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Abstract: This paper considers three types of perturbed motion equations with
a stable linear (nonlinear) approximation. New sufficient conditions are established
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function. The conditions are obtained on the basis of the direct Lyapunov method
and the method of integral inequalities.
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1 Introduction

Non-autonomous systems of equations, applicable in nonlinear mechanics [1], are studied
by various methods (see [2–7] and the bibliography therein). The Lyapunov function
method [8], combined with the method of integral inequalities (see [1, 9]), allows estab-
lishing new conditions for the boundedness of motion over a specified time interval. This
paper is structured as follows.

Section 2 discusses a system of two scalar equations with nonlinear stable approxi-
mation. Definitions of motion boundedness with respect to a positive definite function
are provided.

In Section 3, an estimation of the Lyapunov function is established.
Section 4 presents conditions for the boundedness of motion with respect to a positive

definite function.
Section 5 addresses the problem of boundedness of solutions to equation systems with

autonomous stable approximation.
In Section 6, conditions for boundedness are established in the case of stability of

non-autonomous linear approximation.
Section 7 provides conditions for the boundedness of solutions over a specified time

interval for perturbed motion equations in the normal Cauchy form.
The concluding section offers comments on the obtained results.

∗ Corresponding author: mailto:lukianovatetyana@gmail.com

© 2024 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua615

mailto: lukianovatetyana@gmail.com
http://e-ndst.kiev.ua


616 A. A. MARTYNYUK, et al.

2 Formulation of the Problem

Consider a system of perturbed motion equations in the form

dx

dt
= f(t, x, y) +

m∑
i=1

µiXi(t, x, y) +

∞∑
i=0

µiφi(t),

dy

dt
= g(t, x, y) +

m∑
i=1

µiYi(t, x, y) +

∞∑
i=0

µiψi(t), (1)

where t ∈ Rτ , x, y ∈ D ⊂ R, 0 < µi < µ0 is a small parameter, f : Rτ ×D ×D → R,
g : Rτ ×D×D → R. The coefficients of the polynomials Xi and Yi , and the functions
φi and ψi are bounded functions of time t ∈ Rτ , where τ is a finite number or the
symbol +∞.

Together with the systems of equations ((1) and others), we will consider a positive
definite continuously differentiable Lyapunov function V (t, x, y) and its total derivative
along the solutions of system (1) and other systems of equations investigated in this
paper.

Taking into account certain results from [10,11], we provide the following definitions.

Definition 2.1 A solution (x(t), y(t))T of system (1) is called bounded for given
t0 ≥ 0 and β > 0 with respect to the positive definite function V (t, x, y) on the interval
Rτ if from the condition V (t0, x0, y0) = β∗ ≤ β, it follows that V (t, x(t), y(t)) ≤ β for
all t ∈ Rτ .

Definition 2.2 A solution (x(t), y(t))T of system (1) is called bounded on a given
interval for a given t0 ∈ Rτ if there exists a positive number τ > 0 and a positive definite
function V (t, x, y) such that with respect to it, the solution (x(t), y(t))T of system (1)
is bounded on the finite interval Rτ .

Let us obtain conditions for the boundedness of solutions of system (1) in the sense
of Definitions 2.1 and 2.2.

3 Estimation of the Lyapunov Function on Solutions of System (1)

For the Lyapunov function 2V1(x, y) = x2 + y2, let us compute the total derivative with
respect to time:

d

dt
V1(x, y) = x

(
f(t, x, y) +

m∑
i=1

µiXi(t, x, y) +

∞∑
i=0

µiφi(t)
)
+

+ y
(
g(t, x, y) +

m∑
i=1

µiYi(t, x, y) +

∞∑
i=0

µiΨi(t)
)
. (2)

Suppose there exist a non-negative function a1(t, µ) and a continuous function
a2(t, µ), as well as values µ1 ∈ (0, µ0], µ2 ∈ (0, µ0] such that

H1. : xf(t, x, y) + yg(t, x, y) ≤ 0 for all t ∈ Rτ , (x, y) ∈ D ×D;

H2. : x
m∑
i=1

µiXi(t, x, y) + y
m∑
i=1

µiYi(t, x, y) ≤ a1(t, µ)(x
2 + y2) for µ < µ1;



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 24 (6) (2024) 615–624 617

H3. : x
∞∑
i=0

µiφi(t) + y
∞∑
i=0

µiΨi(t) ≤ a2(t, µ), for (x, y) ∈ D ×D for µ < µ2.

Let us show that the following statement holds.

Lemma 3.1 If conditions H1–H3 are satisfied for system (1) and the function
V1(x, y), then

V1(x(t), y(t)) ≤ V1(x0, y0) exp
( t∫
0

a1(s, µ)ds
)
+

t∫
t0

exp
[ t∫
τ

a1(s, µ)ds
]
a2(τ, µ)dτ (3)

for all t ∈ Rτ and 0 < µ < min(µ1, µ2), where x0 = x(t0), y0 = y(t0).

Proof. From conditions H1–H3 and relation (2), it follows that

d

dt
V1(x(t), y(t)) ≤ a1(t, µ)V1(x(t), y(t)) + a2(t, µ)

for all t ∈ Rτ and 0 < µ < min(µ1, µ2).
Let us compute the derivative with respect to time of the product of two functions:

d

dt

{
V1(x(t), y(t)) exp

[
−

t∫
t0

a1(s, µ)ds
]}

=

=
{ d

dt
V1(x(t), y(t))− a1(t, µ)V1(x(t), y(t))

}
exp

[
−

t∫
t0

a1(s, µ)ds
]
. (4)

From equation (4), upon integration from t0 to t, we obtain

V1(x(t), y(t)) exp
[
−

t∫
t0

a1(s, µ)ds
]
− V1(x0, y0) =

=

t∫
t0

[ d
dt
V1(x(τ), y(τ))− a1(τ, µ)V (x(τ), y(τ))

]
×

×
[
−

t∫
t0

a1(s, µ)ds
]
dτ ≤

t∫
t0

a2(τ, µ)
[ t0∫
τ

a1(s, µ)ds
]
dτ. (5)

From inequality (5), we deduce the estimate (3). 2

4 Conditions for the Boundedness of Solutions to System (1)

The estimate (3) allows us to establish the following conditions for the boundedness of
solutions to system (1).
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Theorem 4.1 To ensure that the solution (x(t), y(t))T of system (1) is bounded on
a given interval with respect to the function V1(x, y), it suffices that conditions H1–H3

hold, and if V1(x0, y0) = β∗ < β, the following estimate holds:

exp
( t∫
0

a1(s, µ)ds
)
+

1

β∗

t∫
0

a2(s, µ) exp
( t∫
s

a1(τ, µ)dτ
)
ds ≤ β

β∗ (6)

for all t ∈ Rτ and 0 < µ < min(µ1, µ2).

Proof. From estimate (3) under condition (6), we obtain that V1(x(t), y(t)) ≤ β for
all t ∈ Rτ . This, according to Definition 2.1, proves the statement of Theorem 4.1. 2

5 System of Equations with Autonomous Stable Approximation

We consider a system of perturbed motion equations in the form (see [12])

dys
dt

= −λszs +
∞∑
i=1

µiYsi(t, x, z) +

∞∑
i=0

µiφsi(t),

dzs
dt

= λsys +

∞∑
i=1

µiZsi(t, x, z) +

∞∑
i=0

µiψsi(t), s = 1, 2, . . . , n. (7)

In system (7), the coefficients of the polynomials Ysi and Zsi , as well as the functions
φsi(t), ψsi(t), are bounded functions of time t ∈ Rτ , where τ is a finite number.

It is assumed that there are no external or internal resonances in system (7).

For system (7), we choose the Lyapunov function as 2V2(y, z) =
n∑

s=1
(y2s + z2s) and

compute its total derivative with respect to t ∈ Rτ . Specifically,

d

dt
V2(y, z) =

n∑
s=1

{
ys

(
−λszs +

∞∑
i=1

µiYsi(t, y, z)+

+

∞∑
i=0

µiφsi(t)
)
+ zs

(
λsys +

∞∑
i=1

µiZsi(t, y, z) +

∞∑
i=0

µiψsi(t)
)}

. (8)

Let there exist a non-negative function ā1(t, µ) and a continuous function ā2(t, µ), as
well as values µ1, µ2 ∈ (0, 1] such that

H4. :
n∑

s=1

(
ys

∞∑
i=1

µiYsi(t, y, z) + zs
∞∑
i=0

µiZsi(t, y, z)
)
≤ ā1(t, µ)

n∑
s=1

(y2s + z2s)

for µ < µ1 and t ∈ Rτ ;

H5. :
n∑

s=1

(
ys

∞∑
i=1

µiφsi(t) + zs
∞∑
i=0

µiψsi(t)
)
≤ ā2(t, µ)

for µ < µ2, t ∈ Rτ and |ys| < k < +∞, |zs| < k <∞, s = 1, 2, . . . , n.

Theorem 5.1 To ensure that the solution (y(t), z(t))T of system (7) is bounded on
a given interval with respect to the function V2(y, z), it is sufficient that conditions H4,
H5 hold, and if V2(y0, z0) = β∗ < β, the following estimate holds:

exp

( t∫
0

ā1(s, µ)ds

)
+

1

β∗

t∫
0

ā2(s, µ) exp

( t∫
s

ā1(τ, µ)dτ

)
ds ≤ β

β∗ for all t ∈ Rτ , (9)
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and for µ ∈ (0, µ∗), where µ∗ = min(µ1, µ2).

Proof. Under conditions H4, H5, it follows from equation (8) that

d

dt
V2(y(t), z(t)) ≤ ā1(t, µ)V2(y(t), z(t)) + ā2(t, µ)

for all t ∈ Rτ and 0 < µ < µ∗. Hence, we find that

V2(y(t), z(t)) ≤ V2(y0, z0) +

t∫
0

(ā1(s, µ)V2(y(s), z(s)) + ā2(s, µ))ds. (10)

Applying Lemma 3.1 to inequality (10), we obtain for the function V2(y, z), an estimate
similar to estimate (3). This estimate, together with condition (9), leads to the statement
of Theorem 5.1. 2

6 Boundedness of Solutions of a Quasilinear System with Stable Nonau-
tonomous Approximation

Let us consider a quasilinear nonautonomous system of equations

dxi
dt

=

n∑
s=1

psi(t)xs +Xi(t, x1, . . . , xn, µ) + ψi(t), i = 1, 2, . . . , n, (11)

where the functions Xi(t, x1, . . . , xn, µ) have expansions in powers of the parameter µ,
ψi(t) are bounded functions on any specified time interval t ∈ Rτ . Let us assume that
for system (11), a positive definite function V3(t, x) differentiable with respect to t has
been constructed.

The total derivative of the function V3(t, x) due to system (11) can be represented as

dV3
dt

(t, x) =
∂V3
∂t

(t, x) +

n∑
i=1

n∑
s=1

∂V3
∂xs

(t, x)psi(t)xs+

+

n∑
s=1

∂V3
∂xs

(t, x)Xs(t, x, µ) +

n∑
s=1

∂V3
∂xs

(t, x)ψs(t). (12)

Let us assume that for system (11), there exist a positive function ã1(t, µ) and a bounded
function ã2(t) such that the following conditions hold:

H6. :
∂V3

∂t (t, x) +
n∑

i=1

n∑
s=1

∂V3

∂xs
(t, x)psi(t)xs ≤ 0 for all (t, x) ∈ Rτ ×D, where D ⊂ Rn is

an open set;

H7. :
n∑

s=1

∂V3

∂xs
(t, x)Xs(t, x, µ) ≤ ã1(t, µ)V3(t, x) for 0 < µ < µ1 and (t, x) ∈ Rτ ×D;

H8. :
n∑

s=1

∂V3

∂xs
(t, x)ψs(t) ≤ ã2(t) for all t ∈ Rτ and |xs| < h, where h = const > 0.

The condition H6, together with the positive definiteness of the function V3(t, x),
ensures the stability of the zero solution of the linear approximation system within the
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system of equations (11). Taking into account conditionsH6–H8, we obtain an estimation
from equation (12):

dV3
dt

(t, x) ≤ ã1(t, µ)V3(t, x) + ã2(t)

for all t ∈ Rτ and 0 < µ < µ1. Hence, we find the estimate of the change of the function
V3(t, x(t)) as

V3(t, x(t)) ≤ V (t0, x0) +

t∫
t0

(ã1(s, µ)V3(s, x(s)) + ã2(s))ds (13)

for all t ∈ Rτ and 0 < µ < µ0.
Applying Lemma 3.1 to the inequality (13), we can easily obtain the estimate of the

function V3(t, x(t)) in the form of (3). The following statement holds.

Theorem 6.1 To ensure that the solution x(t) of system (11) with a stable linear
approximation is bounded on a given interval with respect to the function V3(t, x), it is
sufficient that conditions H6–H8 hold, and for a given β > 0, the inequalities V3(t0, x0) =
β∗ < β are satisfied, as well as the inequality

exp
( t∫
t0

ã1(s, µ)ds
)
+

1

β∗

t∫
t0

ã2(s) exp
( t∫
s

ã1(τ, µ)dτ
)
ds <

β

β∗

at all t ∈ Rτ and 0 < µ < µ1.

The proof of Theorem 6.1 is similar to the proof of Theorem 5.1.

7 Conditions for the Boundedness of Solutions of a System in Normal Form

Let us consider the differential equations of perturbed motion

dxs
dt

= Xs(t, x1, . . . , xn), s = 1, 2, . . . , n, (14)

xs(t0) = xs0 , (15)

whereXs(t, 0, . . . , 0) ̸= 0 for all t ∈ Rτ . We associate with the system (14) a differentiable
function V (t, x1, . . . , xn) > 0, for which we write a Lyapunov relation

V (t, x(t)) = V (t0, x0) +

t∫
t0

V̇ (s, x(s))ds, (16)

where V̇ (t, x(t)) is the total derivative of the function V (t, x) due to the system of equa-
tions (14) and x(t) = (x1(t), . . . , xn(t))

T .
Let V (t, x(t)) = v(t), and suppose that the following condition is satisfied:

H9. : v(t0) +

t∫
t0

V̇ (s, x(s))ds ≤ w(t) +

t∫
t0

p(s)v(s)ds, (17)

where w(t) and p(t) are non-negative bounded functions on the given interval Rτ . The
following statement holds.
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Lemma 7.1 If the perturbed motion equations (14) admit a differentiable function
V (t, x), and condition H9 is satisfied, then the function V (t, x(t)) = v(t) satisfies the
inequality

v(t) ≤ w(t) +

t∫
t0

exp
( t∫
τ

p(s)ds
)
p(τ)w(τ)dτ (18)

for all t ∈ Rτ .

Proof. From equation (16) under condition (17), we obtain the inequality

v(t) ≤ w(t) +

t∫
t0

p(s)v(s)ds

for all t ∈ Rτ . Let us denote z(t) =
t∫

t0

p(s)v(s)ds and note that z(t0) = 0. Obviously,

dz

dt
= p(t)v(t) ≤ p(t)[w(t) + z(t)] = p(t)w(t) + p(t)z(t).

From here, it follows that

z(t) ≤
t∫

t0

exp
[ t∫
τ

p(s)ds
]
p(τ)w(τ)dτ. (19)

Since v(t) ≤ w(t)+ z(t), taking (19) into account yields the statement of Lemma 7.1. 2

Theorem 7.1 For the solution x(t) of the normal system of equations (14) to be
bounded on a given interval with respect to the function V (x, x), it is sufficient that
Lemma 7.1 holds and for a given β > 0, if V (t0, x0) = β∗ < β, then the inequality
applies

w(t) +

t∫
t0

exp
[ t∫
τ

p(s)ds
]
p(τ)w(τ)dτ ≤ β (20)

for all t ∈ Rτ .

Proof. If the conditions of Lemma 7.1 are satisfied, then the estimate for the function
V (t, x(t)) given by (18) holds. From condition (20) and the fact that V (t0, x0) = β∗, it
follows that V (t, x(t)) ≤ β for all t ∈ Rτ . This proves the statement of Theorem 7.1. 2

Corollary 7.1 If in condition H9, we set w(t) = β∗, then the estimate (18) takes
the form

v(t) ≤ β∗ exp
[ t∫
t0

p(s)ds
]

(21)

for all t ∈ Rτ .
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Based on the estimate (21), the conditions for the boundedness of solutions of system
(14) with respect to the function V (t, x) take the form

exp
[ t∫
t0

p(s)ds
]
≤ β

β∗ (22)

for all t ∈ Rτ . If condition (22) is satisfied, then we have the estimate V (t, x(t)) ≤ β for
all t ∈ Rτ .

8 Example

Consider a non-autonomous oscillatory system of the second order [13]

ẍ+ p(t)ẋ+ [a2 + q(t)]x = f(t, x, y), a = const ̸= 0, (23)

where p(t) ≥ 0 for all t ∈ Rτ and
∞∫
0

q(s)ds < +∞. The functions p(t), q(t), f(t, 0, 0)

are continuous on t ∈ Rτ and f(t, 0, 0) ̸= 0 for all t ∈ Rτ .
Let us rewrite the equation (23) in the form of a system{

dx/dt = y, x(t0) = x0,
dy/dt = −p(t)y − [a2 + q(t)]x+ f(t, x, y), y(t0) = y0,

(24)

and for the total derivative of the function V (x, y) = a2x2+y2 on the solutions of system
(24), we obtain the estimate

d

dt
V (x(t), y(t)) = −2p(t)y2(t)− 2q(t)x(t)y(t) + 2yf(t, x, y) ≤

≤ 2|q(t)||x(t)y(t)| − 2p(t)y2(t) + 2y(t)f(t, x, y) ≤

≤ |q(t)|
|a|

(
a2x2(t) + y2(t)

)
+
∣∣2y(t)f(t, x, y)− 2p(t)y2(t)

∣∣ = a1(t)V (x(t), y(t)) + a2(t),

(25)

where a1(t) =
|q(t)|
|a| , a2(t) =

∣∣2y(t)f(t, x, y)− 2p(t)y2(t)
∣∣.

From inequality (25), it follows that

d

dt
V (x(t), y(t)) ≤ a1(t)V (x(t), y(t)) + a2(t)

for all t ∈ Rτ . Hence, we find the estimate of the change of the function V (x(t), y(t))
as

V (x(t), y(t)) ≤ V (x0, y0) +

t∫
t0

(a1(s)V (x(s), y(s)) + a2(s))ds (26)

for all t ∈ Rτ .
Applying Lemma 3.1 to the inequality (26), we can easily obtain the estimate of the

function V (x(t), y(t)) in the form

V (x(t), y(t)) ≤ V (x0, y0) exp
( t∫
0

a1(s)ds
)
+

t∫
t0

exp
[ t∫
τ

a1(s)ds
]
a2(τ)dτ (27)
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for all t ∈ Rτ , where x0 = x(t0), y0 = y(t0).
The following statement holds.
Applying Theorem 6.1 to inequality (27), we find that the solutions of system (24)

are bounded in the sense of Definitions 2.1 and 2.2 if, for given estimates 0 < β < β∗

and for V (x0, y0) < β, the following inequality holds:

exp
( t∫
0

a1(s)ds
)
+

t∫
t0

exp
[ t∫
τ

a1(s)ds
]
a2(τ)dτ <

β∗

β

for all t ∈ Rτ .
Note that if a2(t) = 0 for all t ∈ Rτ , then the boundedness of solutions of system (24)

occurs under the conditions V (x0, y0) < β and

t∫
t0

a1(s)ds < ln

(
β∗

β

)

for all t ∈ Rτ , where 0 < β < β∗ are predefined values.

9 Conclusion

For systems of perturbed motion equations with stable nonlinear or linear approxima-
tions, conditions for the boundedness of solutions over a given time interval with respect
to a positive definite function have been obtained. This new property of motion applies
to nonlinear non-autonomous systems and has broad applications in nonlinear mechanics
and system theory.
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