
Nonlinear Dynamics and Systems Theory, 24 (6) (2024) 603–614

A New Generalization of Fuglede’s Theorem and

Operator Equations

S. Makhlouf 1∗ and F. Lombarkia 2

1 Laboratory of Mathematical Techniques (LTM), University of Batna 2, Batna, Algeria.
2 Department of Mathematics, Faculty of Mathematics and Informatics, University of Batna 2,

Batna, Algeria.

Received: February 1, 2024; Revised: December 8, 2024

Abstract: In this paper, the operator equations AX −XB = C and AXB −X =
C, where A, B, C and X are bounded linear operators on the Hilbert space H,
are investigated and criteria of solvability are established. First, in a Hilbertian
framework, by extending the famous Fuglede’s theorem to a certain class of operators
that are not necessarily normal, we show that some classical criteria, as Roth’s removal
rule for the first equation, remain valid even under assumptions on A and B weaker
than usual. Second, in a Banachian framework, we establish our criteria of solvability
by using the inner inverses of the operators δA,B and ∆A,B defined on L(H) by
δA,B(X) = AX −XB and ∆A,B(X) = AXB −X.
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1 Introduction and Basic Definition

Let H be an infinite complex Hilbert space and L(H) be the Banach space of all bounded
linear operators from H into H. For T ∈ L(H), let ker(T ), R(T ), σ(T ) and σp(T ) stand
for the null space, range, spectrum and point spectrum of T , respectively. We recall some
definitions of the local spectral theory.
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Definition 1.1 An operator T ∈ L(H) is said to have the single-valued extension
property at λ0 ∈ C (abbreviated SVEP at λ0) if for every open disc D centered at λ0,
the only analytic function f : D → X, which satisfies the equation (T − λI)f(λ) = 0 for
all λ ∈ D, is the function f ≡ 0. An operator T ∈ L(H) is said to have the SVEP if T
has the SVEP at every λ ∈ C.

Definition 1.2 An operator T ∈ L(H) is said to have Bishop’s property (β) if for
any open subset V of C and any sequence {fn} of H-valued analytic functions on V, the
convergence of (T − λ)fn(λ) to zero uniformly on each compact subset of V leads to the
convergence of fn(λ) to zero again uniformly on each compact subset of V .

Definition 1.3 An operator T ∈ L(H) is said to be decomposable if for every open
cover {U, V } of C, there are T -invariant subspaces X and Y such that H = X + Y,
σ(T |X ) ⊂ U , and σ(T |Y) ⊆ V .

The following implications are always satisfied:

T is decomposable ⇒ T has Bishop’s property (β) ⇒ T has the SVEP.

Recall that the ascent p(T ) and descent q(T ) of T are defined by

p(T ) = inf{n ∈ N : kerTn = kerTn+1},

q(T ) = inf{n ∈ N : R(Tn) = R(Tn+1)}

with inf ∅ = ∞. It is well known that if p(T ) and q(T ) are both finite, then p(T ) = q(T ).
We denote by Π(T ) = {λ ∈ C : p(T − λI) = q(T − λI) < ∞} the set of poles of the
resolvent. In the sequel, we shall denote by accS and isoS the set of accumulation points
and the set of isolated points of S ⊂ C, respectively.

Definition 1.4 We say that T ∈ L(H) is polaroid if for any isolated point λ in σ (T ) ,
λ is a pole of the resolvent of T (i.e., isoσ(T ) ⊆ Π(T )).

Fuglede’s theorem states that if an operator commutes with a normal operator, it
also commutes with its adjoint, i.e., if X and A are in L(H) with A normal, then

AX = XA =⇒ A∗X = XA∗,

this was first proven in 1950 by B. Fuglede [19] and then by C.R.Putnam [23] in a
more general version. Thanks to its numerous applications, this theorem has a very
effective role in the theory of bounded operators. There are different proofs of this
theorem, besides, the first two are due to Fuglede and Putnam, see [20]. Perhaps the most
elegant proof is due to Rosenblum [24]. Then, with a wonderful matrix operator trick,
S.Berberian [10] showed the equivalence between Fuglede’s theorem and that of Putnam.
Afterwards, it was called the Fuglede-Putnam theorem. This theorem is therefore stated
as follows: if X, A and B are bounded Hilbert space operators such that A and B are
normal, then

AX = XB =⇒ A∗X = XB∗.

This theorem has been extended by relaxing the normality hypotheses on A and B to
various classes of non-normal operators. It has also been formulated using the elementary
operator δA,B as follows: if A and B are normal operators, then ker δA,B ⊂ ker δA∗,B∗ ,
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where δA,B is the generalized derivation defined on L(H) by δA,B(X) = AX − XB.
The Fuglede-Putnam theorem has a (natural) analogue: if A and B are normal, then
ker∆A,B ⊂ ker∆A∗,B∗ , where ∆A,B is the elementary operator defined on L(H) by
∆A,B(X) = AXB −X.

In the following, we will denote by dA,B each of elementary operators ∆A,B or the
generalized derivation δA,B .

In the second section of this paper, we derive a nice generalization of Fuglede’s the-
orem for decomposable operators A ∈ L(H) which are polaroid with A and A∗ being
reduced by each of eigenspaces, using examples of non-normal operators, we justify that
the set of such operators strictly contains the normal operators. The third section is
devoted to the application of these results to give necessary and sufficient conditions for
the existence of solutions to the operator equations AX −XB = C and AXB −X = C
in this general framework, which presents a generalization of the results obtained by S.
Schweinsberg in [27]. In the last section, independently of the previous ones, using the
inner inverse of the elementary operator dA,B , we give necessary and sufficient conditions
for the existence of solutions to the operator equations dA,B(X) = C and also, the form
of these solutions.

2 An Extension of Fuglede’s Theorem

In [21], the authors proved the following theorem.

Theorem 2.1 [21, Theorem 2.2, Theorem 2.3]
Suppose that A,B ∈ L(H) satisfies the following conditions:

i) A and B∗ are reduced by each of their eigenspaces,

ii) A and B∗ are polaroid,

iii) A and B∗ have property (β).

Then
ker(dA,B − λI) ⊆ ker(dA∗,B∗ − λI)

holds for every complex number λ, which means that the Fuglede-Putnam theorem holds.

This theorem is established for many classes of operators, we mention, for example,
the operators A ∈ L(H), which satisfy the equation

(A∗)2A2 − 2A∗A+ I = 0,

such A are natural generalizations of isometric operators (A∗A = I) and are called
2-isometric operators. It is known that an isometric operator is a 2-isometric operator.
2-isometric operators have been studied by many authors and they have many interesting
properties, see [2, 3, 13, 16, 22] for example. In [28, Lemma 2.6], the authors proved that
2-isometric operators have Bishop’s property (β) and in [28, Corollary 2.5] they proved
that 2-isometric operators are reduced by each of their eigenspaces. In [15, Proposition
2.1], B. P. Duggal proved that 2-isometric operators are polaroid. Then we have the
following examples.

Example 2.1 Suppose that A and B∗ are 2-isometric operators. Then

ker(dA,B − λI) ⊆ ker(dA∗,B∗ − λI), ∀λ ∈ C.
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Example 2.2 Suppose that A and B∗ are unilateral weighted shift operators on l2
defined by Aen = αnen+1 and B∗en = βnen+1 for all n ≥ 0 and such that α2

nα
2
n+1−2α2

n+
1 = 0 and β2

nβ
2
n+1 − 2β2

n + 1 = 0 for all n ≥ 0, where {en}∞n is a canonical orthogonal
basis for l2 and (αn)n∈N and (βn)n∈N are bounded sequences of non-negative numbers.
Then A and B∗ are 2-isometric, it follows that

ker(dA,B − λI) ⊆ ker(dA∗,B∗ − λI), ∀λ ∈ C.

The following theorem forms an interesting generalization of Fuglede’s theorem to a
set larger than that of the normal operators.

Theorem 2.2 Suppose that A ∈ L(H) satisfies the following conditions:

i) A is decomposable,

ii) A is polaroid,

iii) A and A∗ are reduced by each of their eigenspaces (ker(A − λI) = ker(A∗ − λI),
∀λ ∈ σp(A)).

Then ker(δA,A − λI) ⊆ ker(δA∗,A∗ − λI), ∀λ ∈ C.

Proof. If A is decomposable, it follows that A and A∗ have property (β), on the
other hand, it is well known that A is polaroid if and only if A∗ is polaroid. Then we
obtain the result.

We note that normal operators A on a Hilbert space are decomposable, polaroid, A
and A∗ are reduced by each of their eigenspaces. We note also that the class of operators
A which are decomposable, polaroid, A and A∗ are reduced by each of their eigenspaces,
contains strictly normal operators. Since E. Albrecht in [6, Proposition 5.1] constructed a
non normal, subnormal operator S which is decomposable and since subnormal operators
(their adjoint too) are hyponormal, it follows that S is polaroid, S and S∗ are reduced
by each of their eigenspaces. Another interesting class of bounded operators from which
the conditions of the previous theorem are satisfied, is the class of compact p-symmetric
operators. Now we recall the definition of p-symmetric operators.

Definition 2.1 [11, Definition 1.2] Let A ∈ L(H), where H is a separable complex
Hilbert space. A is called p-symmetric if AT = TA implies A∗T = TA∗ for all trace class
operators T .

Proposition 2.1 Let A ∈ L(H), where H is a separable complex Hilbert space. If A
is compact and p-symmetric, then A is decomposable polaroid, A and A∗ are reduced by
each of their eigenspaces. Therefore ker(dA,A − λI) ⊆ ker(dA∗,A∗ − λI), ∀λ ∈ C.

Proof. It is well known that compact operators are decomposable, and from [9,
Corollary V.10.3], compact operators are polaroid. We have A is compact, it follows that
if λ ∈ σp(A), then λ ∈ σp(A

∗), since A is p-symmetric, then from [11], we deduce that
A is reduced by each of its eigenspaces. Since A∗ is also compact and p-symmetric, we
deduce that A∗ is reduced by each of its eigenspaces.

Now we give another example which satisfies the conditions of Theorem 2.2. In [7],
S.A. Alzraiqi and A.B. Patel introduced the class of n-normal operators, we recall that
an operator A ∈ L(H) is said to be an n-normal operator if AnA∗ = A∗An.
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Example 2.3 Let A ∈ L(H) such that A is 2-normal, σ(A) ∩ (−σ(A)) ⊂ {0} and
kerA = kerA∗, then from [14, Theorem 4.4], A is decomposable and from [14, Theorem
2.3], A is polariod and it is reduced by each of its eigenspaces. Since A∗ is also 2-
normal, then A∗ is polariod and it is reduced by each of its eigenspaces and it follows
that ker(dA,A − λI) ⊆ ker(dA∗,A∗ − λI), ∀λ ∈ C.

Example 2.4 Let A =

(
0 0
2 0

)
be an operator acting in a two-dimensional com-

plex Hilbert space. Then A is 2-normal, σ(A)∩ (−σ(A)) ⊂ {0} and kerA = kerA∗, then
A is decomposable, polaroid and A and A∗ are reduced by each of their eigenspaces.
Then

ker(dA,A − λI) ⊆ ker(dA∗,A∗ − λI), ∀λ ∈ C.

3 Solvability Criteria for the Equation dA,B(X) = C in a Hilbertian
Framework

Mathematicians often try to find suitable solutions to problems in a wide range of fields
by using various methods, and to study the properties of solutions such as existence,
uniqueness, stability, and so on. See, for example, [4] and [5]. The previous results are
very useful for solving the equation dA,B(X) = C in a more general setting. Let us first
recall that in [26], W. E. Roth proved for finite matrices over a field that AX −XB = C

is solvable for X if and only if the matrices

(
A 0
0 B

)
and

(
A C
0 B

)
are similar.

A considerably briefer proof has been given by Flanders and Wimmer [18]. In [25],
Rosenblum showed that the result remains true when A and B are bounded self-adjoint
operators on a complex separable Hilbert space. In [27], A. Schweinsberg extended the
result to include finite rank operators and normal operators on a Hilbert space. In this
part, we generalize it to the operators A,B ∈ L(H) satisfying the conditions given below.

Theorem 3.1 Suppose that A,B ∈ L(H) satisfy the following conditions:

i) A∗ have property (β), and B is decomposable.

ii) A∗ and B are polaroid,

iii) A∗, B and B∗ are reduced by each of their eigenspaces.

Then the operator equation AX −XB = C has a solution if and only if(
A 0
0 B

)
and

(
A C
0 B

)
are similar.

Proof. If the equation AX −XB = C has a solution X, then(
I −X
0 I

)(
A 0
0 B

)(
I X
0 I

)
=

(
A C
0 B

)
.

Hence

(
A 0
0 B

)
and

(
A C
0 B

)
are similar.
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Suppose that

(
A 0
0 B

)
and

(
A C
0 B

)
are similar, then there exists an invertible

operator

(
Q R
S T

)
such that

(
Q R
S T

)(
A 0
0 B

)
=

(
A C
0 B

)(
Q R
S T

)
, this

implies that
QA−AQ = CS,RB −AR = CT

SA = BS, TB = BT. (3.1)

We apply Theorem 2.2 above, we get

ker(dB,B − λI) ⊆ ker(dB∗,B∗ − λI), ∀λ ∈ C,

also from [21, Theorem2.2], we obtain

ker(dB,A − λI) ⊆ ker(dB∗,A∗ − λI), ∀λ ∈ C.

Thus, the equality (3.1) gives

SA∗ = B∗S, TB∗ = B∗T, (3.2)

and by taking the adjoint in (3.2), we have AS∗ = S∗B, BT ∗ = T ∗B,
which ensures that B commutes with SS∗ and TT ∗. We have also

C(SS∗ + TT ∗) = (QS∗ +RT ∗)B −A(QS∗ +RT ∗).

We apply the result from [27, Lemma 1], we deduce that there exists X = −(QS∗ +
RT ∗)(SS∗ + TT ∗)−1, which is the solution to the operator equation AX −XB = C.

Corollary 3.1 Suppose that A,B ∈ L(H) such that H is a separable Hilbert space.
If

i) A∗ is 2-isometric,

ii) B is compact and p-symetric,

then the operator equation AX −XB = C has a solution if and only if(
A 0
0 B

)
and

(
A C
0 B

)
are similar.

If we set B = A in Theorem 3.1, we get the following corollary.

Corollary 3.2 Let A ∈ L(H) satisfy

i) A is decomposable and polaroid,

ii) A and A∗ are reduced by each of their eigenspaces.

Then the operator equation AX −XA = C has a solution if and only if(
A 0
0 A

)
and

(
A C
0 A

)
are similar.

Corollary 3.3 Let A ∈ L(H) such that H is a separable Hilbert space. If A is
compact and p-symmetric, then the operator equation AX − XA = C has a solution if

and only if

(
A 0
0 A

)
and

(
A C
0 A

)
are similar.
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As a consequence of Corollary 3.2, we obtain a well known theorem of A. Schweinsberg
[27, Theorem 1]:

Corollary 3.4 [27, Theorem 1] Let A ∈ L(H) be a normal operator. Then the

operator equation AX−XA = C has a solution if and only if

(
A 0
0 A

)
and

(
A C
0 A

)
are similar.

Example 3.1 Let A∗ be a 2-isometric operator and B be a 2-normal operator on a
Hilbert spaceH, σ(A)∩(−σ(A)) ⊂ {0} and kerA = kerA∗, then the equationAX−XB =

C has a solution if and only if

(
A 0
0 B

)
and

(
A C
0 B

)
are similar.

Example 3.2 Let A ∈ L(H) such that A is 2-normal, σ(A) ∩ (−σ(A)) ⊂ {0} and
kerA = kerA∗. Then the operator equation AX −XA = C has a solution if and only if(

A 0
0 A

)
and

(
A C
0 A

)
are similar.

We also get similar results for the equation AXB −X = C.

Theorem 3.2 Let A,B ∈ L(H) such that

i) A is decomposable and polaroid.

ii) A and A∗ are reduced by each of their eigenspaces.

iii) B has property (β), is polaroid and reduced by each of its eigenspaces.

Then the equation AXB − X = C has a solution in L(H) if and only if there

exist two invertible operators U and V such that U

(
A C
0 I

)
=

(
A 0
0 I

)
V and

U

(
I 0
0 B

)
=

(
I 0
0 B

)
V.

Proof. If X is a solution of AXB −X = C, then AXB = C +X.

Let U =

(
I X
O I

)
and V =

(
I XB
O I

)
, it is clear that U and V are invertible,

in addition, we have

U

(
A C
0 I

)
=

(
A 0
0 I

)
V and U

(
I 0
0 B

)
=

(
I 0
0 B

)
V.

Conversely, assume that there exist two invertible operators

U =

(
Q R
S T

)
and V =

(
Q1 R1

S1 T1

)
such that

U

(
A C
0 I

)
=

(
A 0
0 I

)
V and U

(
I 0
0 B

)
=

(
I 0
0 B

)
V,

so 
QA = AQ1, (1)

SA = S1, (2)

QC +R = AR1,

SC + T = T1. (3)

and


Q = Q1, (4)

RB = R1,

S = BS1, (5)

TB = BT1.
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From (1) and (4), we have AQ = QA, then, according to Theorem 2.2 and by taking
the adjoint, we have AQ∗ = Q∗A, consequently, we get AQ∗Q = Q∗QA. From (2) and
(5), we have BSA = S; knowing that if A is decomposable, then A∗ has property (β),
moreover, if A is polaroid, then A∗ is too, which allows us to obtain from [21, Theorem
2.3] that B∗SA∗ = S, and by taking the adjoint, we get AS∗B = S∗, which implies
that S∗SA = (AS∗B)SA = (AS∗B)S1 = AS∗S. Therefore, A commutes with the sum

Q∗Q+S∗S and so with the inverse (Q∗Q+ S∗S)
−1

, which exists according to [27, Lemma
1].

In addition, from (3), we have S∗SC = S∗T1 − S∗T = A(S∗T )B − S∗T. Therefore

(Q∗Q+ S∗S)C = Q∗(AR1 −R) +A(S∗T )B − S∗T,

= Q∗ARB −Q∗R+A(S∗T )B − S∗T,

= A(Q∗R+ S∗T )B − (Q∗R+ S∗T ),

and so

C = (Q∗Q+ S∗S)
−1

A(Q∗R+ S∗T )B − (Q∗Q+ S∗S)
−1

(Q∗R+ S∗T ),

= A (Q∗Q+ S∗S)
−1

(Q∗R+ S∗T )B − (Q∗Q+ S∗S)
−1

(Q∗R+ S∗T ),

which means that X = (Q∗Q+ S∗S)
−1

(Q∗R + S∗T ) is a solution of the equation
∆A,B(X) = C, and the proof is complete.

Corollary 3.5 Suppose that A,B ∈ L(H) such that H is a separable Hilbert space.
If

i) A is compact and p-symmetric,

ii) B is 2-isometric,

then the operator equation AXB − X = C has a solution if and only if there exist
two invertible operators U and V such that

U

(
A C
0 I

)
=

(
A 0
0 I

)
V and U

(
I 0
0 B

)
=

(
I 0
0 B

)
V.

If we set B = A in Theorem 3.2, we get the following corollary.

Corollary 3.6 Let A ∈ L(H) satisfy

i) A is decomposable and polaroid,

ii) A and A∗ are reduced by each of their eigenspaces.

Then the operator equation AXA∗ −X = C has a solution if and only if there exist
two invertible operators U and V such that

U

(
A C
0 I

)
=

(
A 0
0 I

)
V and U

(
I 0
0 A∗

)
=

(
I 0
0 A∗

)
V .

Corollary 3.7 Suppose that A ∈ L(H) such that H is a separable Hilbert space. If A
is compact and p-symmetric, then the operator equation AXA∗ −X = C has a solution

if and only if there exist two invertible operators U and V such that U

(
A C
0 I

)
=(

A 0
0 I

)
V and U

(
I 0
0 A∗

)
=

(
I 0
0 A∗

)
V .
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Example 3.3 Let A ∈ L(H) such that A is 2-normal, σ(A) ∩ (−σ(A)) ⊂ {0} and
kerA = kerA∗. Then the operator equation AXA∗ −X = C has a solution if and only if

there exist two invertible operators U and V such that U

(
A C
0 I

)
=

(
A 0
0 I

)
V and

U

(
I 0
0 A∗

)
=

(
I 0
0 A∗

)
V .

4 Solvability Criteria for the Equation dA,B(X) = C in a Banachian Frame-
work

Let E be a Banach space, and dA,B ∈ L(L(E)), in this section, we give necessary and
sufficient conditions for regularity of the elementary operator dA,B , then we deduce nec-
essary and sufficient conditions for the existence of solutions to the operator equations
dA,B(X) = C, using the inner inverses of the elementary operator dA,B . First, we recall
the following definitions.

Definition 4.1 Let A ∈ L(E). An operator B ∈ L(E) is said to be an inner inverse
of A if it satisfies the equation

ABA = A.

We denote the inner inverse by A−. An operator with an inner inverse will be called
regular.

Remark 4.1 We note that

1. A ∈ L(E) has an inner inverse if and only if ker(A) and R(A) are closed and
complemented subspaces of E.

2. If A has an inverse A−1 in L(E), then A−1 is the only inner inverse of A.

Theorem 4.1 Suppose that A,B ∈ L(E) are polaroid, p(δA,B) ≤ 1 and δ∗A,B has the
SVEP at 0, then the following conditions are pairwise equivalent:

1. δA,B has a closed range,

2. L(E) = ker(δA,B)⊕R(δA,B),

3. 0 ∈ isoσ(δA,B),

4. δA,B is regular.

Proof. The equivalences 1 ⇔ 2 ⇔ 3 have been proven by the authors in [17, Theorem
3.2]. The condition (4) is equivalent to (1). Indeed, if δ−A,B is an inner inverse of δA,B ,

then δA,Bδ
−
A,BδA,Bδ

−
A,B = δA,Bδ

−
A,B , i.e., δA,Bδ

−
A,B is a projection on the closed subspace

R(δA,Bδ
−
A,B). Moreover, R(δA,B) = R(δA,Bδ

−
A,BδA,B) ⊆ R(δA,Bδ

−
A,B) ⊆ R(δA,B), so

R(δA,Bδ
−
A,B) = R(δA,B), and it is therefore closed. Conversely, if R(δA,B) is closed,

then PR(δA,B) is a bounded linear operator and, by the Douglas theorem, the equation
δA,BX = PR(δA,B) admits a solution; that is, there exists B in L(E) such that δA,BB =
PR(δA,B). Then δA,BBδA,B = δA,B and therefore δA,B has an inner inverse.



612 S. MAKHLOUF AND F. LOMBARKIA

Corollary 4.1 Suppose that A,B ∈ L(E) are polaroid, p(δA,B) ≤ 1 and δ∗A,B( the
dual of δA,B) has the SVEP at 0 and C ∈ L(E). If 0 ∈ isoσ(δA,B), then the operator
equation δA,B(X) = C has a solution if and only if

δA,Bδ
−
A,BC = C.

In this case, the general solution is

X = δ−A,BC + (IL(E) − δ−A,BδA,B)U,

where U ∈ L(E) is an arbitrary operator.

Proof. We apply Theorem 4.1, we deduce that δA,B is regular, and from [12], we get
the result.

Corollary 4.2 Suppose that A,B ∈ L(H) are normal operators and C ∈ L(H). If
0 ∈ isoσ(δA,B), then the operator equation δA,B(X) = C has a solution if and only if

δA,Bδ
−
A,BC = C.

In this case, the general solution is

X = δ−A,BC + (IL(H) − δ−A,BδA,B)U,

where U ∈ L(H) is an arbitrary operator.

Proof. If A and B are normal operators, it follows that A and B are polaroid,
p(δA,B − λ) ≤ 1 holds for every complex number λ, and δ∗A,B has the SVEP at 0. Hence
the result follows from Theorem 4.1 and Corollary 4.1.

Theorem 4.2 Suppose that A,B ∈ L(E) are contractions, then the following condi-
tions are pairwise equivalent:

1. ∆A,B has a closed range,

2. L(E) = ker(∆A,B)⊕R(∆A,B),

3. 0 ∈ isoσ(∆A,B),

4. ∆A,B is regular.

Proof. The equivalences 1 ⇔ 2 ⇔ 3 have been proven by the authors in [17, Theorem
3.2], and in the same way as in Theorem 4.1, we show that (4) is equivalent to (1).

Corollary 4.3 Suppose that A,B ∈ L(E) are contractions and C ∈ L(E). If
0 ∈ isoσ(∆A,B), then the operator equation ∆A,B(X) = C has a solution if and only
if ∆A,B∆

−
A,BC = C. In this case, the general solution is X = ∆−

A,BC + (IL(E) −
∆−

A,B∆A,B)U, where U ∈ L(E) is an arbitrary operator.
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5 Conclusion

Many researchers have focused on studying equations of the form AX − XB = C and
AXB−X = C due to their significance in solving various problems in many fields such as
physics, biology, economics, etc. They have achieved considerable results in this regard.

This work is part of the same context where we presented, in the first part, important
results, represented by the provision of the necessary and sufficient conditions for these
equations to have solutions in the Hilbertian framework, through an important extension
of the theorem of Fugleg, while giving the general form of expression of these solutions.

These results represent a natural and important extension of many previously known
results to much broader classes of operators than usual. Examples of applications have
been included, as well as some corollaries of these results.

In the second part, within the Banachian framework and using generalized inverse
operators, we provided the necessary and sufficient conditions for these equations to
have solutions, as well as the expression in general form of these solutions, and also their
important implications.
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