Nonlinear Dynamics and Systems Theory, 24(6) (2024) 603-614

A New Generalization of Fuglede's Theorem and Operator Equations

S. Makhlouf 1* and F. Lombarkia 2

 ¹ Laboratory of Mathematical Techniques (LTM), University of Batna 2, Batna, Algeria.
² Department of Mathematics, Faculty of Mathematics and Informatics, University of Batna 2, Batna, Algeria.

Received: February 1, 2024; Revised: December 8, 2024

Abstract: In this paper, the operator equations AX - XB = C and AXB - X = C, where A, B, C and X are bounded linear operators on the Hilbert space \mathcal{H} , are investigated and criteria of solvability are established. First, in a Hilbertian framework, by extending the famous Fuglede's theorem to a certain class of operators that are not necessarily normal, we show that some classical criteria, as Roth's removal rule for the first equation, remain valid even under assumptions on A and B weaker than usual. Second, in a Banachian framework, we establish our criteria of solvability by using the inner inverses of the operators $\delta_{A,B}$ and $\Delta_{A,B}$ defined on $L(\mathcal{H})$ by $\delta_{A,B}(X) = AX - XB$ and $\Delta_{A,B}(X) = AXB - X$.

Keywords: Fuglede-Putnam theorem; elementary operators; operator equations; inner inverses.

Mathematics Subject Classification (2010): 47B47, 47A11, 47A62, 15A09, 93B28.

1 Introduction and Basic Definition

Let \mathcal{H} be an infinite complex Hilbert space and $L(\mathcal{H})$ be the Banach space of all bounded linear operators from \mathcal{H} into \mathcal{H} . For $T \in L(\mathcal{H})$, let ker(T), $\mathcal{R}(T)$, $\sigma(T)$ and $\sigma_p(T)$ stand for the null space, range, spectrum and point spectrum of T, respectively. We recall some definitions of the local spectral theory.

^{*} Corresponding author: mailto:seddik.makhlouf@univ-oeb.dz

^{© 2024} InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua603