0.3223, 0)

−0.1136 −0.3124 0
−0.8254 −0.9374 −1.6603

0 0 −0.3112


0.1283,

− 1.1794,

− 0.3112

P2 is unstable

0.5 (0.4167,0.3889,0)

−0.4167 −0.6250 0
0.300 −1.2500 −1.4950
0 0 −0.3046


− 0.8334 + 0.1181i,

− 0.8334− 0.1181i,

− 0.3046

P2 is stable

Table 6: Stability study results for the dynamical system for two values of c5.
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• The interior equilibrium point P3 = (x∗
1, x

∗
2, x

∗
3):

We address the instability of the inner equilibrium point P3 using a numerical
example due to the intricacy of the equation involving x∗

1. We select the
same set of parameter values with c5 = 0.25, β1 = 1, and β2 = 1 as shown
in Table 5. We use Liu’s criteria to investigate the instability of P3 via the
Hopf bifurcation. Assume that the bifurcation parameter is c11. We obtain
that the matrix JP3

has the characteristic equation as a function of c11: λ
3 +

k1(c11)λ
2 + k2(c11)λ + k3(c11) = 0, where k1(c11) = 0.1412c11 − 0.0084187;

k2(c11) = 7.8822 ∗ 10−6c11 − 0.025663; k3(c11) = 0.00023312 − 0.0038824c11.
We consider Λ(c11) = k1(c11)k2(c11) − k3(c11), according to Liu’s criteria
[12], [3], P3 becomes unstable through the Hopf bifurcation if there exists
a critical value ĉ11 such that k1(ĉ11) > 0, k3(ĉ11) > 0, Λ(ĉ11) = 0, and

dΛ

dc11

∣∣∣∣∣
c11=ĉ11

̸= 0. After selecting the parameter values as previously indicated,

we get ĉ11 = 0.065964. For 0 < c11 < 0.065964, the coexistence equilibrium
P3 is stable; for c11 > 0.065964, it is unstable. We choose β1 = β2 = 1 and
c11 = 0.06 as a specific case. Then P3 = (0.9240, 0.0893, 0.1412) is the only
feasible coexistence equilibrium point. The Jacobian matrix evaluated at P3,
which is denoted as JP3

, is given by

JP3 =

−0.9241 −0.7871 0
0.3912 −1.1659 −2.6884

0 0.2551 −0.2556

 ,

λ3 + k1λ
2 + k2λ + k3 = 0 is the characteristic equation of the matrix JP3 ,

where k1 = 2.3455, k2 = 2.6053, and k3 = 0.9878. Since k1 > 0, k3 > 0,
and k1k2 − k3 = 5.1229 > 0, we may conclude that P3 is stable based on the
Routh-Hurwitz criteria.

Choosing c11 = 0.07 and β1 = 0.7, β2 = 0.49 as another example yields unsta-
ble values P2 = (0.1136, 0.3223, 0) and P3 = (0.9046, 0.1101, 0.1482).

Figures 1, 2, and 3 will be used to illustrate this final example.

(a) (b)

Figure 1: Two trajectories converging to different periodic attractors, (a) Trajectory for
β1 = 0.7, β2 = 0.49, initial point =(0.2, 0.1, 0), (b) Trajectory for β1 = 0.7, β2 = 0.49,
initial point =(0.3, 0.1, 0.001).
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Figure 2: The frequencies of x1, x2, and x3 as a function of time.
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Figure 3: (a) Projection of the trajectory onto the x1x2 plane, (b) Projection of the
trajectory onto the x2x3 plane, (c) Projection of the trajectory onto the x1x3 plane.

In the system, two stable limit cycles coexist: one around the equilibrium point P2

in the x1x2 plane, and the other around P3 in three-dimensional space, illustrating bi-
stability. The trajectories are sensitive to initial conditions, suggesting the possibility of
chaos.

4 Behavior of Subsystems

First, we present the model in the singular limit, that is, in the case when either β1 → 0
or β2 → 0, or both may occur. For 0 < β1 < β2 ≪ 1, the trajectory of the entire system
(3) is a perturbed solution of subsystems. After time is divided into fast, intermediate,
and slow timescales, we list the subsystems of the system (2) in Table 7. Concatenated
slow-intermediate-fast flow, or the solutions of the aforementioned subsystems, make up
the unique trajectory. A schematic example of a unique slow-intermediate-fast cycle
is shown in Figure 4a, which consists of one slow flow segment (the thin black line),
three segments of intermediate flows (the medium blue line), and two segments of fast
flows (the thick red line). The critical manifold of the fast subsystem is the set of all
equilibrium points as follows:

M0 = {(x1, x2, x3) : x1 = 0, x2, x3 > 0}, M1 = {(x1, x2, x3) : g1(x1, x2) = 0, x3 > 0},
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Condition Subsystem

β1 → 0

(Fast)



dx1

dt
= x1

[
(1− x1)−

x2

x1 + c4

]
= x1g1(x1, x2),

dx2

dt
= 0,

dx3

dt
= 0.

β2 → 0, β1 > 0

(Intermediate)



dx1

dt
= 0,

dx2

dt
= β1x2

[
−c5 +

c6x1

x1 + c7
− x3

x2 + (c8 + c9x2)x3 + c10

]
= β1x2g2(x1, x2, x3),

dx3

dt
= 0.

β1, β2 → 0

(Slow)



dx1

dt
= 0,

dx2

dt
= 0,

dx3

dt
= x3

[
−c11 +

c12x2

x2 + (c8 + c9x2)x3 + c10

]
= x3g3(x2, x3).

Table 7: Description of subsystems in the model.

it expressly looks like this M1 = {(x1, x2, x3) : x2 := φ(x2) = (1 − x2)(x2 + c4), x2 >
0, x3 > 0}. There is a fold in this surface, and we can find the fold curve by
C = {(x1, x2, x3) : φ

′(x1) = 0, x2 = φ(x1), x3 ≥ 0}, implying x1,max = 1−c4
2 .

With the exception of the fold curve C, where it loses its hyperbolicity, M1 is hy-
perbolic everywhere. The non-trivial critical manifold M1 = 0 is divided into typically
hyperbolic attracting and repelling sub-manifolds by the fold curve C as follows: M1

a =
{(x1, φ(x1), x3) : x1 > x1,max, x3 ≥ 0} and M1

r = {(x1, φ(x1), x3) : x1 < x1,max, x3 ≥ 0},
respectively. The trivial critical manifoldM0 (x2x3-plane) and the manifoldM1 intersect
at a curve that is described by T1 = {(0, c4, x3) : x3 ≥ 0}.

The transcritical bifurcation curve, T1, splits the plane into hyperbolic sub-manifolds
that are typically repellent and attractive, respectively. Next, the manifold M0’s at-
tracting and repelling sub-manifolds are M0

a = {(0, x2, x3) : x2 > φ(0), x3 > 0}, and
M0

r = {(0, x2, x3) : x2 < φ(0), x3 > 0}, respectively.
For β1, β2, where 0 < β1, β2 ≪ 1, Fenichel’s theorem [5] guarantees the existence of

locally invariant perturbed sub-manifolds, the essential manifolds M0 and M1 have the
sub-manidolds M0

β1,β2
and M1

β1,β2
, respectively, with the exception of the non-hyperbolic

curves C and T1. Additionally, the corresponding attracting M1
a,β1,β2

and repelling

M1
r,β1,β2

sub-manifolds are perturbed by the attracting (M1
a ) and repelling (M1

r ) sub-

manifolds of the critical manifold. Consequently, the perturbed sub-manifolds M0
β1,β2

and M1
β1,β2

dictate the dynamics of the entire system (3) for β1, β2 ̸= 0 locally.

The intermediate subsystem is defined on the manifolds M0 and M1 with x3 =
constant, therefore we analyze the intermediate system in the plane x3 = c′, parallel
to the x1x2-plane. Substituting x3 = c′ in the expression of g3, we obtain an explicit
expression of the non-trivial nullcline of the intermediate subsystem as follows:

x1 =
c5c7(1 + c9c

′)x2 + (c5c7c8 + c7)c
′ + c5c7c10

(c6 + c9(c6 − c5)c′ − c5)x2 + (c6c8 − c5c8 − 1)c′ + c10(c6 − c5)
. (6)

The number of equilibrium points is related to the value c′ and other background
parameters.
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For example, in Figure 4b, we represents that for c′ = 0.1, the system has a unique
unstable equilibrium surrounded by a stable limit cycle.

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0
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0.1
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0.4

0.45

0.5

x
2

(b)

Figure 4: The dynamics of the subsystems: (a) A schematic representation of the slow-
intermediate-fast cycle for β1 = 0.005 and β2 = 0.0035, (b) The dynamics of the inter-
mediate systems for c = 0.1, β1 = 0.1 and β2 = 0.

Understanding the dynamics generated by the intermediate subsystem of the complete
system is particularly important for certain specific instances. The primary goal of this
work is to examine many chaotic dynamics that the system (3) exhibits and to find out
how the system’s chaotic regimes may be impacted by the various timescales.

5 Dynamical Analysis of Chaos

5.1 Lyapunov exponents

We represented the Lyapunov exponents by assuming two values for β1 and β2 and
obtained the following results.
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Figure 5: (a) Lyapunov exponents for β1 = 1, β2 = 1, (b) Lyapunov exponents for
β1 = 0.1, β2 = 0.05.

Comparison: The presence of this type of Lyapunov exponents in Figure 5a indi-
cates greater complexity in the system’s behavior, where there is local convergence in
one direction with dispersion or chaos in others. This suggests a higher sensitivity of
system (2) to initial conditions compared to the system after temporal segmentation (3),
resulting in a more complex and chaotic behavior. The role of this study using temporal
segmentation becomes evident, as it has made the system’s behavior clearer.
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5.2 Entering chaos gradually

We demonstrate how the timescales parameters affect the chaotic dynamics. Our simu-
lations begin at β1 = β2 = 1 and are progressively decreased to determine the period-
doubling cascade that leads to chaos. In Figure 6a, we note that the species live along
a periodic orbit in the absence of multiple timescales. On the other hand, in Figure
6b, the 1-periodic orbit experiences a period-doubling bifurcation as β1 and β2 decrease,
we achieve a 2-periodic orbit. In Figure 6c, we obtain a 4-periodic orbit. Thus, with
consecutive period-doubling bifurcations, the system becomes chaotic from periodic (see
Figure 6d).

(a)
(b)

(c) (d)

Figure 6: The periodic-doubling bifurcation with varying β1 and β2, (a) Period 1 for
β1 = 1 and β2 = 1, (b) Period 2 for β1 = 0.25 and β2 = 0.125, (c) Period 4 for β1 = 0.2
and β2 = 0.1, (d) Chaos for β1 = 0.1 and β2 = 0.05.

6 Conclusion

The ecological interpretations of the results presented in this paper underscore the im-
portance of understanding the environmental impacts of changes in key parameters of
environmental models. As the reproduction rate of the first predator approaches zero, it
reflects the environmental response of the food chain and predators. Reducing the repro-
duction rate leads to a decrease in the population of the first predator, indirectly affecting
the higher predator, which relies on the first predator as a food source. It is worth noting



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 24 (6) (2024) 582–593 593

that the environmental effects of these changes are not limited to the individual level but
also extend to the ecosystem level as a whole. Due to the complex interactions between
living organisms and environmental factors, the ecosystem can transition into a state
of chaos, where behavior becomes unpredictable and dynamics are unstable. Therefore,
this research sheds light on the importance of analyzing the environmental impacts of
changes in the key parameters of environmental models and their role in determining the
stability and evolution of ecosystems in the long term.

In summary, this research makes a significant contribution to understanding the envi-
ronmental impacts of changes in ecological systems and identifying factors that influence
their stability. This helps in developing strategies for conserving biodiversity and ensur-
ing environmental sustainability.
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