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Using a 2-D Discrete Chaotic Map to Create a Safe

Data in Symmetric Systems

Salah Adoui ∗ and Brahim Benzeghli

Department of Mathematics, University of Batna 2, Batna, Algeria

Received: May 5, 2024; Revised: November 24, 2024

Abstract: In this work, we focus on the utility of chaotic systems of dimension 2 to
generate symmetric keys which will be used to encrypt and decrypt data. Non-linear
dynamical 2-D systems with chaotic logistic maps have properties that give us the
means to hide data to be shared [10]. The two most important properties that are
very useful in this work are: the non-linearity that gives a significant complexity to
our keys, and the sensibility to the initial conditions that radically transforms our
systems as soon as there is a minimal change [1].

Keywords: matrices; Zeraoulia-Sprott maps; logistic maps; chaos; cryptography; xor
operation.

Mathematics Subject Classification (2010): 70K55, 70K75, 93-00.

1 Introduction

The use of chaotic maps of dimension 2 can be an interesting approach for the encryption
of text. 2-D chaotic maps such as the Henon map or the standard map have 2-dimensional
dynamic chaos properties [3]. Zeraoulia and Sprott [6] have proposed a new chaotic map
of dimension 2,

∀n ∈ N;
(
xn+1

yn+1

)
=

 −axn

1 + y2n
xn + byn

 ,

where

(
x0

y0

)
are given initial terms, that has the same properties, moreover, these maps

can be used to generate complex pseudo-random sequences serving as encryption keys.

∗ Corresponding author: mailto:s.adoui@univ-batna2.dz
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The chaotic transformations of these maps allow to introduce a strong confusion and
diffusion in the encryption process. This blurs the links between the clear and encrypted
texts and makes statistical analysis more difficult.

Zeraoulia and Sprott map parameters (such as the initial x0 and y0 terms, control
parameters a and b) [6], [7] can be used to generate unique and unpredictable encryption
keys. The sensitivity to the initial conditions ensures a strong uniqueness of the keys.
The unpredictability and complexity of these maps make encryption more resistant to
brute force attacks etc.

The implementation of 2-D chaotic maps in encryption algorithms requires additional
calculations, but increases computing power and facilitates their integration. The use of
2-D chaotic maps for text encryption can provide enhanced security due to the complex-
ity and unpredictability introduced by 2-dimensional chaos. However, it is important
to design and optimize the implementation to achieve a balance between security and
performance.

In this work, we used the chaotic maps for the creation of a key in matrix form,
whose components are the successive terms of a logistic map. This key will be used in
symmetric encryption [8], [9] and decryption of our data (text, digital image [11], etc.)
using the logical operation xor.

2 The 2-D Rational Discrete Chaotic Map

In [6], [7], a 2-D discrete rationale map is given by

∀n ∈ N;
(
xn+1

yn+1

)
=


1

0.1 + x2
n

− ayn

1

0.1 + y2n
+ bxn

 , where

(
x0

y0

)
are given initial terms, (1)

a and b are parameters, the 2-D chaotic map (1) is more complicated than the 1-D one.
In their papers [6, 7], Zeraoulia and Sprot have proposed a new 2-D chaotic map given
by

∀n ∈ N;
(
xn+1

yn+1

)
=

 −axn

1 + y2n
xn + byn

 , where

(
x0

y0

)
are given initial terms, (2)

and a and b are bifurcation parameters. This map is algebraically simple but with more
complications, it produces several new chaotic attractors. It leads, according to the values
of a and b, to a convergent sequence, a continuation subject to oscillations or a chaotic
sequel [6], [7]. The following four cases are considered, with the associated properties
proved:

• |a| < 1, |b| < 1: Global asymptotic stability;

• |a| < 1, |b| > 1: Existence of unbounded solutions;

• |a| > 1, |b| < 1: Localization of non-trivial global attractor;

• |a| > 1, |b| > 1: Existence of unbounded solutions.
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And there are some regular and chaotic regions when{
(a, b) ∈ [2, 4]× [0, 1]

(a, b) ∈ [3, 4]× [−1, 0].
or

3 Construction of a Matrix M Using Terms of 2-D Rational Discrete Chaotic
Map

Consider the square matrix M = (mij) generated by the Zeraoulia-Sprott terms. And
we obtain the following similar Toeplidz matrix M [5]:

Mn =



x1+y1

2 x2 x3 x4 · · · · · · · · · xn

y2
x2+y2

2 xn+1 xn+2 · · · · · · · · · x2n−3

y3 yn+1
x3+y3

2 x2n−2 · · · · · · · · · x3n−6

y4 yn+2 y2n−2
x4+y4

2 · · · · · · · · · x4n−9

...
...

...
...

. . . · · · · · · · · ·
...

...
...

...
...

. . . · · · · · ·
...

...
...

...
...

...
. . . yn2−n

2

yn y2n−3 y3n−6 y4n−9 · · · · · · yn2−n
2

xn+yn

2


. (3)

We can also write

M = (mij) =

 mii =
xi+yi

2 if i = j, ∀i ∈ {1, 2, · · · , n},
mij = xi if 1 < i < j,
mij = yi if i > j > 1.

Encryption data using the matrix M

We recall that the BB84 protocol (proposed by Charles Bennett and Gilles Brassard
in 1984) is a quantum key distribution protocol (QKD) that guarantees the security of
the key generation process against attacks. The protocol uses the principles of quantum
mechanics to establish a secure key between two interlocutors while detecting the presence
of an attempted espionage [2].

4 Application

In our work, the matrix operation we will use is the logical xor between two matrices
applied component by component. We recall that the xor operation is often used in
cryptography, especially in flood encryption. This is how it works [4]:

1. Plain text: It is the original text that is being protected.

2. Encryption flow: It is a sequence of random bits generated using a secure cryp-
tographic algorithm. This bit stream is used as the encryption key.

3. xor operation: It is a logical operation to compare each bit of the plain text with
the corresponding bit of the encryption stream, bit by bit. The result of this xor
operation gives the encrypted text.
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The principle of the xor operation is as given in Table 1.

A 1 1 0 0

B 1 0 1 0
A⊕B 0 1 1 0

Table 1: The xor operation.

Thus, by applying the xor operation between the plain text and the encryption flow,
the encrypted text is obtained. Decryption works similarly: the xor operation is applied
again between the encrypted text and the same encryption stream used for encryption.
This makes it possible to find the original plain text. The advantage of the xor operation
is that it is reversible and very fast to calculate. This is why it is often used in flood
encryption algorithms such as One-Time Pad encryption.

Encryption and decryption of a text

In this section we give an application for encrypting and decrypting of a text using some
cryptographic techniques.

Let T be a text to be encrypted, we start by converting it to binary and putting it
in a square matrix Tc of order n.

Let L be the number of characters of the text (letters, symbols, numbers, etc,). We
fix the size of the matrix by

n =

{ √
L if

√
L ∈ N,

E(
√
L+ 1) if

√
L ̸∈ N.

(4)

Then, we propose the encoding dictionary, see Table 2.

Character A B C D E F G H I J K L M
Encoded character 01 02 03 04 05 06 07 08 09 10 11 12 13

Character N O P Q R S T U V W X Y Z
Encoded character 14 15 16 17 18 19 20 21 22 23 24 25 26

Character ? Space , . ! ; : ’
Encoded character 27 28 29 30 31 32 33 34

Table 2: The proposed encoding dictionary.

4.1 Examples

Case 1: (when n =
√
L ∈ N ).

Let us have the text T = ”HELLO BRAHIM, I AM SALAH.” We encode it using the
previous dictionary, we obtain

T = HELLO BRAHIM, I AM SALAH.
= 08051212142802170108091229280928011228180112010830.

In this case, we have 25 characters, so L = 25 and the matrix size will be n = 5.
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We set the order n = 5 and create a matrix using the code obtained, we get

Td =


08 05 12 12 14
28 02 17 01 08
09 12 29 28 09
28 01 12 28 18
01 12 01 08 30

 .

The matrix Td has a matrix Tb whose elements are the binary conversions of each com-
ponent of the matrix Td. So

Tb =


01000 00101 01100 01100 01110
11100 00010 10001 00001 01000
01001 01100 11101 11100 01001
11100 00001 01100 11100 10010
00001 01100 00001 01000 11110

 .

The encryption key

Using the Zeraoulia-Sprott map:

• Let x0, y0, 2 < a < 4 and 0 < b < 1 be the four parameters exchanged between the
interlocutors through the quantum channel using the BB84 protocol.

• After we have exchanged the four previous parameters, we introduce the Zeraoulia-

Sprott map defined in (1) to calculate the l = n2−n
2 first terms of the sequences

{x1, · · · , xl} and {y1, · · · , yl}.
In this case, we fix the parameters x0 = 2, y0 = −3, a = 3 and b = 0.5, we get the

terms shown in Table 3.

i 1 2 3 4 5 6 7 8

xi -0,6000 1,4400 -3,8485 4,4402 -1,1743 0,3905 -1,1068 2,6322

yi 0,5000 -0,3500 1,2650 -3,2160 2,8322 0,2417 0,5113 -0,8511
xi+yi

2
-0,0500 0,5450 -1,2917 0,6121 0,8289 X X X

i 9 10 11

xi -4,5791 2,3405 -0,5368

yi 2,2066 -3,4757 0,6027

Table 3: 11 first terms of the Zeraoulia-Sprott sequence and 5 first means.

Using these terms, we construct a matrix of order n = 5:

M5 =


x1+y1

2 x2 x3 x4 x5

y2
x2+y2

2 x6 x7 x8

y3 y6
x3+y3

2 x9 x10

y4 y7 y9
x4+y4

2 x11

y5 y8 y10 y11
x5+y5

2



=


−0, 0500 1, 4400 −3, 8485 4, 4402 −1, 1743
−0, 3500 0, 5450 0, 3905 −1, 1068 2, 6322
1, 2650 0, 2417 −1, 2917 −4, 5791 2, 3405
−3, 2160 0, 5113 2, 2066 0, 6121 −0, 5368
2, 8322 −0, 8511 −3, 4757 0, 6027 0, 8289

 .
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As the basis of the binaries is {0, 1}, then the class of a negative real number converted
to binary is the same as that of the same number taken without sign (positive). For this,
we can take all the components of the matrix in absolute values. So we get a new matrix
with same results,

M+
5 =


0, 0500 1, 4400 3, 8485 4, 4402 1, 1743
0, 3500 0, 5450 0, 3905 1, 1068 2, 6322
1, 2650 0, 2417 1, 2917 4, 5791 2, 3405
3, 2160 0, 5113 2, 2066 0, 6121 0, 5368
2, 8322 0, 8511 3, 4757 0, 6027 0, 8289

 .

To be able to work with natural integer components, we must get rid of commas,
for this, we propose to multiply the components of the matrix M+

5 by a power k of 10
chosen according to our needs, then we take only the integer part of each component
after multiplication. In our example, we can take k = 3, therefore, all components of
M+

5 must be multiplied by 103. We get a new matrix

E(M+
5 ) =


50 1440 3848 4440 1174
350 545 390 1106 2632
1265 241 1291 4579 2340
3216 511 2206 612 536
2832 851 3475 602 828

 .

We convert the components of the matrix E(M+
5 ) into binary and we obtain a matrix K

which will be the common key for encryption and decryption,

K =


110010 10110100000 111100001000 1000101011000 10010010110

101011110 1000100001 110000110 10001010010 101001001000
10011110001 11110001 10100001011 1000111100011 100100100100
110010010000 111111111 100010011110 1001100100 1000011000
101100010000 1101010011 110110010011 1001011010 1100111100

 .

Encryption

To encrypt the text T , we use the formula Tc = Tb ⊕K. So

Tc =


111010 10110100101 111100010100 1000101100100 10010100100

101111010 1000100011 110010111 10001001101 101001010000
10011111010 11111101 10100101000 1000111111111 100100101101
110010101100 1000000000 100010101010 1010000000 1000101010
101100010001 1101011111 110110010100 1001100010 1101011010

 .

Tc will be sent to the receiver.

Decryption

The recipient receives Tc and decrypts it to obtain the initial matrix using the formula

Tc ⊕K = Tb.
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Proof.

Tc ⊕K = Tb ⊕K ⊕K
= Tb ⊕O5 (O5 is the null matrix of order 5)
= Tb.

After this, the receiver converts the binary matrix Tb to the decimal matrix Td , then
he uses the dictionary, see Table 2, to obtain the initial text ” T = HELLO BRAHIM, I
AM SALAH.”

Case 2: (
√
L ̸∈ N).

In the case when
√
L is not a perfect square, we put all the obtained codes in order

from left to right and down, and we put zeros in the remaining places.
Let us take the text T = ”HELLO BRAHIM, I AM SALAH’S FRIEND.” We encode

it using the previous dictionary, we obtain

T = HELLO BRAHIM, I AM SALAH’S FRIEND.
= 08051212142802170108091229280928011228180112010834192806180905140430.

In this case, we have 34 characters, so L = 34 and the matrix size will be n =
E(

√
34 + 1) = 6.

We set the order n = 6 and create a matrix using the code obtained, we get

Td =


08 05 12 12 14 28
02 17 01 08 09 12
29 28 09 28 01 12
28 18 01 12 01 08
34 19 28 06 18 09
05 14 04 30 00 00

 .

The matrix Td has a matrix Tb whose elements are the binary conversions of each com-
ponent of the matrix Td. So

Tb =


01000 00101 01100 01100 01110 11100
00010 10001 00001 01000 01001 01100
11101 11100 01001 11100 00001 01100
11100 10010 00001 01100 00001 01000
100010 10011 11100 110 10010 1001
101 1110 100 11110 0000 0000

 .

The encryption key

Using the Zeraoulia-Sprott map:

• Let x0, y0, 2 < a < 4 and 0 < b < 1 be the four parameters exchanged between the
interlocutors through the quantum channel using the BB84 protocol.

• After we have exchanged the four previous parameters, we introduce the Zeraoulia-

Sprott map defined in (1) to calculate the l = n2−n
2 first terms of the sequences

{x1, · · · , xl} and {y1, · · · , yl}.
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The matrix size will be 6, so we calculate the first 16 terms of each of the two sequences
whose first 11 terms will be the same as those calculated in the first case, see Table 3.
We get

i · · · 6 · · · 11 12 13 14 15 16

xi · · · 0,3905 · · · -0,5368 1,1813 -3,3577 4,7266 -1,5780 0,3952

yi · · · 0,2417 · · · 0,6027 -0,2354 1,0636 -2,8259 3,3136 0,0788
xi+yi

2
· · · 0,3161 · · · X X X X X X

Using these terms, we construct a matrix of order n = 6:

M6 =



x1+y1

2 x2 x3 x4 x5 x6

y2
x2+y2

2 x7 x8 x9 x10

y3 y7
x3+y3

2 x11 x12 x13

y4 y8 y11
x4+y4

2 x14 x15

y5 y9 y12 y14
x5+y5

2 x16

y6 y10 y13 y15 y16
x6+y6

2



=


−0, 0500 1, 4400 −3, 8485 4, 4402 −1, 1743 0, 3905
−0, 3500 0, 5450 −1, 1068 2, 6322 −4, 5791 2, 3405
1, 2650 0, 5113 −1, 2917 −0, 5368 1, 1813 −3, 3577
−3, 2160 −0, 8511 0, 6027 0, 6121 4, 7266 −1, 5780
2, 8322 2, 2066 −0, 2354 −2, 8259 0, 8289 0, 3952
0, 2417 −3, 4757 1, 0636 3, 3136 0, 0788 0, 3161

 .

Then we get a new positive matrix with same results

M+
6 =


0, 0500 1, 4400 3, 8485 4, 4402 1, 1743 0, 3905
0, 3500 0, 5450 1, 1068 2, 6322 4, 5791 2, 3405
1, 2650 0, 5113 1, 2917 0, 5368 1, 1813 3, 3577
3, 2160 0, 8511 0, 6027 0, 6121 4, 7266 1, 5780
2, 8322 2, 2066 0, 2354 2, 8259 0, 8289 0, 3952
0, 2417 3, 4757 1, 0636 3, 3136 0, 0788 0, 3161

 .

We follow the same steps we did in the first case, we get the integer matrix

E(M+
6 ) =


50 1440 3848 4440 1174 390
350 545 1106 2632 4579 2340
1265 511 1291 536 1181 3357
3216 851 602 612 4726 1578
2832 2206 235 2825 828 395
241 3475 1063 3313 78 316

 .

We convert the components of the matrix E(M+
5 ) into binary and we obtain a matrix
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K = [K
′ |K ′′

], where

K
′

=


110010 10110100000 111100001000

101011110 1000100001 10001010010
10011110001 111111111 10100001011
110010010000 1101010011 1001011010
101100010000 100010011110 11101011
11110001 110110010011 10000100111



K
′′

=


1000101011000 10010010110 110000110
101001001000 1000111100011 100100100100
1000011000 10010011101 110100011101
1001100100 1001001110110 11000101010

101100001001 1100111100 110001011
110011110001 1001110 100111100

 .

This matrix K will be the common key for encryption and decryption.

Encryption

To encrypt the text T , we use the formula Tc = Tb ⊕K = [T ′

c |T
′′

c ], where

T ′

c =


111010 10110100101 111100010100

101100000 1000110010 10001010011
10100001110 1000011011 101000010100
110010101100 1101100101 1001011011
101100110010 100010110001 100000111
11110110 110110100001 10000101011

 ,

T ′′

c =


1000101100100 10010100100 110100010
101001010000 10000111101100 100100110000
1000110100 10010011110 110100101001
1001110000 1001001110111 11000110010
101100001111 1101001110 110010100
110100001111 1001110 100111100

 .

Tc will be sent to the receiver.

Decryption

The recipient receives Tc and decrypts it to obtain the initial matrix using the formula

Tc ⊕K = Tb.

Proof.

Tc ⊕K = Tb ⊕K ⊕K
= Tb ⊕O6 (O6 is the null matrix of order 6)
= Tb.

After this, the receiver converts the binary matrix Tb to the decimal matrix Td , then
he uses the dictionary, see Table 2, to obtain the initial text

T = ” HELLO BRAHIM, I AM SALAH’S FRIEND.”
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Generalisation

In general, to encrypt a text of length L, we follow the same steps as in the previous
example.

Step 1: The text

(a) We choose a dictionary to code the text T ( In our example, we have used the
dictionary given in Table 2).

(b) Let Td be the matrix of order n. The order n is calculated according to the
formula (4). And the components of Td are the obtained codes put in order
from left to right and down, and we put zeros in the remaining places.

(c) We convert the components of the matrix Td into binaries, and we obtain a
matrix Tb.

Step 2: The encryption key

(a) Let us choose the chaotic sequence of Zeraoulia of dimension 2 (see formula
(2)). Then we fix the first terms (x0, y0) and two parameters a and b such that

the chaos is assured [6], [7], the calculus of the first
n2 − n

2
terms of the vector

sequence (xi, yi)i∈{1,··· ,n2−n
2 } gives us the components of Mn, the matrix of

order n in the form given in the expression (3).

(b) We take all the components of the matrix Mn in absolute values to get the
matrix M+

n .

(c) We multiply the components of the matrix M+
n by a power k of 10 chosen

according to our needs, then we take only the integer part of each compo-
nent after multiplication, then we create a new matrix denoted E(M+

n ) whose
components are the integer parts of the components of M+

n .

(d) We convert the components of the matrix E(M+
n ) into binary and we obtain

a matrix K which will be the common key for encryption and decryption.

Step 3: Encryption and Decryption

(a) To encrypt the encoded text Tb, we use the formula

Tc = Tb ⊕K.

(b) To decrypt Tc for obtaining the initial matrix, we use the formula

Tc ⊕K = Tb.

(c) The binary matrix Tb will be converted to a decimal matrix which will decoded
to a text using the initial dictionary, see Table 2, to obtain the initial text ”
T ”.

5 Performance and Security Analysis

To study the efficacy of our text encryption, we test its security. The proposed method
should resist several types of attacks because its symmetric keys used during the encryp-
tion and decryption must be transmitted through an unsecured channel.
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Cryptanalysis

To determine the key, it is necessary to use techniques more secured and compliant
against attacks, these techniques are called the key exchange protocols. In our system,
we detail how we can obtain a secret key using the properties of matrices for encrypting
and decrypting text and sensibility of chaotic maps to initial conditions. The question
is: Can we ensure the security of this encryption? For this, to raise the security levels of
our system, we have introduced chaotic logistic maps in cryptography.

For the implementation of the proposed scheme, we choose the size of text 1272 <
L ≤ 1282. The proposed scheme key K is none-deterministic because the interlocutors
use an arbitrary matrix (K) for getting a common secret key K.

We use the proposed key generation method with xi, yi; i ∈ {0, · · · , 8128}; (xi, yi
are the components of the key K). This provides 10k+1 possible cases to obtain one

component of the key K. So it provides (10k+1)n
2

= 10(k+1)n2

possible cases to obtain
the key K.

For n = 128 and k = 14, we get (1015)128
2

= 10(15)16384 = 10245760 > (23)245760 =
2737280.

We have also 1020 possible cases for getting the term x0 (with 20 decimal digits after
the comma in the set of 10 numbers {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}) if we use the 2-D rational
discrete chaotic map that contains 2 parameters a, b and the initial terms (x0, y0), so this
provides

(1020)4 = 1080 > 2260.

The key space is wide enough for a brute force attack or exhaustive attack is not
possible.

6 Concluding Remarks

We know that chaos can be exploited in encryption algorithms to improve the security
and robustness of encryption systems. That is why we have included a chaotic system of
dimension 2 with the following advantages:

• Chaotic encryption systems use non-linear dynamic systems to generate complex
pseudo-random sequences that serve as encryption keys.

• Sensitivity to initial conditions of chaotic systems makes encryption very difficult
to break and ensures a strong uniqueness of the generated keys.

• Chaotic properties can be used to generate complex and unpredictable encryption
keys from initial parameters.

• Chaotic transformations can be incorporated into the dissemination and confusion
stages of encryption algorithms to further blur the links between the plain and
encrypted texts.

• This makes encryption more resistant to statistical analysis attacks.

• Unpredictability and sensitivity to chaotic system parameters can be used to en-
hance the security of encrypted communication protocols.
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• This makes them more resistant to brute force attacks and model analysis attacks.

The judicious use of chaos in encryption algorithms leads to safer and more robust
encryption systems against various cryptographic attacks.

In our work, we used a chaotic system of dimension two, which already has the
venture to keep the two most important options: the non-linearity of the system and its
sencibility to the initial conditions, in addition to that, it has increased the security level
of the shared key to 2260, which far exceeds the known threshold.
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1 Introduction

Partial differential equations (PDEs) represent a mathematical tool that connect dif-
ferent functions and their derivatives. These functions reflect, generally, some physical
quantities like heat and waves [1]. Until now, their study is still very active, gathering
the resolution of systems, daily problems and the development of mathematics. The
problem for the majority of PDEs appears in the calculation of the analytic solution,
which is generally impossible. For this reason, mathematicians headed to other tools
such as numerical resolution to approximate the solution of such problems in an effective
way in terms of time and results.

In this paper, we focus on the numerical study of the advection-diffusion-reaction
equation. The latter brings together three important processes: advection, diffusion and
reaction. It is formulated as follows:

∂C

∂t
= D0

∂2C

∂x2 − V0
∂C

∂x
−K0C + f(x, t),

where D0 is the diffusion coefficient, V0 is the convective velocity, K0 is the reaction
constant and f(x, t) is a scalar function often called the source term. It models, according
to the problem, a heat source, chemical reaction, injection/production wells, etc.

This equation occurs in several scientific disciplines such as biology, astrophysics, and
industrial and environmental issues. It models many phenomena, for example energy
transfer, mass transfer and also the transfer of the heat through a permeable medium
and the transport of a chemical or biological pollutant through an underground aquifer
system [2–4]. Generally, it describes the phenomenon of the distribution of some quan-
tities in space and time. The advection-diffusion-reaction equation can be viewed as a
special case of a reaction-diffusion system (systems that describe the dynamics of chemi-
cal concentrations reacting and diffusing in space), where the process of advection is also
taken into account. In other words, this equation is an extension of reaction-diffusion
equations to include the effects of advection [5].

Moving to numerical solution, different methods have been introduced and show hight
accuracy to approximate the desired solution, we can cite: finite differences, finite vol-
umes and finite elements. The principle of these methods is the same for all the numerical
methods ”searching for discrete numerical values that approach the exact solution” [6].

Another branch of numerical methods recently appeared are the spectral methods
developed by D. Gottieb and S. Orszag in 1970, based on the use of a finite expansion
of certain eigenfunctions obtained from the Sturm-Liouville problem [7–10]. This devel-
opment gives a high level of precision which is superior to the other mentioned methods,
thus, it requires a small number of grid points to get the desired precision [11]. Another
advantage of these methods is that they are less intensive in terms of time and mem-
ory compared to finite elements, but they become less precise if we consider problems
with complex geometry. These approaches are applicable for the resolution of different
problems such as the resolution of ODEs, linear and nonlinear PDEs and eigenvalue
problems [10,12–14].

In this work, we develop an efficient numerical method basing on a coupling of spectral
methods and finite differences schemes. The model problem is posed with perturbed
boundary conditions of Robin type, so that we can apply a Legendre-Galerkin approach
according to the spatial variable and a Cranck-Nicolson scheme according to the temporal
one. The way in which the conditions are perturbed makes it possible to compare the
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obtained approximation and the exact solution of the same problem with the Dirichlet
boundary conditions.

The structure of this paper is as follows. In Section 2, we remind some preliminar-
ies and essential tools required for the elaboration of the presented study. Next, the
model problem is presented in Section 3 with the adaptative variational formulation, the
existence and uniqueness of the solution are also proved. In Section 4, we outline the
principle of the presented approach and we study its convergence and give an estimation
of the error of approximation. Then, in the same section, the implementation of the
proposed technique and the coupling with the finite differences scheme are exposed to
obtain the final system to solve. Section 5 addresses the proof of the efficiency of the
algorithm via different numerical examples by showing the convergence of the approxi-
mation to the analytic solution of the classic problem with the homogeneous Dirichlet
boundary conditions, when ε reaches zero.

2 Preliminaries

Let I = (−1, 1). We define

L2(I) = {v ; v is mesurable on I and ∥v∥ < +∞}.

The scalar product is ⟨u, v⟩ = (u, v)L2 =
∫
I
u(x)v(x) dx, and the norm is defined by

∥v∥L2 = (v, v)
1
2

L2 .
For every positive m, we define the Sobolev space by

Hm(I) =

{
v ;

∂kv

∂xk
∈ L2(I), 0 ≤ k ≤ m

}
,

and the standard semi-norm and norm are |v|L2 =
∥∥ ∂v
∂x

∥∥
L2 ; ∥v∥Hm =

∑m
k=0

∥∥∥ ∂kv
∂xk

∥∥∥
L2

.

Let (H1(−1, 1))∗ be the dual space of H1(−1, 1) with a norm defined by

∥g∥H1∗ = sup
v∈H1(I)

v ̸=0

⟨g, v⟩
∥v∥H1

.

Thus, and since ∥v∥L2 ≤ C∥v∥H1 for all v ∈ H1(I), we can write

∥g∥H1∗ ≤ C∥g∥L2 . (1)

We denote by PN the space of polynomials of degree that is less than or equal to N .
Let Ln(x) ; x ∈ I be the standard Legendre polynomial of degree n. The family of
Legendre polynomials Lk(x)k∈N constitutes a Hilbert basis of L2(I) and they are solutions
of the following differential Legendre equation:(

1− x2
)
L

′′

n(x)− 2xL
′

n(x) + n (n+ 1)Ln(x) = 0, n ≥ 0.

The polynomial Ln(x) is of degree n for all n ∈ N, and the coefficient of its highest degree

term is
(2n)!

2n(n!)2
. They satisfy

∀n ̸= m ∈ N,
∫ 1

−1

Ln(x)Lm(x) x. = 0 and

∫ 1

−1

L2
n(x) x. =

2

2n+ 1
.
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The Legendre polynomials satisfy the following recurrence relations [9]:

Ln(1) = 1 and Ln(−x) = (−1)nLn(x) =⇒ Ln(−1) = (−1)n,

(n+ 1)Ln+1(x)− (2n+ 1)xLn(x) + nLn−1(x) = 0, n ≥ 1,

(2n+ 1)Ln(x) = L
′

n+1(x)− L
′

n−1(x), n ≥ 1.

3 The Model Problem

We consider the advection-diffusion-reaction problem with mixed Robin-type boundary
conditions disturbed with a small parameter ε,

∂u

∂t
(t, x) + α

∂u

∂x
(t, x)− β

∂2u

∂x2
(t, x) + λu(t, x) = f(t, x); −1 < x < 1, t > 0,

u(t,−1)− ε
∂u

∂x
(t,−1) = 0;

u(t, 1) + ε
∂u

∂x
(t, 1) = 0,

(2)

where ε ∈]0, 1], and u(0, x) = u0 = g(x) is a given initial condition.
In this study, we focus on the case where the reaction, advection and diffusion coefficients
are scalars. Let α ∈ R, β ∈ R∗

+ and λ ∈ R.
Multiplying the equation of problem (2) by v which depends only on x, and integrating

by parts on I, we obtain∫ 1

−1

∂u

∂t
v(x) dx+ β

∫ 1

−1

∂u

∂x

dv

dx
dx+ α

∫ 1

−1

∂u

∂x
(t, x)v(x) dx+ λ

∫ 1

−1

u(t, x)v(x) dx

=∫ 1

−1

f(t, x)v(x) dx+ β

[
∂u

∂x
v(x)

]1
−1

.

The boundary conditions give

∂u

∂x
(−1) =

u(−1)

ε
,

∂u

∂x
(1) = −u(1)

ε
.

Hence the weak formulation of the problem (2) is{
Find u(t) ∈ H1(I) such that

d

dt
⟨u(t), v⟩+ a(u(t), v) = ⟨f(t), v⟩,

(3)

with the initial condition u(0) = g(x) and where

a(u(t), v) =β

∫ 1

−1

∂u

∂x
(t, x)

dv

dx
(x) dx+ α

∫ 1

−1

∂u

∂x
(t, x)v(x) dx+ λ

∫ 1

−1

u(t, x)v(x) dx

+
β

ε
(u(1)v(1) + u(−1)v(−1)). (4)
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Theorem 3.1 Let T > 0 be a final time, g ∈ L2(I) be an initial data and a(., .) be
the bilinear form given in (4). The following problem has a unique solution
u ∈ L2(]0, T [;H1(I)) ∩ C([0, T ];L2(I)):

d

dt
⟨u(t), v⟩+ a(u(t), v) = ⟨f(t), v⟩, ∀v ∈ H1(I), 0 < t < T,

u(t = 0) = g(x).
(5)

In addition, we have

1

2

∫ 1

−1

u2(x, t) dx+ β

∫ t

0

∫ 1

−1

∣∣∣∣∂u∂x (s, x)
∣∣∣∣2 dxds+ λ

∫ t

0

∫ 1

−1

u2(s, x) dx ds

+
α

2

∫ t

0

(u2(s, 1)− u2(s,−1)) ds+
β

ε

∫ t

0

(u2(s, 1) + u2(s,−1)) ds

=
1

2

∫ 1

−1

u2(0, x) x. +

∫ t

0

∫ 1

−1

f(s, x)u(s, x) dx ds.

This leads to the following energy estimate:

∥u∥2C([0,T ];L2(I)) +m∥u∥2L2(]0,T [;H1(I)) ≤ C
(
∥u0∥2L2 + ∥f∥2L2([0,T ];L2(I))

)
. (6)

Proof. It is clear that a(., .) is a symmetric bilinear form. So, we prove the continuity
and coercivity to ensure the existence and uniqueness.

The continuity is ensured by using the Cauchy-Schwarz inequality and the fact that

| u(±1) | ≤ sup
x∈[−1,1]

| u(x) | = ∥u∥L∞ .

So, ∃δ > 0, δ = θ + |α|+ 2β

ε
such that

∀u(t), v ∈ H1(I) | a(u(t), v) |≤ δ∥u(t)∥H1∥v∥H1

for θ = max
λ∈R, β∈R∗

+

{β, |λ|}.

The coercivity is also ensured. In fact, we have

a(u(t), u(t)) ≥ β

∥∥∥∥∂u∂x (t)
∥∥∥∥2
L2

+
α

2

(
u2(t, 1)− u2(t,−1)

)
+ λ∥u(t)∥2L2 .

So

• If α ≥ 0 and λ ≥ 0, we have M = min
λ∈R, β∈R∗

+

{β, λ} > 0 such that

∀u(t) ∈ H1(I), a (u(t), u(t)) ≥ M∥u(t)∥2H1 .

• If α ≥ 0 and λ ≤ 0, we have M = β > 0 and η = β − λ such that

a(u(t), u(t)) + η∥u(t)∥2L2 ≥ M∥u(t)∥2H1 , ∀u(t) ∈ H1(I).
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• If α < 0 and λ ≥ 0, we have η = −α

2
and M = min

λ∈R, β∈R∗
+

{β, λ} > 0 such that

a(u(t), u(t)) + η∥u(t)∥2L2 ≥ M∥u(t)∥2H1 , ∀u(t) ∈ H1(I).

• If α < 0 and λ ≤ 0, we have η = β − α

2
− λ and M = β such that

a(u(t), u(t)) + η∥u(t)∥2L2 ≥ M∥u(t)∥2H1 , ∀u(t) ∈ H1(I).

Hence the existence and uniqueness of the solution of the problem (5) is proved.
For the second equality, by integrating the formula (3) on [0,t] and for all t ∈ [0, T ], we
obtain the energy equality (6).

Using the previous energy equality and posing σ = min
β∈R∗

+,λ∈R
{β, λ}, we have

1

2
∥u(t)∥2L2 + σ

∫ t

0

∥u(s)∥2H1 ds+
α

2

∫ t

0

(u2(s, 1)− u2(s,−1)) ds

≤ 1

2
∥u0∥2L2 +

∫ t

0

∥f(t)∥L2∥u(s)∥L2 ds+
2β

ε

∫ t

0

∥u∥2H1 ds.

And from Young’s algebraic inequality, there exists k > 0 such that

∥u(t)∥2L2 + 2

(
σ − k − 2β

ε

)∫ t

0

∥u(s)∥2H1 ds+ α

∫ t

0

(u2(s, 1)− u2(s,−1)) ds

≤ ∥u0∥2L2 +
1

2k

∫ t

0

∥f(s)∥2L2 ds.

By a simple calculation, we show

∥u(t)∥2L2 + 2

(
σ − k − 2β

ε
− α

2

)∫ t

0

∥u(s)∥2H1 ds ≤ ∥u0∥2L2 +
1

2k

∫ t

0

∥f(s)∥L2 ds.

And the desired energy estimate (6) is obtained for m = 2

(
σ − k − 2β

ε
+

α

2

)
and

C = max
k≥0

{
1,

1

2k

}
.

4 Legendre-Galerkin Approximation for the Advection-Diffusion-Reaction
Equation

Let N be a positive integer, we consider

LN = [{L0, L1, . . . , LN}].

We define the finite dimensional space VN included in the space H1(I) by

VN = {v ∈ LN such that v(−1)− εv′(−1) = 0 and v(1) + ε v′(1) = 0}.

Then the Legendre spectral scheme for (3) is{
Find uN (t) ∈ VN such that

d

dt
⟨uN (t), vN ⟩+ a(uN (t), vN ) = ⟨f(t), vN ⟩; ∀ vN ∈ VN .

(7)
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At this stage, we choose as the basis functions for VN a family of polynomials constructed
from the orthogonal Legendre polynomials given as

φk(x) = Lk(x) + akLk+1(x) + bkLk+2(x); k = 0, 1, 2, . . . , (8)

where ak and bk are the coefficients that can be determined once φk verifies the boundary
conditions of the problem (2). Then, for k ≥ 0 and ε > 0, we obtain

ak = 0; bk = −
1 +

ε

2
k(k + 1)

1 +
ε

2
(k + 2)(k + 3)

.

Since the elements of the polynomial family {φk}k are linearly independent, we have
VN = [{φ0, φ1, . . . , φN−2}], and the desired approximation can be written as

uN (t, x) =

N−2∑
k=0

uk(t)φk(x). (9)

4.1 Convergence and error estimation

Theorem 4.1 Let uN be the solution of the problem (7). There exists a constant C
which depends on M and does not depend on N so that for any t > 0, we have

∥uN (t)∥2L2 +M

∫ t

0

∥uN (s)∥2L2 ds ≤ ∥uN (0)∥2L2 + C

∫ t

0

∥f(s)∥2L2 ds. (10)

Proof. By taking v = uN (t), in the problem (7), we obtain for every t > 0,

1

2

d

dt
∥uN (t)∥2L2 + a(uN (t), uN (t)) = ⟨f(t), uN (t)⟩L2 .

From the coercivity of the bilinear form a(., .) and by making use of Young’s algebraic
inequality, we obtain

d

dt
∥uN (t)∥2L2 +M∥uN (t)∥2L2 ≤ 1

M
∥f(t)∥2L2 . (11)

Finally, we integrate the expression (11) for t ∈ [0, T ] to have (10) with uN (0) = g(x)

and the constant C =
1

M
does not depend on N .

Now, to show the convergence of the proposed spectral method, we introduce the
following theorem. First, we define the function e by e(t) = RNu(t)− uN (t), where

RN : H1(I) −→ VN ; ∥u−RNu∥H1 −−−−−−→
N → +∞

0, ∀u ∈ H1(I).

Theorem 4.2 Let u be the solution of the problem (5) and uN be the solution of the
problem (7). Then we have the following error estimation:

∥e(t)∥2 +M

∫ t

0

∥e(s)∥2H1(−1,1) ds

≤ ∥e(0)∥2 + C

∫ t

0

∥∥∥∥∂u∂t −RN
∂u

∂t

∥∥∥∥2
H1∗

ds+ δ

∫ t

0

∥(u−RNu)∥2H1 ds,

where C and δ are two constants not depending on N .
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Proof. We can write (cf. Chapter 6 in [9])

1

2

d

dt
∥e∥2 +M∥e∥2H1 ≤

∣∣∣∣⟨∂u∂t −RN
∂u

∂t
, e⟩+ a(u−RNu, e)

∣∣∣∣ . (12)

From the continuity of a(., .) and the formula (1), we have∣∣∣∣⟨∂u∂t −RN
∂u

∂t
, e⟩+ a(u−RNu, e)

∣∣∣∣ ≤ ∥e∥H1

(
C

∥∥∥∥∂u∂t −RN
∂u

∂t

∥∥∥∥
H1∗

+ δ∥u−RNu∥H1

)
.

By replacing the latter inequality in (12) and integrating for t > 0, we obtain the desired
estimate.

4.2 Implementation

In order to solve the problem (7), we start by substituting the approximation given in
(9) and defined using the spectral basis (8). By taking the test functions vN as the basis
function, the spectral scheme becomes, for all j = 0, N − 2,

d

dt

N−2∑
k=0

uk(t)⟨φk, φj⟩+
N−2∑
k=0

uk(t)a(φk, φj) = ⟨f(t), φj⟩.

So

⟨φk, φj⟩ =
∫ 1

−1

φk(x)φj(x) dx, ⟨f(t), φj⟩ =
∫ 1

−1

f(t, x)φj(x) dx.

a(φk, φj) =β

∫ 1

−1

φ′
k(x)φ

′
j(x) dx+ λ

∫ 1

−1

φk(x)φj(x) dx+ α

∫ 1

−1

φ′
k(x)φj(x) dx

+
β

ε
(φk(1)φj(1) + φk(−1)φj(−1)).

Then we obtain the matrix form

d

dt
AU(t) +BU(t) = C(t), (13)

where U(t) = (u0(t), · · · , uN−2(t))
T
is the vector of the unknown coefficients and A and

B are the (N − 1)× (N − 1) matrices defined by

Akj = ⟨φk, φj⟩, Bkj = a(φk, φj) and C(t) = (⟨f(t), φ1⟩, · · · , ⟨f(t), φN−2⟩)T .

To solve the obtained system of ordinary differential equations (13), we propose a scheme
of Crank-Nicolson. For this, we discretize the domain [−1, 1] using a constant step ∆x
and the time domaine [0, T ] is discretized by a step ∆t. We denote by Un

i the value of
the solution U at node xi and at time tn and we write the scheme as follows:

(A+
∆t

2
B)Un+1

i = (A− ∆t

2
B)Un

i +
∆t

2
(C(tn) + C(tn+1)); U0

i = (g(x))i, (14)

where (g(x))i is the value of g(x) in each node xi of the discretization of [−1, 1].
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5 Numerical Results

In order to test the performance of the described method, we propose three examples
on [−1, 1], where we solve numerically the equation (2) and show the convergence of the
approximate solution, when ε reaches zero, to the analytic solution of the problem with
boundary conditions of Dirichlet type.

The figures are obtained for Nx = 16 nodes in the domain [−1, 1], and 100 nodes
in the time domain [0, T ]. The error of the approximation, in the case where the Robin
boundary conditions are considered, is calculated for ε fixed, according to the following
formula:

error = ∥uN − uN+2∥∞; N = 2, 4, . . . , 2ℓ, . . . (15)

Example 5.1 We consider the problem posed in (2) with α = λ = 0, β = 1, f(t, x) =
0, T = 3 and the initial condition is given by u(0, x) = cos(π2x). For the homogeneous
Dirichlet boundary conditions, the analytic solution is given by

u(t, x) = exp(−π2

4
t) cos(

π

2
x). (16)

In Figure 1, we observe the convergence of the obtained approximate solution, when
taking the decreasing values of ε, to the analytic solution (16). The values of ε are taken
between 0.08 and 0.0025 when t = 1.5 and between 0.25 and 0.04 when x = 0.2, to show
that its behaviour remains the same all over the domain [−1, 1] at different instances of
time.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.005
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0.015
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0.025

0.03

0.035

0.04

sol. anal.

sol. approx. ǫ=0.08

sol. approx. ǫ=0.05

sol. approx. ǫ=0.025

sol. approx. ǫ=0.0025

.
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1
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sol. approx. ǫ=0.25

sol. approx. ǫ=0.18

sol. approx. ǫ=0.1

sol. approx. ǫ=0.04

.

Figure 1: The behavior of the solution of (14) for t = 1.5 (left), and for x = 0.2 (right), when
ε reaches 0 and N = 6.

Example 5.2 We consider, in (2), α = 0, λ = 0.001, β = 1, T = 3. The initial con-
dition is given by u(0, x) = sin(πx). For the case of the homogeneous Dirichlet boundary
conditions, the analytic solution is given by

u(t, x) = sin(πx) exp(−λt). (17)

In Table 1, the error of approximation (15) is calculated for N = 10 at different points
from [−1, 1] using different values of ε. The obtained results show that the numerical
solution of (14) converges to the exact solution of the problem with the homogeneous
Dirichlet boundary conditions when ε approaches zero. The variations of the error of
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approximation (15) are given in Figure 2 as a function of N for fixed ε = 0.5. We mention
here that the error of approximation is calculated for N = 42 and is 8.129410e− 10.

x ε = 0.1 ε = 0.01 ε = 0.001 ε = 0.0001

−1.000000 2.847374 · 10−1 3.100927 · 10−2 3.128715 · 10−3 3.131517 · 10−4

−0.600000 1.708432 · 10−1 1.860373 · 10−2 1.874042 · 10−3 1.845087 · 10−4

−0.200000 5.693988 · 10−2 6.194439 · 10−3 6.184256 · 10−4 5.532692 · 10−5

0.066665 1.897638 · 10−2 2.061521 · 10−3 2.030002 · 10−4 1.532227 · 10−5

0.466667 1.328897 · 10−1 1.448028 · 10−2 1.467799 · 10−3 1.536447 · 10−4

0.866667 2.467852 · 10−1 2.688325 · 10−2 2.717881 · 10−3 2.774053 · 10−4

Table 1: The error of approximation as a function of x for N = 10.
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Figure 2: Logarithmic approximation error as a function of N with ε = 0.5.

Example 5.3 We consider, in (2), α = 0.3, β = 0.1, λ = −0.15, f(t, x) = 0 and
T = 1.The initial condition is given by u(0, x) = cos(π x

2 ).

Figure 3 presents, on the left side, the variations of the error as a function of N
taking ε = 0.1. We see the decrease in the error curve with the growth of N . Note
that the error for N = 80 is 2.460133e− 06. The same behavior of the error is depicted
in Figure 4 for ε = 0.001. Moreover, on the right side, for the same value of ε and for
N = 18, we represent the approximate solution of the problem. Finally, in Table 2, we
show different values of the approximation error calculated according to the formula (15)
and for ε = 0.001.
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Figure 3: Logarithmic approximation error as a function of N for ε = 0.1 (on the left), and
approximate solution of (2) for ε = 0.1 and N = 18 (on the right).
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Figure 4: Logarithmic approximation er-
ror as a function of N for ε = 0.001.

N error

2 1.009365 · 10−3

4 1.364608 · 10−4

6 9.846206 · 10−6

8 3.931209 · 10−6

10 2.996409 · 10−7

12 1.075871 · 10−6

14 7.827772 · 10−8

16 1.304010 · 10−6

18 2.071257 · 10−6

20 5.646181 · 10−8

Table 2: Error values as a function of N
for ε = 0.001.

6 Conclusion

In this work, a combined algorithm of numerical methods is proposed for treating the
advection-diffusion-reaction equation posed with the Robin boundary conditions per-
turbed with a small parameter ε. The technique is based on a Legendre-Galerkin method
devoted to the spatial descretization and a Crank-Nicolson scheme to treat the obtained
temporal system. The results obtained show high accuracy and good behavior, especially
when comparing the approximate solution to the analytical solution of the problem posed
with homogeneous boundary conditions allowing us to obtain the solution of the problem
treated for different types of boundary conditions. The presented study offers a new ac-
curate technique to approximate the solution of a partial differential equation which can
be applied to approximate the solution of reaction-diffusion systems, where the explicit
solution is unknown.
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1 Introduction

The purpose of this paper is to examine if it is possible to solve the following two functions:
{u(x, t), f(t)} fulfilling the fractional parabolic equation that follows:

CDα
t u−∆u+ βu+ u3 = f(t)g(x, t), x ∈ Ω, t ∈ (0, T ), (1)

with the initial condition
u(x, 0) = 0, x ∈ Ω, (2)

the boundary condition
u(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ], (3)

and the non-local condition∫
Ω

v(x)u(x, t)dx = E(t), t ∈ [0, T ], (4)

where ∂Ω is taken to be a regular boundary of a bounded domain Ω in Rn. There are
two known functions, g and E, and a positive constant, β.

Numerous real-world situations naturally give rise to inverse issues for the heat equa-
tions, see [1–3]. The integral condition (4) provides further information about how to
solve the inverse problem in this case. The integral condition is a crucial modeling tool
in the theory of PDEs in physics and engineering [4–9]. It is important to remember
that integral over-determination processes may not always be successful in addressing
non-local challenges [10,11]. Numerous approaches to solving issues brought on by non-
local issues have been put out thus far. The type of the involved non-local boundary
value dictates the chosen method [12–14]. Numerous authors have studied the inverse
parabolic problem and its unique solvability, focusing on conditions of type (4), see for
example, [2, 3, 15–18]. The existence and uniqueness of inverse problem solutions for
different parabolic equations with unknown source functions have also been the subject
of several studies. Reversing problems with a parabolic equation’s determination term
and over-determination condition were also considered in [19,20].

Fractional differential equations (FDEs) are created by generating differential equa-
tions to any desired order [21–25]. Because fractional differential equations are used to
simulate complicated phenomena, they are significant in the fields of engineering, physics,
and applied mathematics [26,27]. Because of this, engineers and scientists have shown a
growing interest in them in recent years. Since FDEs have memory and non-local relations
in space and time, they can be used to simulate complex phenomena [28–33]. Herein, the
tools, which will be used in our investigation, are the energy inequality method and the
fixed point theorem. The structure of the energy inequality approach can be summed up
as follows:

• First, we write the problem in the form of an operational equation

Lu = F, u ∈ D(L),

where a Banach space E is considered, and the operator L is studied from it to a
suitable Hilbert space F .

• The a priori estimate for the operator L is then established.

• Next, we establish the density of this operator’s collection of values in space F.

The results of the previous procedure will help us in investigating the existence, unique-
ness and continuous dependence of the problem at hand.
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2 Functional Spaces

When it comes to inverse coefficient problems for time fractional parabolic equations un-
der integral over-determination conditions, functional spaces are essential tools for delv-
ing into intricate mathematical difficulties. Unknown coefficient identification becomes a
difficult challenge when studying dynamic systems governed by partial differential equa-
tions, which gives rise to these problems. Function spaces are used in this study to give
the inverse coefficient superlinear problem a comprehensive framework for analysis and
solution. We shall include some definitions and lemmas pertaining to our study in the
sections that follow. Let us clarify the conventions and notations we will use:

g∗(t) =

∫
Ω

g(x, t) · v(x)dx, Q = Ω× (0, T ). (5)

• The left Caputo derivative is given by

cDα
t u :=

1

Γ(1− α)

∫ t

0

∂u(x, τ)

∂τ

1

(t− τ)α
dτ. (6)

• The left Riemann-Liouville derivative is given by

RDα
t u :=

1

Γ(1− α)

∂

∂t

∫ t

0

u(x, τ)

(t− τ)α
dτ. (7)

• The right Riemann-Liouville derivative is given by

R
t D

αu(x, t) :=
1

Γ(1− α)

∂

∂t

∫ T

t

u(x, τ)

(t− τ)α
dτ. (8)

Because the Caputo version is easier to handle under homogenous initial conditions,
several authors contend that it is more natural. A direct calculation can confirm the link
between the two concepts (6) and (7) as follows:

rDα
t u = cDα

t u+
u(x, 0)

Γ(1− α)tα
. (9)

Definition 2.1 [34] For each real α > 0, we define the space lHα
0 (I) as the closure

of C∞
0 (I) with regard to the norm ∥u∥lHα

0 (I)
as follows:

∥u∥lHα(I)
:=
(
∥u∥2L2(I) + |u|2lα

H0(I)

) 1
2

, (10)

where
|u|2lHα(I)

=
∥∥R
0 D

α
t u
∥∥
L2(I)

.

Definition 2.2 For each real α > 0, the space rHα
0 (I) is defined as the closure of

C∞
0 (I) with regard to the norm ∥u∥rHα

0 (I)
as follows:

∥u∥rHα
0 (I)

:=
(
∥u∥2L2(I) + |u|2rHα

0 (I)

) 1
2

, (11)

where
|u|2rHα

0 (I)
:=
∥∥R
t ∂

α
Tu
∥∥2
L2(I)

.
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Lemma 2.1 [8, 34] If u ∈ lHα(I) and v ∈ C∞
0 (I) for any real α ∈ R+, then(

RDα
t u(t), v(t)

)
L2(I)

=
(
u(t),Rt D

αv(t)
)
L2(I)

.

Lemma 2.2 [8, 34] For 0 < α < 2, α ̸= 1, u ∈ H
α
2
0 (I), we have

RDα
t u(t) =

RD
α
2
t

RD
α
2
t u(t).

Lemma 2.3 [8, 34] For α ∈ R+, the semi-norms |.|lHα(I)
, |.|rHα(I)

and |.|cHα(I)
are

equivalent, for which α ̸= n+ 1
2 . Thus, we have

|u|lHα(I)
∼= |.|rHα (I)

∼= |.|cHα(I)
.

Lemma 2.4 The space lHα
0 (I) is complete for every real α > 0 with respect to the

norm (10).

Definition 2.3 The space of square functions, in the Bochner sense, integrated with
the scalar product is represented by L2 (0, T, L2(0, d)), and it is given by

(u,w)L2(0,T,L2(0,d)) =

∫ T

0

(u,w)L2(0,d)dt. (12)

3 The Direct Fractional Parabolic Problem’s Solvability

One of the fundamental aspects of a more general study of inverse coefficient super-linear
problems related to time fractional parabolic equations under integral over-determination
conditions is the solvability of the direct fractional parabolic problem. Understanding
the forward dynamics regulated by partial differential equations is essential for compre-
hending the behavior of the underlying systems, and this is achieved through the study
of direct fractional parabolic problems.

3.1 Problem setting

In the rectangular domain Q = (0, d)× (0, T ), where d, T < ∞ and 0 < α < 1, we will
examine the existence and uniqueness of solution u = u(x, t) to the following fractional
parabolic problem:

cDα
t u−

(
∂2u(x,t)

∂x2

)
+ βu+ u3 = f̃(x, t) in Q,

u(x, 0) = 0, ∀x ∈ (0, d),
u(0, t) = u(d, t) = 0, ∀t ∈ (0, T ),

whose fractional parabolic equation is nonlinear and provided as follows:

Lu = cDα
t u− ∂2u

∂x2
+ βu+ u3 = f̃

with the initial condition
ℓu = u(x, 0) = 0, ∀x ∈ (0, d)

and
u(0, t) = u(d, t) = 0, ∀t ∈ (0, T ),
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where f̃ is a known function and b ∈ R+
∗ .

Within this segment, we exhibit the existence and uniqueness of the solution for the
problem (1)-(3) as a resolution of the subsequent operator equation

Lu = F , (13)

for which L = (L, ℓ), and the domain of definition D(L) = B that can be outlined as

D(L) =

{
u\u ∈ L2(Q) ∩ L4(Q), cDα

t u,
∂u

∂x
∈ L2(Q)

}
.

The operator L is defined in the space between B and F , where B is the Banach
space containing all functions u(x, t) with a finite norm of the form

∥u∥2B =
∥∥∥cD α

2
t u
∥∥∥2
L2(Q)

+

∥∥∥∥dudx
∥∥∥∥2
L2(Q)

+ ∥u∥2L2(Q) + ∥u∥4L4(Q),

and F is the Hilbert space consisting of all Fourier elements (f, 0) such that the norm
L2(Q) is finite.

Theorem 3.1 For each function u ∈ B, we have the inequality

∥u∥B ≤ C∥Lu∥L2(Q), (14)

where C is a positive constant independent of u.

Proof. We now employ the function Mu = u(x, t) together with the scalar product
in L2(Q) of (1), where Q = (0, d)x(0, T ). Consequently, we can have∫

Q

Lu ·Mudxdt =

∫
Q

cDα
t u(x, t) · u(x, t) dxdt−

∫
Q

(
∂2u(x, t)

∂x2

)
· u(x, t) dxdt

+ b

∫
Q

u2(x, t) dxdt+

∫
u4(x, t) dxdt

=

∫
Q

f(x, t)u(x, t) dxdt.

(15)

Due to u(x, 0) = 0, and by using Lemmas 2.1, 2.2 and 2.3, we get∫
Q

cDα
t u(x, t) · u(x, t)dxdt =(cDα

t u(x, t), u(x, t))L2(Q)

=
(
RD

α
2
t

RD
α
2
t u(x, t), u(x, t)

)
L2(Q)

=
(
RD

α
2
t u(x, t),Rt D

α
2 u(x, t)

)
L2(Q)

= |u|2cHα(Q)
∼= |u|2lHα(Q)

=
∥∥∥CD α

2
t u
∥∥∥2
L2(Q)

.
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With the use of the relationship (|ab| ≤ εa2

2 + b2

2ε ) coupled with the integral by parts, we
obtain

∥CD
α
2
t u∥2L2(Q) + ∥du

dx
∥2L2(Q) + (b− ε

2
)∥u∥2L2(Q) + ∥u∥4L4(Q) ≤

1

2ε
∥f∥2L2(Q).

So, for ε ≤ 2b, we can have

∥cD
α
2
t u∥2L2(Q) + ∥du

dx
∥2L2(Q) + ∥u∥2L2(Q) + ∥u∥4L4(Q) ≤ c∥f∥2L2(Q)

with

c =
1

2εmin
(
1, b− ε

2

) .
Consequently, we get

∥u∥B ≤ C∥Lu∥L2(Q),

where C =
√
c.

Proposition 3.1 There is a closure for the operator L from B to F .

Proof. Consider (un)n∈N ⊂ D(L) is a sequence in which un→0 in B, and Lun→F in
F . Herein, we should show f ≡ 0. To this end, we notice that in B, the convergence of
un to 0 causes

un→0 in (C∞
0 (Q))

′
. (16)

Given the continuity of the fractional derivative, the continuity distribution of the func-
tion u2, and 162 derivation of the first order of (C∞

0 (Q))
′
in (C∞

0 (Q))
′
as a special case

of the fractional derivative, the relationship (16) involves

Lun→0 in (C∞
0 (Q))

′
. (17)

Furthermore, in L2(Q), the convergence of Lvn to f yields

Lvn→f in (C∞
0 (Q))

′
. (18)

Due to the limit in (C∞
0 (Q))

′
is unique, we may infer from (17) and (18) that f ≡ 0.

Therefore, the operator L is closeable.
We will define D(L̄) as the domain of definition of L̄ and let L̄ be the closure of L in

the material that follows.

Definition 3.1 Problem (1)–(3) has a strong solution, which is the operator equation

L̄u = F .

Furthermore, we may expand the previous estimate to a strong solution, meaning we
would get the estimate

∥u∥B ≤ C∥L̄u∥F , ∀u ∈ D(L̄). (19)

Corollary 3.1 Problem (1)–(3) has a unique strong solution that is constantly de-
pendent on f ∈ F .

Corollary 3.2 The closure of R(L) and the range R(L̄) of the operator L̄ in F are
equal, i.e.,

R(L̄) = R(L).
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Proof. First, if the solution exists, we will show that it is unique. For this purpose,
we assume that u1 and u2 are two solutions such that η = u1 − u2. So, η will satisfy

cDα
t η(x, t)−

(
∂2η(x,t)

∂x2

)
+ bη(x, t) + u3

1 − u3
2 = 0, in Q,

η(x, 0) = 0, ∀x ∈ (0, d),
η(x, t) = 0, ∀(x, t) ∈ ∂Ω× (0, T )

·

,

for which
cDα

t η(x, t)−
(
∂2η(x, t)

∂x2

)
+ bη(x, t) + u3

1 − u3
2 = 0, in Q. (20)

Using the scalar product of (20) and η in L2(Ω), we obtain∫
Ω

cDα
t η(x, t) · η(x, t)dx−

∫
Ω

(
∂2η(x, t)

∂x2

)
· η(x, t) dx+ b

∫
Ω

η2(x, t) dx

+

∫
Ω

(u3
1 − u3

2)(u1 − u2) dx = 0.

Due to η(x, 0) = 0, with the use of Lemmas 2.1, 2.2 and 2.3 together with integrating by
parts, we obtain

∥cD
α
2
t η∥2L2(Ω) + ∥dη

dx
∥2L2(Ω) + ∥η∥2L2(Ω) +

∫
Ω

(u3
1 − u3

2)(u1 − u2)dx = 0. (21)

The last item on the left-hand side of equation (21) is positive since λ3 is a monotone
function in λ (on Ω = (0, d)), and this leads to the following conclusion from equation
(20):

∥η∥2L2(Ω) ≤ 0,

which implies u1 = u2 for all tϵ(0, T ). We will now go back and illustrate the result we
discuss. To this end, we let z ∈ R(l). Thus, there exists a sequence (zn)n∈N in R(L), for
which limn zn = z. So, just as (zn)n∈N in R(L), ∃ (un)n∈N in D(L), for which Lun = zn.
Assume that E , n ≥ n0, and m,m′ ∈ N, m ≥ m′, for which um and um′ satisfy

Lum = f and Lum′ = f.

We put y = um − um′, then y satisfies
cDα

t y(x, t)−
(

∂2y(x,t)
∂x2

)
+ by(x, t) + u3

m − u3
m′ = 0, in Q,

y(x, 0) = 0, ∀x ∈ (0, d),
y(x, t) = 0, ∀(x, t) ∈ ∂Ω× (0, T )

.

Using the same method we employed to demonstrate the solution’s uniqueness, we can
now obtain y = 0. This suggests that for every t ∈ (0, T ), we obtain

0 ≤ ∥um − um′∥ ≤ 0,

i.e.,
∀ε ≥ 0, ∃n0 ∈ N, ∀m,m′ ≥ n0, ∥um − um′∥ ≤ ε.

Therefore, since E is a Banach space and (un)n∈N is a Cauchy sequence, there exists
u ∈ E such that limn un = u. With the use of the definition of L̄ (limn un = u in
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E; given that limn un = limn zn = u, limn L̄un = z since L̄ is closed, implying that
L̄u = z), we find that the function u satisfies u ∈ D(L̄), for which L̄u = z. Thus, we
have z ∈ R(L̄), and so we obtain

R(L) ⊂ R(L̄).

We also conclude that it is closed since R(L̄) is Banach. It remains to show that this is
not the case. For this purpose, we assume that z ∈ R(L̄). Then, given the elements of
the set R(L̄), there exists a sequence of (zn)n in F such that

lim
n

zn = z.

Therefore, a matching sequence (un)n∈N exists such that

lim
n

L̄un = zn.

However, we have a Cauchy sequence in F , which is (un)n∈N. Thus, u ∈ E exists such
that

lim
n

un = u in E.

Consequently, we have limn L̄un = z. As a consequence, z ∈ R(L), and then we obtain

R(L) = R(L̄).

4 Existence of Solution

In order to prove that the solution exists, we show that for every u ∈ B and for any
arbitrary F = (f, 0) ∈ F , R(L) is dense in F .

Theorem 4.1 The problem (1)-(3) has a solution.

Proof. The definition of F ’s scalar product is

(Lv,W )F =

∫
Q

Lv · wdxdt, (22)

where W = (w, 0) in D(L). Set w ∈ (R(L))⊥, and the result is∫
Q

cDα
t u(x, t)w(x, t)dxdt−

∫
Q

(
∂2u(x, t)

∂x2

)
w(x, t)dxdt+ b

∫
Q

u(x, t)w(x, t)dxdt

+

∫
Q

u3(x, t) · w(x, t)dxdt = 0.

Letting w = u yields∫
Q

cDα
t u(x, t) · u(x, t) dx dt−

∫
Q

(
∂2u(x, t)

∂x2

)
· u(x, t) dx dt+ b

∫
Q

u2(x, t) dx dt

+

∫
Q

u4(x, t) dx dt = 0.
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After accounting for the condition of u and integrating by parts each term of (4), we get

∥∥∥cD α
2
t u
∥∥∥2
L2(Q)

+

∥∥∥∥dudx
∥∥∥∥2
L2(Q)

+ b∥u∥2L2(Q) + ∥u∥4L4(Q) = 0.

So, we get

∥∥∥cD α
2
t u
∥∥∥2
L2(Q)

+ b∥u∥2L2(Q) + ∥u∥4L4(Q) = −
∥∥∥∥dudx

∥∥∥∥2
L2(Q)

≤ 0.

Then, we have

∥u∥2L2(Q) ≤ 0.

Consequently, u = 0 in Q, providing w = 0 within Q, and this completes the proof.

5 Solvability of the Main Problem

We assume that the functions that show up in the problem’s data are quantifiable and
meet the following conditions:{

g ∈ C
(
(0, T ), L2(Ω)

)
, v ∈ W 1

2 (Ω) ∩ L4(Ω), E ∈ W 2
2 (0, T ),

∥g(x, t)∥ ≤ m, |g∗(t)| ≥ r > 0, for r ∈ R, (x, t) ∈ Q
.

The following linear operator provides the relationship between f and u:

A : L2(0, T ) → L2(0, ) (23)

such that

(Af(t)) =
1

g∗

{∫
Ω

du

dx

dv

dx
dx+

∫
Ω

u3(x, t) · v(x)dx
}
. (24)

Consequently, for the function f over L2(0, T ), the previous relationship between f and
u may be expressed as a second-order linear equation. In other words, we have

f = Af +W, (25)

where

W =
Dα

t

α + βE

g∗
, (26)

and E(0) = 0.

Theorem 5.1 Presume that the condition (H) is validated by the data functions (1)-
(4) of the inverse problem. Then we have the equivalent of the following statement:

1. If the inverse problem (1)-(4) can be solved, then equation (25) can be solved as
well.

2. The inverse problem (1)-(4) has a solution if equation (25) has a solution and the
compatibility requirement E(0) = 0 holds.
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Proof. Assume that problem (1)-(4) can be solved. We denote its solution as {u, f}
in this instance. Now, after integrating the outcomes over Ω and multiplying both sides
of (1) by v, the following is obtained:

cDα
t

∫
Ω

u(x, t) · v(x)dx+

∫
Ω

du

dx

dv

dx
dx+ β

∫
Ω

u(x, t) · v(x)dx

+

∫
Ω

u3(x, t) · v(x)dx = f(t)g∗(t).

(27)

By applying (4) and (24), we obtain

f = Af +
βE + cDα

t E

g∗
.

It is still necessary to demonstrate that u fulfills the integral over-determination condition
(4). The function u is subject to the following relation by equation (27):

cDα
t E +

∫
Ω

du

dx

dv

dx
dx+ βE +

∫
Ω

u3(x, t) · v(x)dx = f(t)g∗(t). (28)

Equation (27) is subtracted from equation (28) to obtain

cDα
t

∫
Ω

u(x, t) · v(x)dx+ β

∫
Ω

u(x, t) · v(x)dx = cDα
t E + βE. (29)

We determine that u meets the integral condition (4) by integrating the preceding equa-
tion and accounting for the compatibility constraint E(0) = 0. Consequently, we may
infer that the solution to the inverse problem (1)-(4) is {u, f}.

Lemma 5.1 If (H) is true, then A is a contracting operator in L2(0, T ) for some
positive δ.

Proof. Based on (24), the following estimate can be inferred

|Af(t)|2 ≤ 2

r2

[∥∥∥∥dudx
∥∥∥∥2
L2(Ω)

∥∥∥∥dvdx
∥∥∥∥2
L2(Ω)

+ ∥u∥6L4(Ω)∥v∥
2
L4(Ω)

]
.

Now, we suppose ∥u∥2L∞(0,T,L4(Ω)) = Υ ≥ 0. Then we obtain

|Af(t)|2 ≤ 2

r2

[∥∥∥∥dudx
∥∥∥∥2
L2(Ω)

∥∥∥∥dvdx
∥∥∥∥2
L2(Ω)

+Υ∥u∥4L4(Ω)∥v∥
2
L4(Ω)

]
.

Now, integrating the previous inequality over (0, T ) yields∫ T

0

|Af(t)|2dt

≤ 2

r2
max

(∥∥∥∥dvdx
∥∥∥∥2
L2(Ω)

, γ∥v∥2L4(Ω)

)[∫ T

0

∥∥∥∥dudx
∥∥∥∥2
L2(Ω)

dt+

∫ T

0

∥u∥4L4(Ω)

)
dt

]
.

(30)
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Consequently, we get

∥Af∥L2(0,T ) ≤ K

[∫ T

0

∥∥∥∥dudx
∥∥∥∥2
L2(Ω)

dt+

∫ T

0

∥u∥4L4(Ω)

)
dt

] 1
2

,

for which

K =

√√√√ 2

r2
max

(∥∥∥∥dvdx
∥∥∥∥2
L2(Ω)

, Y ∥v∥2L4(Ω)

)
.

After removing a few terms and applying the a priori estimate, we now have

∥du
dx

∥2L2(Q) + ∥u∥4L4(Q) ≤ C∥f∥2L2(Q).

Thus, we have

∥Af∥L2(0,T ) ≤ δ∥f∥L2(0,T ), (31)

where δ = K
√
C. The previous relation indicates that there exists a positive δ such

that δ ≤ 1. Hence, the operator A is a contracting mapping on L2(0, T ), as shown by
inequality (31).

Theorem 5.2 If the compatibility condition and assumption (H) are met, then there
is only one solution {u, f} to the inverse problems (1)-(4).

Proof. It is evident that there is only one solution f for equation (25) in L2(0, T ).
It is established by Lemma 2.3 that there is a solution to the inverse problem (1)-(4).
We still need to prove that this approach is unique. However, suppose that the inverse
problem under consideration has two distinct solutions, {u1, f1} and {u2, f2}. Now, the
theorem on the uniqueness of the solution of the main direct problem (1)-(3) produces
z1 = z2 if the linear operator A contracts on L2(0, T ) from Lemma 5.1, resulting in
f1 = f2.

Corollary 5.1 The solution f to equation (25) is continuously dependent on the data
W , under the presumptions of Theorem 5.1.

Proof. Let us assume two data sets that meet the conditions of Theorem 5.1: ω and
v. For each set of data, ω and v, let f and g represent the solutions to equation (25),
respectively. Now, based on (25), we can have

f = Af + v, g = Ag + ω.

In this regard, it is necessary to compute f − g. When utilizing (31), it is evident that

∥f − g∥L2(0,T ) = ∥(Af + v)− (Ag + ω)∥L2(0,T ) ≤ δ∥f − g∥L2(0,T ) + ∥v − ω∥L2(0,T ).

Consequently, we get

∥f − g∥L2(0,T ) ≤
1

1− δ
∥v − ω∥L2(0,T ).
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6 Discussion

When the initial condition is homogeneous, the inverse problem of finding the right-hand
side of a nonlinear fractional parabolic equation with an integral over-determination
condition has been examined. Theoretical analysis has been conducted for this inverse
problem. This study has established the conditions for the problem’s existence, unique-
ness, and continuous dependence on data. The work done in this paper can therefore
be continued from a variety of intriguing angles in numerical analysis, particularly with
regard to creating efficient numerical techniques that are compliant with integrative type
non-local conditions and considering how to solve the same problem but with incompat-
ible initial conditions.
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Abstract: In this paper, we study the one-dimensional space fractional convection-
diffusion problem by using a finite difference method. First, we give the mathematical
model of our first initial boundary value problem. In the second step, we develop the
discretization of the mathematical model and the development of the scheme for the
fractional order type linear diffusion equation. For this scheme, the stability as well
as convergence are studied via the Fourier method. At the end, the solutions of some
numerical examples are discussed and represented graphically using Matlab. Finally,
error analysis shows that the algorithm is convergent.
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1 Introduction

In this study, we consider the one-dimensional space fractional convection-diffusion
problem of Caputo type of order 0 < α < 1, which is used in the modeling of chemical
convection-diffusion. Several techniques for numerical resolution of this type of equation
have been studied by several authors [1] - [5]. In most of these techniques, either the
solutions of the integrer order differential equation versions of the given problem or the
fractional differential equations with initial conditions and boundary conditions are used.
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The rest of this paper is organized as follows. The following section describes the
mathematical model. Sections 2 and 3 introduce model equations and discretization of
the mathematical model and development of the scheme. Stability of the approximate
scheme is illustrated and described in Section 4. Section 5 describes the convergence
of the approximate scheme. Finally, in Section 6, two applications of this technique are
given to solve a one-dimensional space fractional convection-diffusion model, numerically.

2 Mathematical Model

We establish a novel mathematical model consisting of a one-dimensional space fractional
convection-diffusion problem defined in Ω = [0;L] and 0 < α ≤ 1 by

∂u (x, t)

∂t
= −c (x)

∂u (x, t)

∂x
+ d (x)

∂αu (x, t)

∂xα
+ p (x, t) , (x, t) ∈ Ω×]0,T[, (1)

with the boundary conditions

u(0, t) = u(L, t) = 0, x ∈ ∂Ω, (2)

and the initial condition

u (x, 0) = f0(x), x ∈ Ω. (3)

3 Discretization of the Mathematical Model and Development of the Scheme

The present study deals with the discretization of the mathematical model which de-
scribes the one-dimensional space fractional convection-diffusion problem. First, we dis-
cretise the domain [L,R]. We define

xi = x0 + ih, and tj = t0 + jk, ∀i = 0, 1, . . . ,M and ∀j = 0, 1, . . . , N, (4)

k represents the time step size and h represents the space step length.

Let us assume that

u (xi, tj) = uj
i , p (xi, tj) = pji , c (xi) = ci, d (xi) = di, f0 (xi) = f0,i. (5)

uj
i is the numerical approximation of u (xi, tj) .

The Caputo fractional order derivative is formulated by the structure

∂αu (x, t)

∂xα
=

{
1

Γ(1−α)

∫ x

0
uξ(ξ,t)
(x−ξ)α dξ if 0 < α ≤ 1,

ux (x, t) if α = 1.
(6)

Initially, as the boundary value problem needs to be discretized to be able to solve
(1), it is first necessary to discretize the order space-fractional derivative.
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The operator
(

∂u
∂ξ

)s

i+1
is approximated by the following formula

(
∂u

∂ξ

)s

i+1

=
us
i+1 − us

i

h
+R (h) . (7)

According to (6) and (7), we get

∂αu (xi+1, tj)

∂xα
=

h−α

Γ(2− α)

[
uj
i+1 − uj

i +

i∑
n=1

(
uj
i−n+1 − uj

i−n

)
Bj

i+1 (n)

]
, (8)

where

Bj
i+1 (n) = (n+ 1)

1−α) − n1−α, j = 0, 1, . . . , N − 1. (9)

Then, we use the forward difference approximation of time derivative is follows :

∂u(xi+1, tj)

∂t
=

uj+1
i+1 − uj

i+1

k
+R (k) . (10)

Using approximations (8) and (10), and the linear convection-diffusion equations (1)–
(3), we obtain

−
(
1 + Ci

Ai

)
uj+1
i+1+

(
1 +

1

Ai

)
uj
i+1=−Ci

Ai
uj+1
i +uj

i−
i∑

n=1

(
uj
i−n+1−uj

i−n

)
Bj

i+1 (n)+
k

Ai
pji ,

(11)

i = 1,M, j = 1,N,

with the boundary conditions

uj
0 = uj

M , j = 0,N− 1, (12)

and the initial condition

u (xi) = f0,i, i = 0, 1, . . . ,M, where Ai =
di+1kh

−α

Γ(2− α)
and Ci =

ci+1k

h
. (13)

4 Stability of the Approximate Scheme

In this section, we use the method of Fourier analysis to discuss the stability of the
approximate scheme (11)–(13). Assume that the solution of the equations (11)–(13) has
the form

uj
i = ζie

ντhj , i = 0, 1, . . . ,M, where τ =
2πm

L
and ν2 = −1. (14)

After that, we get

ζi+1 =
ζi

(
1− Ci

Ai
eντh

)
−
∑i

n=1 (ζi−n+1 − ζi−n)B
j
i+1 (n)[

−
(

1+Ci

Ai

)
eντh +

(
1 + 1

Ai

)] , i = 0,M− 1. (15)
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Theorem 4.1 The scheme (11)–(13) is unconditionally stable for 0 < α ≤ 1 if

max
0≤i≤M−1

∣∣∣∣∣∣ 3− Ci

Ai
eντh

−
(

1+Ci

Ai

)
eντh +

(
1 + 1

Ai

)
∣∣∣∣∣∣ < 1. (16)

Proof. We use the proof by recurrence for i = 1, in view of (11)–(13),

|ζ1| =

∣∣∣∣∣∣
ξ0

(
1− C0

A0
eντh

)
[
−
(

1+C0

A0

)
eντh +

(
1 + 1

A0

)]
∣∣∣∣∣∣ ,

≤ T |ζ0| ≤ |ζ0| (17)

where T =

∣∣∣∣ 1−C0
A0

eντh

−
(

1+C0
A0

)
eντh+

(
1+ 1

A0

) ∣∣∣∣ < 1.

We assume that the statement is true :

|ζi| ≤ |ζ0|, i = 1,M (18)

and we prove that the statement is true :

|ζi+1| ≤ |ζ0|, i = 0,M− 1. (19)

Then, we obtain

|ζi+1| =

∣∣∣∣∣∣
ζi

(
1− Ci

Ai
eντh

)
−
∑i

n=1 (ζi−n+1 − ζi−n)B
j
i+1 (n)[

−
(

1+Ci

Ai

)
eντh +

(
1 + 1

Ai

)]
∣∣∣∣∣∣ ,

≤

∣∣∣∣∣∣
ζi

(
1− Ci

Ai
eντh

)
+
∣∣∣∑i−1

s=0 ζs+1 − ζs

∣∣∣[
−
(

1+Ci

Ai

)
eντh +

(
1 + 1

Ai

)]
∣∣∣∣∣∣ ,

≤

∣∣∣∣∣∣ 3− Ci

Ai
eντh

−
(

1+Ci

Ai

)
eντh +

(
1 + 1

Ai

)
∣∣∣∣∣∣ |ζ0| ,

≤ max
0≤i≤M−1

∣∣∣∣∣∣ 3− Ci

Ai
eντh

−
(

1+Ci

Ai

)
eντh +

(
1 + 1

Ai

)
∣∣∣∣∣∣ |ζ0| ,

≤

 max
0≤i≤M−1

∣∣∣∣∣∣ 3− Ci

Ai
eντh

−
(

1+Ci

Ai

)
eντh +

(
1 + 1

Ai

)
∣∣∣∣∣∣
 |ζ0| ,

≤ |ζ0| . (20)

Finally, the approximate scheme (11)–(13) is unconditionally stable.

5 Convergence of the Approximate Scheme

We start by selecting the following Fourier analysis to discuss the convergence of numer-
ical schemes (11). Now, assume that

Rj
i = Eie

µηhj and Ej
i = u(xi, tj)− uj

i , i = 0,M, j = 0,N, (21)
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where η = 2πm
L and µ2 = −1.

After that, we get

Ri+1 =
Ri

(
1− Ci

Ai
eντh

)
−
∑i

n=1 (Ri−n+1 −Ri−n)B
j
i+1 (n) + ζi[

−
(

1+Ci

Ai

)
eντh +

(
1 + 1

Ai

)] , i = 0,M− 1. (22)

Theorem 5.1 The scheme (11)–(13) is convergent for 0 < α < 1 if

max
0≤i≤M−1

 1∣∣∣−(
1+Ci

Ai

)
eντh +

(
1 + 1

Ai

)∣∣∣ ,
∣∣∣∣∣∣ 3− Ci

Ai
eντh

−
(

1+Ci

Ai

)
eντh +

(
1 + 1

Ai

)
∣∣∣∣∣∣
 < 1. (23)

Proof. We use the proof by recurrence for i = 1, in view of (11)–(13),

|R1| =

∣∣∣∣∣∣
R0

(
1− C0

A0
eντh

)
+ ζ0[

−
(

1+C0

A0

)
eντh +

(
1 + 1

A0

)]
∣∣∣∣∣∣

≤ T (|R0|+ |ζ0|) ≤ |R0|+ |ζ0| , (24)

where T ∗ = max

{
1∣∣∣−(

1+C0
A0

)
eντh+

(
1+ 1

A0

)∣∣∣ ,
∣∣∣∣ 1−C0

A0
eντh

−
(

1+C0
A0

)
eντh+

(
1+ 1

A0

) ∣∣∣∣} < 1.

We assume that the statement is true :

|Ri|+ |ζi| ≤ |R0|+ |ζ0| , ∀i = 1,M, (25)

and we prove that the statement is true :

|Ri+1|+ |ζi+1| ≤ |R0|+ |ζ0| , ∀i = 0,M− 1. (26)

By the convergence of the series on the right-hand side,

∃T ∗ > 0 |R0|+ |ζ0| ≤ T ∗ (k + h) , i = 0,M− 1. (27)

Then

|Ri+1| =

∣∣∣∣∣∣
Ri

(
1− Ci

Ai
eντh

)
−
∑i

n=1 (Ri−n+1 −Ri−n)B
j
i+1 (n) + ζi[

−
(

1+Ci

Ai

)
eντh +

(
1 + 1

Ai

)]
∣∣∣∣∣∣ ,

≤

∣∣∣∣∣∣
Ri

(
1− Ci

Ai
eντh

)
+
∣∣∣∑i−1

s=0 Rs+1 −Rs

∣∣∣+ ζi[
−
(

1+Ci

Ai

)
eντh +

(
1 + 1

Ai

)]
∣∣∣∣∣∣ ,

≤

∣∣∣∣∣∣ 3− Ci

Ai
eντh

−
(

1+Ci

Ai

)
eντh +

(
1 + 1

Ai

)
∣∣∣∣∣∣ |Ri|+

1∣∣∣−(
1+Ci

Ai

)
eντh +

(
1 + 1

Ai

)∣∣∣ |ζi| ,
≤

∣∣∣∣∣∣ 3− Ci

Ai
eντh

−
(

1+Ci

Ai

)
eντh +

(
1 + 1

Ai

)
∣∣∣∣∣∣ |R0|+

1∣∣∣−(
1+Ci

Ai

)
eντh +

(
1 + 1

Ai

)∣∣∣ |ζ0| ,
≤ C max

0≤i≤M−1

 1∣∣∣−(
1+Ci

Ai

)
eντh +

(
1 + 1

Ai

)∣∣∣ ,
∣∣∣∣∣∣ 3− Ci

Ai
eντh

−
(

1+Ci

Ai

)
eντh +

(
1 + 1

Ai

)
∣∣∣∣∣∣
 ,

≤ C ′ ≤ (k + h) , (28)
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where the constant C ′ is given by C ′ = |R0| + |ζ0|. Finally, the scheme (11)–(13) is
convergent.

6 Numerical Simulation

In this section, we provide illustrative simulations that demonstrate the theoretical
aspects related to stability and convergence of the fractional convection-diffusion.

Example 1. Consider the space-fractional diffusion type of problem :

∂u (x, t)

∂t
= Γ (1.2)xα ∂

αu (x, t)

∂xα
+
(
6x3 − 3x2

)
e−t, (x, t) ∈ Ω×]0,T[, (29)

with the boundary conditions u (0, t) = u (1, t) = 0, x ∈ ∂Ω, and the initial condition
u (x, 0) = x2 − x3, x ∈ Ω. The exact solution u (x, t) =

(
x2 − x3

)
e−t, (x, t) ∈ Ω×]0,T[.

The problem (29) is unconditionally stable and convergent if

∥d∥∞ ≤ hαΓ (2− α)

k
. (30)

Figure 1: The right figure represents the numerical solution of u (x, t) for α = 0.93,N =
100, while the left figure represents the exact solution.

Example 2. In the second example, we consider the space-fractional diffusion type
of problem :

∂u (x, t)

∂t
= x

1
5
∂u (x, t)

∂x
+ x

1
100

∂αu (x, t)

∂xα
+

e−2t

(
2 (x− xα)− Γ (α) +

Γ (α+ 1)

Γ (α)
xα−1 − 1

)
, (31)

with (x, t) ∈ Ω×]0,T[ and the boundary conditions u (0, t) = u (1, t) = 0, where
x ∈ ∂Ω and the initial condition u (x, 0) = xα − x, x ∈ Ω. The exact solution
u (x, t) = e−2t (xα − x) , (x, t) ∈ Ω×]0,T[. In this example, we present different nu-
merical experiments to support the theoretical and numerical analyses of the previous
sections. The problem (31) is unconditionally stable and convergent.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 24 (6) (2024) 575–581 581

Figure 2: The right figure represents the numerical solution of u (x, t) for α = 0.8,N =
100, while the left figure represents the exact solution.

7 Conclusion

In this paper, the one-dimensional space fractional convection-diffusion problem with
initial and boundary conditions in a bounded domain is studied by using a finite difference
method. The fractional derivative is approximated by the finite difference approximations
for space derivatives and Caputo’s concept for time-fractional derivatives. Two numerical
examples with the known exact solutions are considered to validate theoretical results
and demonstrate the accuracy of the method proposed in this paper.

References

[1] Q.M. Al-Mdallal, M.A. Hajji and T. Abdeljawad. On the iterative methods for solving
fractional initial value problems: new perspective. J. Fract. Calculus Nonlinear Syst. 2 (1)
(2021) 76–81.

[2] C. Tadjeran and M. M. Meerschaert. A second-order accurate numerical method for the
two dimensional fractional diffusion equation. J. Comput. Phys. 220 ( 2007) 813–823.

[3] I. Podlubny. I. Fractional Differential Equations: An Introduction to Fractional Deriva-
tives, Fractional Differential Equations, to Methods of Their Solution and Some of Their
Applications. Elsevier: New York, NY, USA, Vol. 198, 1998.

[4] K. Wang and H. Wang. A fast characteristic finite difference method for fractional advec-
tion–diffusion equations. Adv. Water. Resour 34 (2011) 810–816.

[5] C. Li, and F. Zeng. Finite difference methods for fractional differential equations, Int. J.
Bifurcat. Chaos, 22 (2012) 1230014.

[6] R. J. LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equations.
SIAM: Philadelphia, PA, USA, Vol. 98, 2007.



Nonlinear Dynamics and Systems Theory, 24 (6) (2024) 582–593

Inducing Chaos through Timescales in a Three-Species

Food Chain Model

Khadidja Daas ∗ and Nasreddine Hamri

Laboratory of Mathematics and Their Interactions,
Departement of Mathematics, Boussouf Abdelhafid University Center,

Mila, Algeria

Received: April 1, 2024; Revised: November 2, 2024

Abstract: Over time, considerable attention has been devoted to understanding the
complex dynamics of simplified ecosystems containing three trophic levels, revealing
that complex behaviors can arise from a simple hierarchy between prey, predator,
and top predator. In this study, the extension of a three-species food chain model
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1 Introduction

A shift in focus towards understanding three-species systems resulted from the recogni-
tion that two-species systems are insufficient [7]. In seminal works, it has been demon-
strated that models with three or more species can capture complex oscillatory dynamics
within certain parameter ranges [4], [11], [8]. However, earlier studies of three-trophic
level systems did not account for intraspecific rivalry at higher trophic levels, i.e., in
top predators or predators. Thus, it was necessary to consider the potential impact
of this rivalry on the system’s dynamic properties. In a recent study, Peet et al. [1]
added square terms to the equations for top predators and predators, thereby expanding
Hastings-Powell’s model. They demonstrated the importance of intraspecific rivalry in
the evolution of chaotic trajectories by showing the coexistence of a chaotic attractor and
a period-one cycle. They also showed how enhancing intraspecific competition among top
predators can stabilize the system and pull it out of a chaotic state. Nevertheless, a crit-
ical component was absent from earlier research: the examination of various timescales
at various trophic levels. Therefore, it is crucial that the modeling technique takes these
various timelines into consideration. The system becomes singularly perturbed by adding
several timescales, and geometric singular perturbation theory can be used to evaluate
the system mathematically. This approach was first used by Rinaldi and Muratori [9] to
examine slow-fast cycles in a three-species system on two timescales. They carried on
more research and showed that species with slow, intermediate, and fast variables might
cohabit oscillatory. In Hastings-Powell’s model with several timescales, this was accom-
plished by employing singular perturbation techniques. Including several timescales can
reveal far more complex dynamics like relaxation oscillations and canard cycles. These
dynamics provide important new information for researching the occurrence of intricate
chaotic oscillations. In our analysis, we used the method described in [6] to include
three distinct timescales: slow, intermediate, and fast, and we divided the system into
slow, intermediate, and fast subsystems. We investigated the three-species food chain
model [10]. The results of each subsystem were then concatenated in order to look into
the possibility of solitary slow-intermediate-fast cycles. Because of the intricacy of the
model, numerical simulations were used to show that a homoclinic orbit exists inside
a subsystem of the entire system. In the whole system, period-doubling cascades to
chaos were seen simultaneously. The dynamics of the system changed either gradually
or abruptly, depending on the degree of intraspecific rivalry among top predators. As
a result, our research provides a possible framework for identifying and evaluating cru-
cial changes that may cause an ecosystem to drastically change. This paper delves into
the intricacies of a tri-trophic food web model, dissecting its dynamics and behaviors.
Starting with the concept of a dimensionless model, the exploration seamlessly transi-
tions to a meticulous reformulation of the three-species model using two dimensionless
positive timescale parameters. In the subsequent section, the focus extends to a linear
investigation and dynamic features. Equilibrium points are explored within the context
of our study, contributing to a comprehensive understanding. Simultaneously, a detailed
stability analysis is conducted, unraveling the nuanced intricacies. Moving through the
paper, attention shifts to the dynamics of the subsystems, providing a granular perspec-
tive on their interplay and significantly contributing to the overall comprehension of the
tri-trophic food web model. The exploration takes an intriguing turn in the final sec-
tion, where chaos becomes the focal point. Introducing Lyapunov exponents as a lens
to understand chaos, the paper concludes with an examination of the gradual entry into
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chaos. Through this meticulously organized framework, the aim is to provide a holistic
understanding of the tri-trophic food web model and its dynamic nuances.

2 A Tri-Trophic Food Web Model

2.1 Dimensionless model

The system under investigation in this work represents a mathematical model of a three-
level food chain, which was transformed into a dimensionless model in [10]. The second
order Holling pattern and the Crowley-Martin type functional response are combined in
this food chain to form a hybrid type of organism.

dX1

dT
= a1X1

(
1− X1

K

)
− cX2X3

X1 +D
,

dX2

dT
= −a2X2 +

c1X1X3

X1 +D1
− c2X2X3

1 + dX2 + bX3 + bdX2X3
,

dX3

dT
= −mX3 +

c3X2X3

1 + dX2 + bX3 + bdX2X3
,

(1)

where the population densities of the prey, predator, and top predator, respectively, as
a function of time T are represented by the variables X1(T ), X2(T ), and X3(T ).

As shown in Table 1, the model (1) is distinguished by the existence of 12 control
parameters that regulate the behavior of the system.

Parameter Description
a1 The prey’s intrinsic growth rate in the absence of predators
K The prey’s carrying capacity
D Prey environmental protection
D1 Predator environmental protection
c The maximum rate of prey reduction per capita
c1 Similar to c, the maximum rate of prey reduction per capita

c2, c3 Characteristics of the Crowley-Martin type functional response
b Parameter assessing predator interference
a2 Intermediate predator death rate X2

m Top predator death rate X3

Table 1: Tri-trophic level food chain model parameters.

We simplified this model, ignoring dimensional considerations, to make the mathe-
matical analysis easier. Table 2 contains dimensionless representations of the variables
and parameters, where the first line represents the dimensionless variables, and the sec-
ond line represents the corresponding environmental values.

t x1 x2 x3 c4 c5 c6 c7 c8 c9 c10 c11 c12

a1T
X1

K
cX2

a1K
cc2X3

a2
1dK

D
K

a2

a1

c1
a1

D1

K
a1b
c2

a2
1bdK
cc2

c
a1dK

c
a1

c3
a1d

Table 2: Variables and parameters without dimensions.
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As a result, we derived a dimensionless system characterized by nine parameters as
detailed below:

dx1

dt
= x1

[
(1− x1)−

x2

x1 + c4

]
= x1g1(x1, x2),

dx2

dt
= x2

[
−c5 +

c6x1

x1 + c7
− x3

x2 + (c8 + c9x2)x3 + c10

]
= x2g2(x1, x2, x3),

dx3

dt
= x3

[
−c11 +

c12x2

x2 + (c8 + c9x2)x3 + c10

]
= x3g3(x2, x3).

(2)

2.2 Reformulation of the three-species model

We employ two dimensionless positive timescale parameters, β1 and β2, to rescale the
three-species model (2), with 0 < β1, β2 ≪ 1. The rescaling is done so that the growth
rate of the predator is O(β1), and the growth rate of the top predator is O(β2). We
reformulate the model (2) as follows after making this adjustment:

dx1

dt
= x1

[
(1− x1)−

x2

x1 + c4

]
= x1g1(x1, x2),

dx2

dt
= β1x2

[
−c5 +

c6x1

x1 + c7
− x3

x2 + (c8 + c9x2)x3 + c10

]
= β1x2g2(x1, x2, x3),

dx3

dt
= β2x3

[
−c11 +

c12x2

x2 + (c8 + c9x2)x3 + c10

]
= β2x3g3(x2, x3).

(3)
The system’s fast, intermediate, and slow variables, denoted by the values x1, x2, and

x3, respectively, reflect the dimensionless densities of prey, predators, and top predators.
By putting the transformation τ1 = β1t into (3), we may define the system and obtain
the following results:

β1
dx1

dτ1
= x1g1(x1, x2),

dx2

dτ1
= x2g2(x1, x2, x3), β1

dx3

dτ1
= β2x3g3(x2, x3), (4)

and after additional changes τ2 = β2t, we obtain

β2
dx1

dτ2
= x1g1(x1, x2), β2

dx2

dτ2
= β1x2g2(x1, x2, x3),

dx3

dτ2
= x3g3(x2, x3), (5)

t, τ1, and τ2, the dimensionless time variables, represent the fast, intermediate, and
slow time scales, respectively. We divide the system into subsystems and use geometric
singular perturbation theory to study the dynamics of each one. For the systems (3),
(4), and (5), a typical solution trajectory consists of segments corresponding to slow,
intermediate, and fast processes. The total solution for the system is then obtained by
concatenating the solutions of each subsystem (3). We initially investigate the impact of
several time scales on the local dynamics of the system (3) before breaking it down into
its component subsystems.

3 Linear Investigation and Dynamic Features

3.1 Equilibrium points

The number of non-negative equilibrium points in the system described by equation (3)
can only be four. Table 3 summarizes the outcomes of the equilibrium point values and
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associated conditions.

Equilibrium point Values and conditions
P0 Trivial equilibrium point: (0, 0, 0)
P1 One-species equilibrium point: (1, 0, 0)
P2 Two-species equilibrium point: (x̃1, x̃2, 0), where x̃1 and x̃2

are:
x̃1 = c5c7

c6−c5
x̃2 = (1− x̃1)(x̃1 + c4)
Existence condition: 0 < c5c7

c6−c5
< 1

P3 Equilibrium point of coexistence of all three species (x∗
1, x

∗
2, x

∗
3)

where:
x∗
2 = (1− x∗

1)(x
∗
1 + c4)

x∗
3 =

(c12−c11)x
∗
2−c10c11

c11(c8+c9x∗
2)

Implicit equation for x∗
1:

−c5 +
c6x

∗
1

x∗
1+c7

− x∗
3

x∗
2+(c8+c9x∗

2)x∗
3+c10

= 0

Existence conditions: 0 < x∗
1 < 1, 0 < c10c11

c12−c11
< x∗

2

Table 3: Equilibrium points and conditions.

3.2 Stability analysis

Every equilibrium point’s Jacobian matrix was computed, and stability was examined
using each matrix’s characteristic polynomial. Table 4 summarizes the computation’s
findings.

Equilibrium
Point

Jacobian Matrix Eigenvalues

P0

1 0 0
0 −β1c5 0
0 0 −β2c11

 e1 = 1 > 0,

e2 = −β1c5 < 0,

e3 = −β2c11 < 0

P1

−1 −1
1+c5

0

0 β1(
c6

1+c7
− c5) 0

0 0 −β2c11

 e1 = −1

e2 = β1(
c6

1 + c7
− c5)

e3 = −β2c11

P2

 a11 −a12 0
β1a21 β1a22 −β1a23
0 0 β2a33


e0 = β2a33

e1,2(β1) =
a11 + β1a22

2
±

1

2

√
(a11 − β1a22)2 − 4a12a21

Table 4: Table of equilibrium points, Jacobian matrices, and eigenvalues.

Stability results and remarks:

• P0 is always a saddle point.

• For P1:
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– If c5 < c6
1+c7

, then λ2 < 0, and P1 is a saddle point.

– If c5 > c6
1+c7

, then λ2 > 0, and P1 is stable.

• For P2:

– The coefficients of the matrix JP2
are

a11 = 1− 2x̃1 −
c4(1− x̃1)

x̃1 + c4
, a12 =

x̃1

x̃1 + c4
, a21 =

(1− x̃1)(x̃1 + c4)c6c7
(x̃1 + c7)2

,

a22 = −c5 +
c6x̃1

x̃1 + c7
, a23 =

(1− x̃1)
2(x̃1 + c4)

2 + c10(1− x̃1)(x̃1 + c4)

[(1− x̃1)(x̃1 + c4) + c10]2
,

a33 = −c11 +
c12(1− x̃1)

2(x̃1 + c4)
2 + c10c12(1− x̃1)(x̃1 + c4)

[(1− x̃1)(x̃1 + c4) + c10]2

– We select c5 as the bifurcation parameter in order to find the instability thresh-
old for P2. The Hopf bifurcation causes the equilibrium point P2 to lose sta-
bility at c5 = ĉ5, where the real parts of the eigenvalues e1,2 = 0 are located.
We select the parameters discussed in [10] and arrange them in Table 5, taking
into account β1 = 1, β2 = 1.

Parameter c4 c6 c7 c8 c9 c10 c11 c12
Value 0.25 0.8 0.25 0.01 0.1 0.28 0.06 0.25

Table 5: Parameter values.

We find that the real part of the eigenvalues e1,2 equals zero at the value
ĉ5 = 0, 48, from this, we reach the following results:

∗ If c5 < 0, 48, the equilibrium point P2 is unstable.

∗ If c5 > 0, 48, the equilibrium point P2 is stable.

To emphasize these results further, we provide an example, we select two
values for c5, and based on them, we calculate the equilibrium point P2, and
we analyze the stability in each case.

We present the results in Table 6.

c5
Equilibrium

point P2

Jacobian matrix Eigenvalues and
stability

0.25 (0.1136, 0.3223, 0)

−0.1136 −0.3124 0
−0.8254 −0.9374 −1.6603

0 0 −0.3112


0.1283,

− 1.1794,

− 0.3112

P2 is unstable

0.5 (0.4167,0.3889,0)

−0.4167 −0.6250 0
0.300 −1.2500 −1.4950
0 0 −0.3046


− 0.8334 + 0.1181i,

− 0.8334− 0.1181i,

− 0.3046

P2 is stable

Table 6: Stability study results for the dynamical system for two values of c5.
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• The interior equilibrium point P3 = (x∗
1, x

∗
2, x

∗
3):

We address the instability of the inner equilibrium point P3 using a numerical
example due to the intricacy of the equation involving x∗

1. We select the
same set of parameter values with c5 = 0.25, β1 = 1, and β2 = 1 as shown
in Table 5. We use Liu’s criteria to investigate the instability of P3 via the
Hopf bifurcation. Assume that the bifurcation parameter is c11. We obtain
that the matrix JP3

has the characteristic equation as a function of c11: λ
3 +

k1(c11)λ
2 + k2(c11)λ + k3(c11) = 0, where k1(c11) = 0.1412c11 − 0.0084187;

k2(c11) = 7.8822 ∗ 10−6c11 − 0.025663; k3(c11) = 0.00023312 − 0.0038824c11.
We consider Λ(c11) = k1(c11)k2(c11) − k3(c11), according to Liu’s criteria
[12], [3], P3 becomes unstable through the Hopf bifurcation if there exists
a critical value ĉ11 such that k1(ĉ11) > 0, k3(ĉ11) > 0, Λ(ĉ11) = 0, and

dΛ

dc11

∣∣∣∣∣
c11=ĉ11

̸= 0. After selecting the parameter values as previously indicated,

we get ĉ11 = 0.065964. For 0 < c11 < 0.065964, the coexistence equilibrium
P3 is stable; for c11 > 0.065964, it is unstable. We choose β1 = β2 = 1 and
c11 = 0.06 as a specific case. Then P3 = (0.9240, 0.0893, 0.1412) is the only
feasible coexistence equilibrium point. The Jacobian matrix evaluated at P3,
which is denoted as JP3

, is given by

JP3 =

−0.9241 −0.7871 0
0.3912 −1.1659 −2.6884

0 0.2551 −0.2556

 ,

λ3 + k1λ
2 + k2λ + k3 = 0 is the characteristic equation of the matrix JP3 ,

where k1 = 2.3455, k2 = 2.6053, and k3 = 0.9878. Since k1 > 0, k3 > 0,
and k1k2 − k3 = 5.1229 > 0, we may conclude that P3 is stable based on the
Routh-Hurwitz criteria.

Choosing c11 = 0.07 and β1 = 0.7, β2 = 0.49 as another example yields unsta-
ble values P2 = (0.1136, 0.3223, 0) and P3 = (0.9046, 0.1101, 0.1482).

Figures 1, 2, and 3 will be used to illustrate this final example.

(a) (b)

Figure 1: Two trajectories converging to different periodic attractors, (a) Trajectory for
β1 = 0.7, β2 = 0.49, initial point =(0.2, 0.1, 0), (b) Trajectory for β1 = 0.7, β2 = 0.49,
initial point =(0.3, 0.1, 0.001).
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Figure 2: The frequencies of x1, x2, and x3 as a function of time.
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Figure 3: (a) Projection of the trajectory onto the x1x2 plane, (b) Projection of the
trajectory onto the x2x3 plane, (c) Projection of the trajectory onto the x1x3 plane.

In the system, two stable limit cycles coexist: one around the equilibrium point P2

in the x1x2 plane, and the other around P3 in three-dimensional space, illustrating bi-
stability. The trajectories are sensitive to initial conditions, suggesting the possibility of
chaos.

4 Behavior of Subsystems

First, we present the model in the singular limit, that is, in the case when either β1 → 0
or β2 → 0, or both may occur. For 0 < β1 < β2 ≪ 1, the trajectory of the entire system
(3) is a perturbed solution of subsystems. After time is divided into fast, intermediate,
and slow timescales, we list the subsystems of the system (2) in Table 7. Concatenated
slow-intermediate-fast flow, or the solutions of the aforementioned subsystems, make up
the unique trajectory. A schematic example of a unique slow-intermediate-fast cycle
is shown in Figure 4a, which consists of one slow flow segment (the thin black line),
three segments of intermediate flows (the medium blue line), and two segments of fast
flows (the thick red line). The critical manifold of the fast subsystem is the set of all
equilibrium points as follows:

M0 = {(x1, x2, x3) : x1 = 0, x2, x3 > 0}, M1 = {(x1, x2, x3) : g1(x1, x2) = 0, x3 > 0},
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Condition Subsystem

β1 → 0

(Fast)



dx1

dt
= x1

[
(1− x1)−

x2

x1 + c4

]
= x1g1(x1, x2),

dx2

dt
= 0,

dx3

dt
= 0.

β2 → 0, β1 > 0

(Intermediate)



dx1

dt
= 0,

dx2

dt
= β1x2

[
−c5 +

c6x1

x1 + c7
− x3

x2 + (c8 + c9x2)x3 + c10

]
= β1x2g2(x1, x2, x3),

dx3

dt
= 0.

β1, β2 → 0

(Slow)



dx1

dt
= 0,

dx2

dt
= 0,

dx3

dt
= x3

[
−c11 +

c12x2

x2 + (c8 + c9x2)x3 + c10

]
= x3g3(x2, x3).

Table 7: Description of subsystems in the model.

it expressly looks like this M1 = {(x1, x2, x3) : x2 := φ(x2) = (1 − x2)(x2 + c4), x2 >
0, x3 > 0}. There is a fold in this surface, and we can find the fold curve by
C = {(x1, x2, x3) : φ

′(x1) = 0, x2 = φ(x1), x3 ≥ 0}, implying x1,max = 1−c4
2 .

With the exception of the fold curve C, where it loses its hyperbolicity, M1 is hy-
perbolic everywhere. The non-trivial critical manifold M1 = 0 is divided into typically
hyperbolic attracting and repelling sub-manifolds by the fold curve C as follows: M1

a =
{(x1, φ(x1), x3) : x1 > x1,max, x3 ≥ 0} and M1

r = {(x1, φ(x1), x3) : x1 < x1,max, x3 ≥ 0},
respectively. The trivial critical manifoldM0 (x2x3-plane) and the manifoldM1 intersect
at a curve that is described by T1 = {(0, c4, x3) : x3 ≥ 0}.

The transcritical bifurcation curve, T1, splits the plane into hyperbolic sub-manifolds
that are typically repellent and attractive, respectively. Next, the manifold M0’s at-
tracting and repelling sub-manifolds are M0

a = {(0, x2, x3) : x2 > φ(0), x3 > 0}, and
M0

r = {(0, x2, x3) : x2 < φ(0), x3 > 0}, respectively.
For β1, β2, where 0 < β1, β2 ≪ 1, Fenichel’s theorem [5] guarantees the existence of

locally invariant perturbed sub-manifolds, the essential manifolds M0 and M1 have the
sub-manidolds M0

β1,β2
and M1

β1,β2
, respectively, with the exception of the non-hyperbolic

curves C and T1. Additionally, the corresponding attracting M1
a,β1,β2

and repelling

M1
r,β1,β2

sub-manifolds are perturbed by the attracting (M1
a ) and repelling (M1

r ) sub-

manifolds of the critical manifold. Consequently, the perturbed sub-manifolds M0
β1,β2

and M1
β1,β2

dictate the dynamics of the entire system (3) for β1, β2 ̸= 0 locally.

The intermediate subsystem is defined on the manifolds M0 and M1 with x3 =
constant, therefore we analyze the intermediate system in the plane x3 = c′, parallel
to the x1x2-plane. Substituting x3 = c′ in the expression of g3, we obtain an explicit
expression of the non-trivial nullcline of the intermediate subsystem as follows:

x1 =
c5c7(1 + c9c

′)x2 + (c5c7c8 + c7)c
′ + c5c7c10

(c6 + c9(c6 − c5)c′ − c5)x2 + (c6c8 − c5c8 − 1)c′ + c10(c6 − c5)
. (6)

The number of equilibrium points is related to the value c′ and other background
parameters.
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For example, in Figure 4b, we represents that for c′ = 0.1, the system has a unique
unstable equilibrium surrounded by a stable limit cycle.

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0
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0.4

0.45

0.5

x
2

(b)

Figure 4: The dynamics of the subsystems: (a) A schematic representation of the slow-
intermediate-fast cycle for β1 = 0.005 and β2 = 0.0035, (b) The dynamics of the inter-
mediate systems for c = 0.1, β1 = 0.1 and β2 = 0.

Understanding the dynamics generated by the intermediate subsystem of the complete
system is particularly important for certain specific instances. The primary goal of this
work is to examine many chaotic dynamics that the system (3) exhibits and to find out
how the system’s chaotic regimes may be impacted by the various timescales.

5 Dynamical Analysis of Chaos

5.1 Lyapunov exponents

We represented the Lyapunov exponents by assuming two values for β1 and β2 and
obtained the following results.
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Figure 5: (a) Lyapunov exponents for β1 = 1, β2 = 1, (b) Lyapunov exponents for
β1 = 0.1, β2 = 0.05.

Comparison: The presence of this type of Lyapunov exponents in Figure 5a indi-
cates greater complexity in the system’s behavior, where there is local convergence in
one direction with dispersion or chaos in others. This suggests a higher sensitivity of
system (2) to initial conditions compared to the system after temporal segmentation (3),
resulting in a more complex and chaotic behavior. The role of this study using temporal
segmentation becomes evident, as it has made the system’s behavior clearer.
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5.2 Entering chaos gradually

We demonstrate how the timescales parameters affect the chaotic dynamics. Our simu-
lations begin at β1 = β2 = 1 and are progressively decreased to determine the period-
doubling cascade that leads to chaos. In Figure 6a, we note that the species live along
a periodic orbit in the absence of multiple timescales. On the other hand, in Figure
6b, the 1-periodic orbit experiences a period-doubling bifurcation as β1 and β2 decrease,
we achieve a 2-periodic orbit. In Figure 6c, we obtain a 4-periodic orbit. Thus, with
consecutive period-doubling bifurcations, the system becomes chaotic from periodic (see
Figure 6d).

(a)
(b)

(c) (d)

Figure 6: The periodic-doubling bifurcation with varying β1 and β2, (a) Period 1 for
β1 = 1 and β2 = 1, (b) Period 2 for β1 = 0.25 and β2 = 0.125, (c) Period 4 for β1 = 0.2
and β2 = 0.1, (d) Chaos for β1 = 0.1 and β2 = 0.05.

6 Conclusion

The ecological interpretations of the results presented in this paper underscore the im-
portance of understanding the environmental impacts of changes in key parameters of
environmental models. As the reproduction rate of the first predator approaches zero, it
reflects the environmental response of the food chain and predators. Reducing the repro-
duction rate leads to a decrease in the population of the first predator, indirectly affecting
the higher predator, which relies on the first predator as a food source. It is worth noting
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that the environmental effects of these changes are not limited to the individual level but
also extend to the ecosystem level as a whole. Due to the complex interactions between
living organisms and environmental factors, the ecosystem can transition into a state
of chaos, where behavior becomes unpredictable and dynamics are unstable. Therefore,
this research sheds light on the importance of analyzing the environmental impacts of
changes in the key parameters of environmental models and their role in determining the
stability and evolution of ecosystems in the long term.

In summary, this research makes a significant contribution to understanding the envi-
ronmental impacts of changes in ecological systems and identifying factors that influence
their stability. This helps in developing strategies for conserving biodiversity and ensur-
ing environmental sustainability.
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1 Introduction

Indonesia is currently experiencing very rapid technological developments compared to
those of several years ago. This is proven by many new innovations emerged in developing
technology in Indonesia. The very rapid development of technology also affects daily
activities [1]. For example, in the fields of business, health and socio-culture. Online
media provide information very quickly because the need for information continues to
increase. Therefore, many of us use the internet to access information from information
providers [2].

One of the influences of increasingly advanced technology is in transactions in the
online shopping or e-commerce business sector. E-Commerce is all activities related to
transactions or trades carried out using electronic devices and internet networks and is
better known as online commerce or online buying and selling [3], [4]. This activity is
one of the activities never separated from daily life because the online buying and selling
activities create wider opportunities for traders and buyers, starting from production re-
quests, goods demand up to reachability not only between sub-districts but also between
cities, provinces and even between countries [5].

The e-commerce system makes it easier for someone to make online transactions, but
behind all the convenience gained, there are also negative things arising from e-commerce,
for example, many people have bought products, but when the product reaches the
buyer’s hands, it does not actually match what is stated in the product information,
starting from color, size, to the estimated date of delivery. So, commonly, people are
now still confused about which e-commerce company is the best to minimize the worry
that comes with online transactions. For that reason, a Decision Support System (DSS)
is needed [6], [7]. DSS is a computer-based system that makes it easy to produce an
objective decision from several alternatives and interconnected criteria [8].

It is necessary to carry out a selection using a decision support system to help speed
up the selection process by algorithmic logic or appropriate methods so that the results
obtained have a high level of accuracy. In this research, the selection of the best e-
commerce was conducted by applying the SAW method. Based on previous studies, the
SAW method has often proven useful to other researchers in completing their investiga-
tions. Using the SAW method can provide accurate assessments based on the criteria
values and preference weights determined by the researchers. The SAW method can
also select the best alternative from several existing alternatives because of the ranking
process after determining the weights for each attribute [9], [10], [11].

In the research conducted in [12], a fuzzy logic approach was applied in determining
computer specifications for a complete computer package, according to the needs of each
buyer, in terms of both brand and fuzzy logic such as processor speed, hard disk capacity,
memory capacity, monitor size, power supply size, and VGA size. The results of testing
the system, with 10 sample users, showed an accuracy of 68%.

2 Research Method

This research was conducted in Semarang. The method used was Simple Addtive Weight-
ing (SAW).
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2.1 The simple additive weighting (SAW)

The SAW (Simple Additive Weighting) method is often called the weighted sum method.
The basic concept of the SAWmethod is to find a weighted sum of performance ratings for
each alternative on all attributes. The SAW method requires the process of normalizing
the decision matrix (x) to a scale that can be compared with all existing alternative
ratings [13].

rij

{ xij

Max xij
if j : atribute of benefit,

Min xij

xij
if j : atribute of cost,

(1)

where rij is the normalized performance rating, Max is the maximum value of each row
and column, Min is the minimum of each row and column, xij are the rows and columns
of a matrix.

Here, rij is the normalized performance rating of alternative Ai on attribute Ci; i =
1, 2, . . . ,m and j = 1, 2, . . . , n. The preference value for each alternative (Vi) is given as

Vi =

n∑
j=1

wjrij . (2)

A larger Vi value indicates that alternative Ai is more selected.

2.2 The SAW method procedure

1. Determine the criteria to be used as a reference in decision making, namely Ci.

2. Determine the suitability rating of each alternative for each criterion.

3. Create a decision matrix based on criteria (Ci), then normalize the matrix based
on equations adjusted to the type of attribute.

4. The final result is obtained from the ranking process, namely the sum of the mul-
tiplication of the normalized matrix R with the weight vector, so that the largest
value is selected as the best alternative (Ai) as a solution.

3 Results and Discussion

3.1 Determining alternative

The process of determining alternatives is carried out by giving questionnaires directly
to random e-commerce customers in the city of Semarang. And the results obtained are
as shown in the following tables.

Table 1 shows the alternative names or e-commerce used in selecting online shopping
applications.

3.2 Determining criteria

The criteria used in selecting e-commerce are shown in Table 2.
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Alternatives Codes
Blibli A1

Bukalapak A2

Lazada A3

Shopee A4

Tokopedia A5

Table 1: Alternatives.

Criteria Ci Description
C1 Appearance
C2 Choice of product/fiture
C3 Access speed
C4 Service
C5 Promo
C6 Delivery

Table 2: Criteria used to select e-commerce.

Value Rating Scale
1 Very unsatisfied
2 unsatisfied
3 Fairly satisfied
4 Satisfied
5 Very satisfied

Table 3: Rating scale.

3.3 Rating scale

The researchers provide values/rating scale for all existing alternatives. The rating scale
is shown in Table 3.

Next, each criterion with its given weight is shown in Table 4.

Criteria Ci Description Weight
C1 Appearance 10%
C2 Selected product/fitures 20%
C3 Access speed 15%
C4 Service 15%
C5 Promo 25%
C6 Delivery 15%

Table 4: Weight criteria.
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3.4 Case example

Case example :
The authors will determine which e-commerce is most popular among the public using
several criteria, that is, appearance, choice of products/features, speed of access, service,
promos and delivery.

Figure 1: Hierarchy of determining the most preferred e-commerce.

3.5 Application of SAW mehod

The following are the research data used, previously summarized using Microsoft Excel
software.

1. Determining the Suitability Rating.
The next step in determining the suitability rating is shown in Table 5.

2. Determining the Decision Matrix.
The next step is to form a decision matrix (x) using the suitability rating table for
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Alternatives Average Value
C1 C2 C3 C4 C5 C6

A1 4.1 4 3.9 4.2 3.9 3.6
A2 4.273 4.182 4.091 4 4.364 4.091
A3 4.143 3.929 4.071 3.857 3.714 3.571
A4 4.033 4.067 3.767 4 4.033 4.033
A5 4.5 4.429 4.5 4.5 4.286 4

Table 5: Suitability rating.

each alternative for each criterion as follows:

X =


4.1 4 3.9 4.2 3.9 3.6
4.273 4.182 4.091 4 4.364 4.091
4.143 3.929 4.071 3.857 3.714 3.571
4.033 4.067 3.767 4 4.033 4.033
4.5 4.429 4.5 4.5 4.286 4

 .

Next, calculate the normalized value of each alternative using the method in equa-
tion (1). It should be noted that researchers here use the benefit attribute because
in this research, the criteria determined refer to benefits, not costs.

a. Appearance Criterion (C1)

r11 =
4.1

max{4.1; 4.273; 4.143; 4.033; 4.5}
=

4.1

4.5
= 0, 911,

r21 =
4.273

max{4.1; 4.273; 4.143; 4.033; 4.5}
=

4.273

4.5
= 0.949.

b. Fiture Criterion (C2)

r12 =
4

max{4; 4.182; 3.929; 4.067; 4.429}
=

4

4.429
= 0, 903,

r22 =
4.273

max{4; 4.182; 3.929; 4.067; 4.429}
=

4.182

4.429
= 0.944.

c. Access speed Criterion (C3)

r13 =
3.9

max{3.9; 4.091; 4.071; 3.767; 4.5}
=

3.9

4.5
= 0, 867,

r23 =
4.091

max{3.9; 4.091; 4.071; 3.767; 4.5}
=

4.091

4.5
= 0.909.

d. Service Criterion (C4)

r14 =
4.2

max{4.2; 4.3; 3.857; 4; 4.5}
=

4.2

4.5
= 0, 933,

r24 =
4

max{4.2; 4.3; 3.857; 4; 4.5}
=

4

4.5
= 0.889.



600 P. KATIAS, T. HERLAMBANG et al.

e. Promo Criterion (C5)

r15 =
3.9

max{3.9; 4.364; 3.714; 4.033; 4.286}
=

3.9

4.364
= 0, 894,

r25 =
4.364

max{3.9; 4.364; 3.714; 4.033; 4.286}
=

4.364

4.364
= 1.

f. Delivery Criterion (C6)

r16 =
3.6

max{3.6; 4.091; 3.571; 4.033; 4}
=

3.6

4.091
= 0, 879,

r26 =
4.091

max{3.6; 4.091; 3.571; 4.033; 4}
=

4.091

4.091
= 1.

Then the normalization results are transformed into a normalization matrix, the
normalization matrix for this research is as follows:

R =


0.911 0.903 0.867 0.933 0.894 0.879
0.949 0.944 0.909 0.889 1 1
0.921 0.887 0.905 0.857 0.851 0.873
0.896 0.918 0.837 0.889 0.924 0.986
1 1 1 1 0.982 0.978

 .

3. Ranking.
The final step is to calculate the final preference value (Vi) obtained from the sum of
the multiplication of normalized matrix row elements (R) with preference weights
(W ). The weights used are as follows:

W = {0.10; 0.20; 0.15; 0.15; 0.25; 0.15}.

The formula used is the formula in equation (2),

V1 = (0.10)(0.911) + (0.20)(0.903) + (0.15)(0.867) + (0.15)(0.933) +

(0.25)(0.894) + (0.15)(0.879) = 0.89705 (blibli),

V2 = (0.10)(0.949) + (0.20)(0.944) + (0.15)(0.909) + (0.15)(0.889) +

(0.25)(1) + (0.15)(1) = 0.9533 (bukalapak),

V3 = (0.10)(0.921) + (0.20)(0.887) + (0.15)(0.905) + (0.15)(0.857) +

(0.25)(0.851) + (0.15)(0.873) = 0.8775 (Lazada),

V4 = (0.10)(0.896) + (0.20)(0.918) + (0.15)(0.837) + (0.15)(0.889) +

(0.25)(0.924) + (0.15)(0.986) = 0.911 (shopee),

V5 = (0.10)(1) + (0.20)(1) + (0.15)(1) + (0.15)(1) +

(0.25)(0.982) + (0.15)(0.978) = 0.9922 (tokopedia).

4. Description of Research Data Analysis Results
Among V1, V2, V3, V4 and V5, the highest value is V5 = Tokopedia with the result
of 0,992 from the calculation using the Simple Additive Weighting method. It is
concluded that Tokopedia is the e-commerce with the highest customer satisfaction
based on predetermined criteria. Then the most satisfied criteria or services are
C1 (Appearance), C3 (Service), and C4 (Access speed) with a higher average value
compared to other criteria or services.
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4 Conclusion

4.1 Conclusions

Based on the results of customer satisfaction survey research on e-commerce using the
SAW (Simple Additive Weighting) method, several conclusions can be drawn. These
conclusions are presented as follows:

1. In terms of the appearance criteria (C1), Tokopedia has the highest average value
with a score of 4.5.

2. In terms of the product/feature choice criteria (C2), respondents are more satisfied
with Tokopedia e-commerce.

3. In terms of the accesses speed criteria (C3), respondents are more satisfied with
Tokopedia e-commerce.

4. In terms of the service criteria (C4), respondents are more satisfied with Tokopedia,
Bukalapak, and Shope e-commerces having the same scores.

5. In terms of the promo criteria (C5), respondents are more satisfied with Bukalapak
e-commerce.

6. In terms of the delivery criteria (C6), respondents are more satisfied with Bukalapak
e-commerce.

7. According to the data obtained by the researchers, the e-commerce with the highest
value for customer satisfaction is Tokopedia with a value of 0.992.

8. The e-commerce with the lowest level of customer satisfaction is Lazada, with a
value of 0.877.

9. The e-commerce most used by respondents is Shopee with 30 respondents.

10. The e-commerce least used by respondents is Blibli with 10 respondents.

11. The customer satisfaction survey ranking for e-commerce using the SAW (Sim-
ple Additive Weighting) method is from top to bottom, respectively, Tokopedia,
Bukalapak, Shopee, Blibli, and Lazada.

4.2 Suggestions

Based on the research results, several problems were revealed, so several suggestions were
made, these suggestions are as follows:

1. Insufficient number of respondents or less widespread distribution of the g-form.

2. It is suggested that respondents filling out the g-form, receive a prize for the fastest
completion or it be drawn randomly after all respondents have completed the g-
form.

3. The criteria specified are only a few, they should be added so that respondents can
assess e-commerce in more detail.
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Abstract: In this paper, the operator equations AX −XB = C and AXB −X =
C, where A, B, C and X are bounded linear operators on the Hilbert space H,
are investigated and criteria of solvability are established. First, in a Hilbertian
framework, by extending the famous Fuglede’s theorem to a certain class of operators
that are not necessarily normal, we show that some classical criteria, as Roth’s removal
rule for the first equation, remain valid even under assumptions on A and B weaker
than usual. Second, in a Banachian framework, we establish our criteria of solvability
by using the inner inverses of the operators δA,B and ∆A,B defined on L(H) by
δA,B(X) = AX −XB and ∆A,B(X) = AXB −X.
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1 Introduction and Basic Definition

Let H be an infinite complex Hilbert space and L(H) be the Banach space of all bounded
linear operators from H into H. For T ∈ L(H), let ker(T ), R(T ), σ(T ) and σp(T ) stand
for the null space, range, spectrum and point spectrum of T , respectively. We recall some
definitions of the local spectral theory.
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Definition 1.1 An operator T ∈ L(H) is said to have the single-valued extension
property at λ0 ∈ C (abbreviated SVEP at λ0) if for every open disc D centered at λ0,
the only analytic function f : D → X, which satisfies the equation (T − λI)f(λ) = 0 for
all λ ∈ D, is the function f ≡ 0. An operator T ∈ L(H) is said to have the SVEP if T
has the SVEP at every λ ∈ C.

Definition 1.2 An operator T ∈ L(H) is said to have Bishop’s property (β) if for
any open subset V of C and any sequence {fn} of H-valued analytic functions on V, the
convergence of (T − λ)fn(λ) to zero uniformly on each compact subset of V leads to the
convergence of fn(λ) to zero again uniformly on each compact subset of V .

Definition 1.3 An operator T ∈ L(H) is said to be decomposable if for every open
cover {U, V } of C, there are T -invariant subspaces X and Y such that H = X + Y,
σ(T |X ) ⊂ U , and σ(T |Y) ⊆ V .

The following implications are always satisfied:

T is decomposable ⇒ T has Bishop’s property (β) ⇒ T has the SVEP.

Recall that the ascent p(T ) and descent q(T ) of T are defined by

p(T ) = inf{n ∈ N : kerTn = kerTn+1},

q(T ) = inf{n ∈ N : R(Tn) = R(Tn+1)}

with inf ∅ = ∞. It is well known that if p(T ) and q(T ) are both finite, then p(T ) = q(T ).
We denote by Π(T ) = {λ ∈ C : p(T − λI) = q(T − λI) < ∞} the set of poles of the
resolvent. In the sequel, we shall denote by accS and isoS the set of accumulation points
and the set of isolated points of S ⊂ C, respectively.

Definition 1.4 We say that T ∈ L(H) is polaroid if for any isolated point λ in σ (T ) ,
λ is a pole of the resolvent of T (i.e., isoσ(T ) ⊆ Π(T )).

Fuglede’s theorem states that if an operator commutes with a normal operator, it
also commutes with its adjoint, i.e., if X and A are in L(H) with A normal, then

AX = XA =⇒ A∗X = XA∗,

this was first proven in 1950 by B. Fuglede [19] and then by C.R.Putnam [23] in a
more general version. Thanks to its numerous applications, this theorem has a very
effective role in the theory of bounded operators. There are different proofs of this
theorem, besides, the first two are due to Fuglede and Putnam, see [20]. Perhaps the most
elegant proof is due to Rosenblum [24]. Then, with a wonderful matrix operator trick,
S.Berberian [10] showed the equivalence between Fuglede’s theorem and that of Putnam.
Afterwards, it was called the Fuglede-Putnam theorem. This theorem is therefore stated
as follows: if X, A and B are bounded Hilbert space operators such that A and B are
normal, then

AX = XB =⇒ A∗X = XB∗.

This theorem has been extended by relaxing the normality hypotheses on A and B to
various classes of non-normal operators. It has also been formulated using the elementary
operator δA,B as follows: if A and B are normal operators, then ker δA,B ⊂ ker δA∗,B∗ ,
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where δA,B is the generalized derivation defined on L(H) by δA,B(X) = AX − XB.
The Fuglede-Putnam theorem has a (natural) analogue: if A and B are normal, then
ker∆A,B ⊂ ker∆A∗,B∗ , where ∆A,B is the elementary operator defined on L(H) by
∆A,B(X) = AXB −X.

In the following, we will denote by dA,B each of elementary operators ∆A,B or the
generalized derivation δA,B .

In the second section of this paper, we derive a nice generalization of Fuglede’s the-
orem for decomposable operators A ∈ L(H) which are polaroid with A and A∗ being
reduced by each of eigenspaces, using examples of non-normal operators, we justify that
the set of such operators strictly contains the normal operators. The third section is
devoted to the application of these results to give necessary and sufficient conditions for
the existence of solutions to the operator equations AX −XB = C and AXB −X = C
in this general framework, which presents a generalization of the results obtained by S.
Schweinsberg in [27]. In the last section, independently of the previous ones, using the
inner inverse of the elementary operator dA,B , we give necessary and sufficient conditions
for the existence of solutions to the operator equations dA,B(X) = C and also, the form
of these solutions.

2 An Extension of Fuglede’s Theorem

In [21], the authors proved the following theorem.

Theorem 2.1 [21, Theorem 2.2, Theorem 2.3]
Suppose that A,B ∈ L(H) satisfies the following conditions:

i) A and B∗ are reduced by each of their eigenspaces,

ii) A and B∗ are polaroid,

iii) A and B∗ have property (β).

Then
ker(dA,B − λI) ⊆ ker(dA∗,B∗ − λI)

holds for every complex number λ, which means that the Fuglede-Putnam theorem holds.

This theorem is established for many classes of operators, we mention, for example,
the operators A ∈ L(H), which satisfy the equation

(A∗)2A2 − 2A∗A+ I = 0,

such A are natural generalizations of isometric operators (A∗A = I) and are called
2-isometric operators. It is known that an isometric operator is a 2-isometric operator.
2-isometric operators have been studied by many authors and they have many interesting
properties, see [2, 3, 13, 16, 22] for example. In [28, Lemma 2.6], the authors proved that
2-isometric operators have Bishop’s property (β) and in [28, Corollary 2.5] they proved
that 2-isometric operators are reduced by each of their eigenspaces. In [15, Proposition
2.1], B. P. Duggal proved that 2-isometric operators are polaroid. Then we have the
following examples.

Example 2.1 Suppose that A and B∗ are 2-isometric operators. Then

ker(dA,B − λI) ⊆ ker(dA∗,B∗ − λI), ∀λ ∈ C.
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Example 2.2 Suppose that A and B∗ are unilateral weighted shift operators on l2
defined by Aen = αnen+1 and B∗en = βnen+1 for all n ≥ 0 and such that α2

nα
2
n+1−2α2

n+
1 = 0 and β2

nβ
2
n+1 − 2β2

n + 1 = 0 for all n ≥ 0, where {en}∞n is a canonical orthogonal
basis for l2 and (αn)n∈N and (βn)n∈N are bounded sequences of non-negative numbers.
Then A and B∗ are 2-isometric, it follows that

ker(dA,B − λI) ⊆ ker(dA∗,B∗ − λI), ∀λ ∈ C.

The following theorem forms an interesting generalization of Fuglede’s theorem to a
set larger than that of the normal operators.

Theorem 2.2 Suppose that A ∈ L(H) satisfies the following conditions:

i) A is decomposable,

ii) A is polaroid,

iii) A and A∗ are reduced by each of their eigenspaces (ker(A − λI) = ker(A∗ − λI),
∀λ ∈ σp(A)).

Then ker(δA,A − λI) ⊆ ker(δA∗,A∗ − λI), ∀λ ∈ C.

Proof. If A is decomposable, it follows that A and A∗ have property (β), on the
other hand, it is well known that A is polaroid if and only if A∗ is polaroid. Then we
obtain the result.

We note that normal operators A on a Hilbert space are decomposable, polaroid, A
and A∗ are reduced by each of their eigenspaces. We note also that the class of operators
A which are decomposable, polaroid, A and A∗ are reduced by each of their eigenspaces,
contains strictly normal operators. Since E. Albrecht in [6, Proposition 5.1] constructed a
non normal, subnormal operator S which is decomposable and since subnormal operators
(their adjoint too) are hyponormal, it follows that S is polaroid, S and S∗ are reduced
by each of their eigenspaces. Another interesting class of bounded operators from which
the conditions of the previous theorem are satisfied, is the class of compact p-symmetric
operators. Now we recall the definition of p-symmetric operators.

Definition 2.1 [11, Definition 1.2] Let A ∈ L(H), where H is a separable complex
Hilbert space. A is called p-symmetric if AT = TA implies A∗T = TA∗ for all trace class
operators T .

Proposition 2.1 Let A ∈ L(H), where H is a separable complex Hilbert space. If A
is compact and p-symmetric, then A is decomposable polaroid, A and A∗ are reduced by
each of their eigenspaces. Therefore ker(dA,A − λI) ⊆ ker(dA∗,A∗ − λI), ∀λ ∈ C.

Proof. It is well known that compact operators are decomposable, and from [9,
Corollary V.10.3], compact operators are polaroid. We have A is compact, it follows that
if λ ∈ σp(A), then λ ∈ σp(A

∗), since A is p-symmetric, then from [11], we deduce that
A is reduced by each of its eigenspaces. Since A∗ is also compact and p-symmetric, we
deduce that A∗ is reduced by each of its eigenspaces.

Now we give another example which satisfies the conditions of Theorem 2.2. In [7],
S.A. Alzraiqi and A.B. Patel introduced the class of n-normal operators, we recall that
an operator A ∈ L(H) is said to be an n-normal operator if AnA∗ = A∗An.
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Example 2.3 Let A ∈ L(H) such that A is 2-normal, σ(A) ∩ (−σ(A)) ⊂ {0} and
kerA = kerA∗, then from [14, Theorem 4.4], A is decomposable and from [14, Theorem
2.3], A is polariod and it is reduced by each of its eigenspaces. Since A∗ is also 2-
normal, then A∗ is polariod and it is reduced by each of its eigenspaces and it follows
that ker(dA,A − λI) ⊆ ker(dA∗,A∗ − λI), ∀λ ∈ C.

Example 2.4 Let A =

(
0 0
2 0

)
be an operator acting in a two-dimensional com-

plex Hilbert space. Then A is 2-normal, σ(A)∩ (−σ(A)) ⊂ {0} and kerA = kerA∗, then
A is decomposable, polaroid and A and A∗ are reduced by each of their eigenspaces.
Then

ker(dA,A − λI) ⊆ ker(dA∗,A∗ − λI), ∀λ ∈ C.

3 Solvability Criteria for the Equation dA,B(X) = C in a Hilbertian
Framework

Mathematicians often try to find suitable solutions to problems in a wide range of fields
by using various methods, and to study the properties of solutions such as existence,
uniqueness, stability, and so on. See, for example, [4] and [5]. The previous results are
very useful for solving the equation dA,B(X) = C in a more general setting. Let us first
recall that in [26], W. E. Roth proved for finite matrices over a field that AX −XB = C

is solvable for X if and only if the matrices

(
A 0
0 B

)
and

(
A C
0 B

)
are similar.

A considerably briefer proof has been given by Flanders and Wimmer [18]. In [25],
Rosenblum showed that the result remains true when A and B are bounded self-adjoint
operators on a complex separable Hilbert space. In [27], A. Schweinsberg extended the
result to include finite rank operators and normal operators on a Hilbert space. In this
part, we generalize it to the operators A,B ∈ L(H) satisfying the conditions given below.

Theorem 3.1 Suppose that A,B ∈ L(H) satisfy the following conditions:

i) A∗ have property (β), and B is decomposable.

ii) A∗ and B are polaroid,

iii) A∗, B and B∗ are reduced by each of their eigenspaces.

Then the operator equation AX −XB = C has a solution if and only if(
A 0
0 B

)
and

(
A C
0 B

)
are similar.

Proof. If the equation AX −XB = C has a solution X, then(
I −X
0 I

)(
A 0
0 B

)(
I X
0 I

)
=

(
A C
0 B

)
.

Hence

(
A 0
0 B

)
and

(
A C
0 B

)
are similar.
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Suppose that

(
A 0
0 B

)
and

(
A C
0 B

)
are similar, then there exists an invertible

operator

(
Q R
S T

)
such that

(
Q R
S T

)(
A 0
0 B

)
=

(
A C
0 B

)(
Q R
S T

)
, this

implies that
QA−AQ = CS,RB −AR = CT

SA = BS, TB = BT. (3.1)

We apply Theorem 2.2 above, we get

ker(dB,B − λI) ⊆ ker(dB∗,B∗ − λI), ∀λ ∈ C,

also from [21, Theorem2.2], we obtain

ker(dB,A − λI) ⊆ ker(dB∗,A∗ − λI), ∀λ ∈ C.

Thus, the equality (3.1) gives

SA∗ = B∗S, TB∗ = B∗T, (3.2)

and by taking the adjoint in (3.2), we have AS∗ = S∗B, BT ∗ = T ∗B,
which ensures that B commutes with SS∗ and TT ∗. We have also

C(SS∗ + TT ∗) = (QS∗ +RT ∗)B −A(QS∗ +RT ∗).

We apply the result from [27, Lemma 1], we deduce that there exists X = −(QS∗ +
RT ∗)(SS∗ + TT ∗)−1, which is the solution to the operator equation AX −XB = C.

Corollary 3.1 Suppose that A,B ∈ L(H) such that H is a separable Hilbert space.
If

i) A∗ is 2-isometric,

ii) B is compact and p-symetric,

then the operator equation AX −XB = C has a solution if and only if(
A 0
0 B

)
and

(
A C
0 B

)
are similar.

If we set B = A in Theorem 3.1, we get the following corollary.

Corollary 3.2 Let A ∈ L(H) satisfy

i) A is decomposable and polaroid,

ii) A and A∗ are reduced by each of their eigenspaces.

Then the operator equation AX −XA = C has a solution if and only if(
A 0
0 A

)
and

(
A C
0 A

)
are similar.

Corollary 3.3 Let A ∈ L(H) such that H is a separable Hilbert space. If A is
compact and p-symmetric, then the operator equation AX − XA = C has a solution if

and only if

(
A 0
0 A

)
and

(
A C
0 A

)
are similar.
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As a consequence of Corollary 3.2, we obtain a well known theorem of A. Schweinsberg
[27, Theorem 1]:

Corollary 3.4 [27, Theorem 1] Let A ∈ L(H) be a normal operator. Then the

operator equation AX−XA = C has a solution if and only if

(
A 0
0 A

)
and

(
A C
0 A

)
are similar.

Example 3.1 Let A∗ be a 2-isometric operator and B be a 2-normal operator on a
Hilbert spaceH, σ(A)∩(−σ(A)) ⊂ {0} and kerA = kerA∗, then the equationAX−XB =

C has a solution if and only if

(
A 0
0 B

)
and

(
A C
0 B

)
are similar.

Example 3.2 Let A ∈ L(H) such that A is 2-normal, σ(A) ∩ (−σ(A)) ⊂ {0} and
kerA = kerA∗. Then the operator equation AX −XA = C has a solution if and only if(

A 0
0 A

)
and

(
A C
0 A

)
are similar.

We also get similar results for the equation AXB −X = C.

Theorem 3.2 Let A,B ∈ L(H) such that

i) A is decomposable and polaroid.

ii) A and A∗ are reduced by each of their eigenspaces.

iii) B has property (β), is polaroid and reduced by each of its eigenspaces.

Then the equation AXB − X = C has a solution in L(H) if and only if there

exist two invertible operators U and V such that U

(
A C
0 I

)
=

(
A 0
0 I

)
V and

U

(
I 0
0 B

)
=

(
I 0
0 B

)
V.

Proof. If X is a solution of AXB −X = C, then AXB = C +X.

Let U =

(
I X
O I

)
and V =

(
I XB
O I

)
, it is clear that U and V are invertible,

in addition, we have

U

(
A C
0 I

)
=

(
A 0
0 I

)
V and U

(
I 0
0 B

)
=

(
I 0
0 B

)
V.

Conversely, assume that there exist two invertible operators

U =

(
Q R
S T

)
and V =

(
Q1 R1

S1 T1

)
such that

U

(
A C
0 I

)
=

(
A 0
0 I

)
V and U

(
I 0
0 B

)
=

(
I 0
0 B

)
V,

so 
QA = AQ1, (1)

SA = S1, (2)

QC +R = AR1,

SC + T = T1. (3)

and


Q = Q1, (4)

RB = R1,

S = BS1, (5)

TB = BT1.
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From (1) and (4), we have AQ = QA, then, according to Theorem 2.2 and by taking
the adjoint, we have AQ∗ = Q∗A, consequently, we get AQ∗Q = Q∗QA. From (2) and
(5), we have BSA = S; knowing that if A is decomposable, then A∗ has property (β),
moreover, if A is polaroid, then A∗ is too, which allows us to obtain from [21, Theorem
2.3] that B∗SA∗ = S, and by taking the adjoint, we get AS∗B = S∗, which implies
that S∗SA = (AS∗B)SA = (AS∗B)S1 = AS∗S. Therefore, A commutes with the sum

Q∗Q+S∗S and so with the inverse (Q∗Q+ S∗S)
−1

, which exists according to [27, Lemma
1].

In addition, from (3), we have S∗SC = S∗T1 − S∗T = A(S∗T )B − S∗T. Therefore

(Q∗Q+ S∗S)C = Q∗(AR1 −R) +A(S∗T )B − S∗T,

= Q∗ARB −Q∗R+A(S∗T )B − S∗T,

= A(Q∗R+ S∗T )B − (Q∗R+ S∗T ),

and so

C = (Q∗Q+ S∗S)
−1

A(Q∗R+ S∗T )B − (Q∗Q+ S∗S)
−1

(Q∗R+ S∗T ),

= A (Q∗Q+ S∗S)
−1

(Q∗R+ S∗T )B − (Q∗Q+ S∗S)
−1

(Q∗R+ S∗T ),

which means that X = (Q∗Q+ S∗S)
−1

(Q∗R + S∗T ) is a solution of the equation
∆A,B(X) = C, and the proof is complete.

Corollary 3.5 Suppose that A,B ∈ L(H) such that H is a separable Hilbert space.
If

i) A is compact and p-symmetric,

ii) B is 2-isometric,

then the operator equation AXB − X = C has a solution if and only if there exist
two invertible operators U and V such that

U

(
A C
0 I

)
=

(
A 0
0 I

)
V and U

(
I 0
0 B

)
=

(
I 0
0 B

)
V.

If we set B = A in Theorem 3.2, we get the following corollary.

Corollary 3.6 Let A ∈ L(H) satisfy

i) A is decomposable and polaroid,

ii) A and A∗ are reduced by each of their eigenspaces.

Then the operator equation AXA∗ −X = C has a solution if and only if there exist
two invertible operators U and V such that

U

(
A C
0 I

)
=

(
A 0
0 I

)
V and U

(
I 0
0 A∗

)
=

(
I 0
0 A∗

)
V .

Corollary 3.7 Suppose that A ∈ L(H) such that H is a separable Hilbert space. If A
is compact and p-symmetric, then the operator equation AXA∗ −X = C has a solution

if and only if there exist two invertible operators U and V such that U

(
A C
0 I

)
=(

A 0
0 I

)
V and U

(
I 0
0 A∗

)
=

(
I 0
0 A∗

)
V .
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Example 3.3 Let A ∈ L(H) such that A is 2-normal, σ(A) ∩ (−σ(A)) ⊂ {0} and
kerA = kerA∗. Then the operator equation AXA∗ −X = C has a solution if and only if

there exist two invertible operators U and V such that U

(
A C
0 I

)
=

(
A 0
0 I

)
V and

U

(
I 0
0 A∗

)
=

(
I 0
0 A∗

)
V .

4 Solvability Criteria for the Equation dA,B(X) = C in a Banachian Frame-
work

Let E be a Banach space, and dA,B ∈ L(L(E)), in this section, we give necessary and
sufficient conditions for regularity of the elementary operator dA,B , then we deduce nec-
essary and sufficient conditions for the existence of solutions to the operator equations
dA,B(X) = C, using the inner inverses of the elementary operator dA,B . First, we recall
the following definitions.

Definition 4.1 Let A ∈ L(E). An operator B ∈ L(E) is said to be an inner inverse
of A if it satisfies the equation

ABA = A.

We denote the inner inverse by A−. An operator with an inner inverse will be called
regular.

Remark 4.1 We note that

1. A ∈ L(E) has an inner inverse if and only if ker(A) and R(A) are closed and
complemented subspaces of E.

2. If A has an inverse A−1 in L(E), then A−1 is the only inner inverse of A.

Theorem 4.1 Suppose that A,B ∈ L(E) are polaroid, p(δA,B) ≤ 1 and δ∗A,B has the
SVEP at 0, then the following conditions are pairwise equivalent:

1. δA,B has a closed range,

2. L(E) = ker(δA,B)⊕R(δA,B),

3. 0 ∈ isoσ(δA,B),

4. δA,B is regular.

Proof. The equivalences 1 ⇔ 2 ⇔ 3 have been proven by the authors in [17, Theorem
3.2]. The condition (4) is equivalent to (1). Indeed, if δ−A,B is an inner inverse of δA,B ,

then δA,Bδ
−
A,BδA,Bδ

−
A,B = δA,Bδ

−
A,B , i.e., δA,Bδ

−
A,B is a projection on the closed subspace

R(δA,Bδ
−
A,B). Moreover, R(δA,B) = R(δA,Bδ

−
A,BδA,B) ⊆ R(δA,Bδ

−
A,B) ⊆ R(δA,B), so

R(δA,Bδ
−
A,B) = R(δA,B), and it is therefore closed. Conversely, if R(δA,B) is closed,

then PR(δA,B) is a bounded linear operator and, by the Douglas theorem, the equation
δA,BX = PR(δA,B) admits a solution; that is, there exists B in L(E) such that δA,BB =
PR(δA,B). Then δA,BBδA,B = δA,B and therefore δA,B has an inner inverse.
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Corollary 4.1 Suppose that A,B ∈ L(E) are polaroid, p(δA,B) ≤ 1 and δ∗A,B( the
dual of δA,B) has the SVEP at 0 and C ∈ L(E). If 0 ∈ isoσ(δA,B), then the operator
equation δA,B(X) = C has a solution if and only if

δA,Bδ
−
A,BC = C.

In this case, the general solution is

X = δ−A,BC + (IL(E) − δ−A,BδA,B)U,

where U ∈ L(E) is an arbitrary operator.

Proof. We apply Theorem 4.1, we deduce that δA,B is regular, and from [12], we get
the result.

Corollary 4.2 Suppose that A,B ∈ L(H) are normal operators and C ∈ L(H). If
0 ∈ isoσ(δA,B), then the operator equation δA,B(X) = C has a solution if and only if

δA,Bδ
−
A,BC = C.

In this case, the general solution is

X = δ−A,BC + (IL(H) − δ−A,BδA,B)U,

where U ∈ L(H) is an arbitrary operator.

Proof. If A and B are normal operators, it follows that A and B are polaroid,
p(δA,B − λ) ≤ 1 holds for every complex number λ, and δ∗A,B has the SVEP at 0. Hence
the result follows from Theorem 4.1 and Corollary 4.1.

Theorem 4.2 Suppose that A,B ∈ L(E) are contractions, then the following condi-
tions are pairwise equivalent:

1. ∆A,B has a closed range,

2. L(E) = ker(∆A,B)⊕R(∆A,B),

3. 0 ∈ isoσ(∆A,B),

4. ∆A,B is regular.

Proof. The equivalences 1 ⇔ 2 ⇔ 3 have been proven by the authors in [17, Theorem
3.2], and in the same way as in Theorem 4.1, we show that (4) is equivalent to (1).

Corollary 4.3 Suppose that A,B ∈ L(E) are contractions and C ∈ L(E). If
0 ∈ isoσ(∆A,B), then the operator equation ∆A,B(X) = C has a solution if and only
if ∆A,B∆

−
A,BC = C. In this case, the general solution is X = ∆−

A,BC + (IL(E) −
∆−

A,B∆A,B)U, where U ∈ L(E) is an arbitrary operator.
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5 Conclusion

Many researchers have focused on studying equations of the form AX − XB = C and
AXB−X = C due to their significance in solving various problems in many fields such as
physics, biology, economics, etc. They have achieved considerable results in this regard.

This work is part of the same context where we presented, in the first part, important
results, represented by the provision of the necessary and sufficient conditions for these
equations to have solutions in the Hilbertian framework, through an important extension
of the theorem of Fugleg, while giving the general form of expression of these solutions.

These results represent a natural and important extension of many previously known
results to much broader classes of operators than usual. Examples of applications have
been included, as well as some corollaries of these results.

In the second part, within the Banachian framework and using generalized inverse
operators, we provided the necessary and sufficient conditions for these equations to
have solutions, as well as the expression in general form of these solutions, and also their
important implications.
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1 Introduction

Non-autonomous systems of equations, applicable in nonlinear mechanics [1], are studied
by various methods (see [2–7] and the bibliography therein). The Lyapunov function
method [8], combined with the method of integral inequalities (see [1, 9]), allows estab-
lishing new conditions for the boundedness of motion over a specified time interval. This
paper is structured as follows.

Section 2 discusses a system of two scalar equations with nonlinear stable approxi-
mation. Definitions of motion boundedness with respect to a positive definite function
are provided.

In Section 3, an estimation of the Lyapunov function is established.
Section 4 presents conditions for the boundedness of motion with respect to a positive

definite function.
Section 5 addresses the problem of boundedness of solutions to equation systems with

autonomous stable approximation.
In Section 6, conditions for boundedness are established in the case of stability of

non-autonomous linear approximation.
Section 7 provides conditions for the boundedness of solutions over a specified time

interval for perturbed motion equations in the normal Cauchy form.
The concluding section offers comments on the obtained results.
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2 Formulation of the Problem

Consider a system of perturbed motion equations in the form

dx

dt
= f(t, x, y) +

m∑
i=1

µiXi(t, x, y) +

∞∑
i=0

µiφi(t),

dy

dt
= g(t, x, y) +

m∑
i=1

µiYi(t, x, y) +

∞∑
i=0

µiψi(t), (1)

where t ∈ Rτ , x, y ∈ D ⊂ R, 0 < µi < µ0 is a small parameter, f : Rτ ×D ×D → R,
g : Rτ ×D×D → R. The coefficients of the polynomials Xi and Yi , and the functions
φi and ψi are bounded functions of time t ∈ Rτ , where τ is a finite number or the
symbol +∞.

Together with the systems of equations ((1) and others), we will consider a positive
definite continuously differentiable Lyapunov function V (t, x, y) and its total derivative
along the solutions of system (1) and other systems of equations investigated in this
paper.

Taking into account certain results from [10,11], we provide the following definitions.

Definition 2.1 A solution (x(t), y(t))T of system (1) is called bounded for given
t0 ≥ 0 and β > 0 with respect to the positive definite function V (t, x, y) on the interval
Rτ if from the condition V (t0, x0, y0) = β∗ ≤ β, it follows that V (t, x(t), y(t)) ≤ β for
all t ∈ Rτ .

Definition 2.2 A solution (x(t), y(t))T of system (1) is called bounded on a given
interval for a given t0 ∈ Rτ if there exists a positive number τ > 0 and a positive definite
function V (t, x, y) such that with respect to it, the solution (x(t), y(t))T of system (1)
is bounded on the finite interval Rτ .

Let us obtain conditions for the boundedness of solutions of system (1) in the sense
of Definitions 2.1 and 2.2.

3 Estimation of the Lyapunov Function on Solutions of System (1)

For the Lyapunov function 2V1(x, y) = x2 + y2, let us compute the total derivative with
respect to time:

d

dt
V1(x, y) = x

(
f(t, x, y) +

m∑
i=1

µiXi(t, x, y) +

∞∑
i=0

µiφi(t)
)
+

+ y
(
g(t, x, y) +

m∑
i=1

µiYi(t, x, y) +

∞∑
i=0

µiΨi(t)
)
. (2)

Suppose there exist a non-negative function a1(t, µ) and a continuous function
a2(t, µ), as well as values µ1 ∈ (0, µ0], µ2 ∈ (0, µ0] such that

H1. : xf(t, x, y) + yg(t, x, y) ≤ 0 for all t ∈ Rτ , (x, y) ∈ D ×D;

H2. : x
m∑
i=1

µiXi(t, x, y) + y
m∑
i=1

µiYi(t, x, y) ≤ a1(t, µ)(x
2 + y2) for µ < µ1;
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H3. : x
∞∑
i=0

µiφi(t) + y
∞∑
i=0

µiΨi(t) ≤ a2(t, µ), for (x, y) ∈ D ×D for µ < µ2.

Let us show that the following statement holds.

Lemma 3.1 If conditions H1–H3 are satisfied for system (1) and the function
V1(x, y), then

V1(x(t), y(t)) ≤ V1(x0, y0) exp
( t∫
0

a1(s, µ)ds
)
+

t∫
t0

exp
[ t∫
τ

a1(s, µ)ds
]
a2(τ, µ)dτ (3)

for all t ∈ Rτ and 0 < µ < min(µ1, µ2), where x0 = x(t0), y0 = y(t0).

Proof. From conditions H1–H3 and relation (2), it follows that

d

dt
V1(x(t), y(t)) ≤ a1(t, µ)V1(x(t), y(t)) + a2(t, µ)

for all t ∈ Rτ and 0 < µ < min(µ1, µ2).
Let us compute the derivative with respect to time of the product of two functions:

d

dt

{
V1(x(t), y(t)) exp

[
−

t∫
t0

a1(s, µ)ds
]}

=

=
{ d

dt
V1(x(t), y(t))− a1(t, µ)V1(x(t), y(t))

}
exp

[
−

t∫
t0

a1(s, µ)ds
]
. (4)

From equation (4), upon integration from t0 to t, we obtain

V1(x(t), y(t)) exp
[
−

t∫
t0

a1(s, µ)ds
]
− V1(x0, y0) =

=

t∫
t0

[ d
dt
V1(x(τ), y(τ))− a1(τ, µ)V (x(τ), y(τ))

]
×

×
[
−

t∫
t0

a1(s, µ)ds
]
dτ ≤

t∫
t0

a2(τ, µ)
[ t0∫
τ

a1(s, µ)ds
]
dτ. (5)

From inequality (5), we deduce the estimate (3). 2

4 Conditions for the Boundedness of Solutions to System (1)

The estimate (3) allows us to establish the following conditions for the boundedness of
solutions to system (1).



618 A. A. MARTYNYUK, et al.

Theorem 4.1 To ensure that the solution (x(t), y(t))T of system (1) is bounded on
a given interval with respect to the function V1(x, y), it suffices that conditions H1–H3

hold, and if V1(x0, y0) = β∗ < β, the following estimate holds:

exp
( t∫
0

a1(s, µ)ds
)
+

1

β∗

t∫
0

a2(s, µ) exp
( t∫
s

a1(τ, µ)dτ
)
ds ≤ β

β∗ (6)

for all t ∈ Rτ and 0 < µ < min(µ1, µ2).

Proof. From estimate (3) under condition (6), we obtain that V1(x(t), y(t)) ≤ β for
all t ∈ Rτ . This, according to Definition 2.1, proves the statement of Theorem 4.1. 2

5 System of Equations with Autonomous Stable Approximation

We consider a system of perturbed motion equations in the form (see [12])

dys
dt

= −λszs +
∞∑
i=1

µiYsi(t, x, z) +

∞∑
i=0

µiφsi(t),

dzs
dt

= λsys +

∞∑
i=1

µiZsi(t, x, z) +

∞∑
i=0

µiψsi(t), s = 1, 2, . . . , n. (7)

In system (7), the coefficients of the polynomials Ysi and Zsi , as well as the functions
φsi(t), ψsi(t), are bounded functions of time t ∈ Rτ , where τ is a finite number.

It is assumed that there are no external or internal resonances in system (7).

For system (7), we choose the Lyapunov function as 2V2(y, z) =
n∑

s=1
(y2s + z2s) and

compute its total derivative with respect to t ∈ Rτ . Specifically,

d

dt
V2(y, z) =

n∑
s=1

{
ys

(
−λszs +

∞∑
i=1

µiYsi(t, y, z)+

+

∞∑
i=0

µiφsi(t)
)
+ zs

(
λsys +

∞∑
i=1

µiZsi(t, y, z) +

∞∑
i=0

µiψsi(t)
)}

. (8)

Let there exist a non-negative function ā1(t, µ) and a continuous function ā2(t, µ), as
well as values µ1, µ2 ∈ (0, 1] such that

H4. :
n∑

s=1

(
ys

∞∑
i=1

µiYsi(t, y, z) + zs
∞∑
i=0

µiZsi(t, y, z)
)
≤ ā1(t, µ)

n∑
s=1

(y2s + z2s)

for µ < µ1 and t ∈ Rτ ;

H5. :
n∑

s=1

(
ys

∞∑
i=1

µiφsi(t) + zs
∞∑
i=0

µiψsi(t)
)
≤ ā2(t, µ)

for µ < µ2, t ∈ Rτ and |ys| < k < +∞, |zs| < k <∞, s = 1, 2, . . . , n.

Theorem 5.1 To ensure that the solution (y(t), z(t))T of system (7) is bounded on
a given interval with respect to the function V2(y, z), it is sufficient that conditions H4,
H5 hold, and if V2(y0, z0) = β∗ < β, the following estimate holds:

exp

( t∫
0

ā1(s, µ)ds

)
+

1

β∗

t∫
0

ā2(s, µ) exp

( t∫
s

ā1(τ, µ)dτ

)
ds ≤ β

β∗ for all t ∈ Rτ , (9)
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and for µ ∈ (0, µ∗), where µ∗ = min(µ1, µ2).

Proof. Under conditions H4, H5, it follows from equation (8) that

d

dt
V2(y(t), z(t)) ≤ ā1(t, µ)V2(y(t), z(t)) + ā2(t, µ)

for all t ∈ Rτ and 0 < µ < µ∗. Hence, we find that

V2(y(t), z(t)) ≤ V2(y0, z0) +

t∫
0

(ā1(s, µ)V2(y(s), z(s)) + ā2(s, µ))ds. (10)

Applying Lemma 3.1 to inequality (10), we obtain for the function V2(y, z), an estimate
similar to estimate (3). This estimate, together with condition (9), leads to the statement
of Theorem 5.1. 2

6 Boundedness of Solutions of a Quasilinear System with Stable Nonau-
tonomous Approximation

Let us consider a quasilinear nonautonomous system of equations

dxi
dt

=

n∑
s=1

psi(t)xs +Xi(t, x1, . . . , xn, µ) + ψi(t), i = 1, 2, . . . , n, (11)

where the functions Xi(t, x1, . . . , xn, µ) have expansions in powers of the parameter µ,
ψi(t) are bounded functions on any specified time interval t ∈ Rτ . Let us assume that
for system (11), a positive definite function V3(t, x) differentiable with respect to t has
been constructed.

The total derivative of the function V3(t, x) due to system (11) can be represented as

dV3
dt

(t, x) =
∂V3
∂t

(t, x) +

n∑
i=1

n∑
s=1

∂V3
∂xs

(t, x)psi(t)xs+

+

n∑
s=1

∂V3
∂xs

(t, x)Xs(t, x, µ) +

n∑
s=1

∂V3
∂xs

(t, x)ψs(t). (12)

Let us assume that for system (11), there exist a positive function ã1(t, µ) and a bounded
function ã2(t) such that the following conditions hold:

H6. :
∂V3

∂t (t, x) +
n∑

i=1

n∑
s=1

∂V3

∂xs
(t, x)psi(t)xs ≤ 0 for all (t, x) ∈ Rτ ×D, where D ⊂ Rn is

an open set;

H7. :
n∑

s=1

∂V3

∂xs
(t, x)Xs(t, x, µ) ≤ ã1(t, µ)V3(t, x) for 0 < µ < µ1 and (t, x) ∈ Rτ ×D;

H8. :
n∑

s=1

∂V3

∂xs
(t, x)ψs(t) ≤ ã2(t) for all t ∈ Rτ and |xs| < h, where h = const > 0.

The condition H6, together with the positive definiteness of the function V3(t, x),
ensures the stability of the zero solution of the linear approximation system within the
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system of equations (11). Taking into account conditionsH6–H8, we obtain an estimation
from equation (12):

dV3
dt

(t, x) ≤ ã1(t, µ)V3(t, x) + ã2(t)

for all t ∈ Rτ and 0 < µ < µ1. Hence, we find the estimate of the change of the function
V3(t, x(t)) as

V3(t, x(t)) ≤ V (t0, x0) +

t∫
t0

(ã1(s, µ)V3(s, x(s)) + ã2(s))ds (13)

for all t ∈ Rτ and 0 < µ < µ0.
Applying Lemma 3.1 to the inequality (13), we can easily obtain the estimate of the

function V3(t, x(t)) in the form of (3). The following statement holds.

Theorem 6.1 To ensure that the solution x(t) of system (11) with a stable linear
approximation is bounded on a given interval with respect to the function V3(t, x), it is
sufficient that conditions H6–H8 hold, and for a given β > 0, the inequalities V3(t0, x0) =
β∗ < β are satisfied, as well as the inequality

exp
( t∫
t0

ã1(s, µ)ds
)
+

1

β∗

t∫
t0

ã2(s) exp
( t∫
s

ã1(τ, µ)dτ
)
ds <

β

β∗

at all t ∈ Rτ and 0 < µ < µ1.

The proof of Theorem 6.1 is similar to the proof of Theorem 5.1.

7 Conditions for the Boundedness of Solutions of a System in Normal Form

Let us consider the differential equations of perturbed motion

dxs
dt

= Xs(t, x1, . . . , xn), s = 1, 2, . . . , n, (14)

xs(t0) = xs0 , (15)

whereXs(t, 0, . . . , 0) ̸= 0 for all t ∈ Rτ . We associate with the system (14) a differentiable
function V (t, x1, . . . , xn) > 0, for which we write a Lyapunov relation

V (t, x(t)) = V (t0, x0) +

t∫
t0

V̇ (s, x(s))ds, (16)

where V̇ (t, x(t)) is the total derivative of the function V (t, x) due to the system of equa-
tions (14) and x(t) = (x1(t), . . . , xn(t))

T .
Let V (t, x(t)) = v(t), and suppose that the following condition is satisfied:

H9. : v(t0) +

t∫
t0

V̇ (s, x(s))ds ≤ w(t) +

t∫
t0

p(s)v(s)ds, (17)

where w(t) and p(t) are non-negative bounded functions on the given interval Rτ . The
following statement holds.
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Lemma 7.1 If the perturbed motion equations (14) admit a differentiable function
V (t, x), and condition H9 is satisfied, then the function V (t, x(t)) = v(t) satisfies the
inequality

v(t) ≤ w(t) +

t∫
t0

exp
( t∫
τ

p(s)ds
)
p(τ)w(τ)dτ (18)

for all t ∈ Rτ .

Proof. From equation (16) under condition (17), we obtain the inequality

v(t) ≤ w(t) +

t∫
t0

p(s)v(s)ds

for all t ∈ Rτ . Let us denote z(t) =
t∫

t0

p(s)v(s)ds and note that z(t0) = 0. Obviously,

dz

dt
= p(t)v(t) ≤ p(t)[w(t) + z(t)] = p(t)w(t) + p(t)z(t).

From here, it follows that

z(t) ≤
t∫

t0

exp
[ t∫
τ

p(s)ds
]
p(τ)w(τ)dτ. (19)

Since v(t) ≤ w(t)+ z(t), taking (19) into account yields the statement of Lemma 7.1. 2

Theorem 7.1 For the solution x(t) of the normal system of equations (14) to be
bounded on a given interval with respect to the function V (x, x), it is sufficient that
Lemma 7.1 holds and for a given β > 0, if V (t0, x0) = β∗ < β, then the inequality
applies

w(t) +

t∫
t0

exp
[ t∫
τ

p(s)ds
]
p(τ)w(τ)dτ ≤ β (20)

for all t ∈ Rτ .

Proof. If the conditions of Lemma 7.1 are satisfied, then the estimate for the function
V (t, x(t)) given by (18) holds. From condition (20) and the fact that V (t0, x0) = β∗, it
follows that V (t, x(t)) ≤ β for all t ∈ Rτ . This proves the statement of Theorem 7.1. 2

Corollary 7.1 If in condition H9, we set w(t) = β∗, then the estimate (18) takes
the form

v(t) ≤ β∗ exp
[ t∫
t0

p(s)ds
]

(21)

for all t ∈ Rτ .
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Based on the estimate (21), the conditions for the boundedness of solutions of system
(14) with respect to the function V (t, x) take the form

exp
[ t∫
t0

p(s)ds
]
≤ β

β∗ (22)

for all t ∈ Rτ . If condition (22) is satisfied, then we have the estimate V (t, x(t)) ≤ β for
all t ∈ Rτ .

8 Example

Consider a non-autonomous oscillatory system of the second order [13]

ẍ+ p(t)ẋ+ [a2 + q(t)]x = f(t, x, y), a = const ̸= 0, (23)

where p(t) ≥ 0 for all t ∈ Rτ and
∞∫
0

q(s)ds < +∞. The functions p(t), q(t), f(t, 0, 0)

are continuous on t ∈ Rτ and f(t, 0, 0) ̸= 0 for all t ∈ Rτ .
Let us rewrite the equation (23) in the form of a system{

dx/dt = y, x(t0) = x0,
dy/dt = −p(t)y − [a2 + q(t)]x+ f(t, x, y), y(t0) = y0,

(24)

and for the total derivative of the function V (x, y) = a2x2+y2 on the solutions of system
(24), we obtain the estimate

d

dt
V (x(t), y(t)) = −2p(t)y2(t)− 2q(t)x(t)y(t) + 2yf(t, x, y) ≤

≤ 2|q(t)||x(t)y(t)| − 2p(t)y2(t) + 2y(t)f(t, x, y) ≤

≤ |q(t)|
|a|

(
a2x2(t) + y2(t)

)
+
∣∣2y(t)f(t, x, y)− 2p(t)y2(t)

∣∣ = a1(t)V (x(t), y(t)) + a2(t),

(25)

where a1(t) =
|q(t)|
|a| , a2(t) =

∣∣2y(t)f(t, x, y)− 2p(t)y2(t)
∣∣.

From inequality (25), it follows that

d

dt
V (x(t), y(t)) ≤ a1(t)V (x(t), y(t)) + a2(t)

for all t ∈ Rτ . Hence, we find the estimate of the change of the function V (x(t), y(t))
as

V (x(t), y(t)) ≤ V (x0, y0) +

t∫
t0

(a1(s)V (x(s), y(s)) + a2(s))ds (26)

for all t ∈ Rτ .
Applying Lemma 3.1 to the inequality (26), we can easily obtain the estimate of the

function V (x(t), y(t)) in the form

V (x(t), y(t)) ≤ V (x0, y0) exp
( t∫
0

a1(s)ds
)
+

t∫
t0

exp
[ t∫
τ

a1(s)ds
]
a2(τ)dτ (27)
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for all t ∈ Rτ , where x0 = x(t0), y0 = y(t0).
The following statement holds.
Applying Theorem 6.1 to inequality (27), we find that the solutions of system (24)

are bounded in the sense of Definitions 2.1 and 2.2 if, for given estimates 0 < β < β∗

and for V (x0, y0) < β, the following inequality holds:

exp
( t∫
0

a1(s)ds
)
+

t∫
t0

exp
[ t∫
τ

a1(s)ds
]
a2(τ)dτ <

β∗

β

for all t ∈ Rτ .
Note that if a2(t) = 0 for all t ∈ Rτ , then the boundedness of solutions of system (24)

occurs under the conditions V (x0, y0) < β and

t∫
t0

a1(s)ds < ln

(
β∗

β

)

for all t ∈ Rτ , where 0 < β < β∗ are predefined values.

9 Conclusion

For systems of perturbed motion equations with stable nonlinear or linear approxima-
tions, conditions for the boundedness of solutions over a given time interval with respect
to a positive definite function have been obtained. This new property of motion applies
to nonlinear non-autonomous systems and has broad applications in nonlinear mechanics
and system theory.
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Abstract: Every laptop has different specifications, and of course, the differences
in specifications will affect the performance of the laptop when in use. The need to
choose the right laptop depends on your needs. Therefore, we need an appropriate
laptop recommendation system for prospective buyers. Choosing the optimal laptop
according to your needs can be solved with a Decision Support System (DSS). The
DSS has a mathematical model that can be used as a solution to these problems.
There are several methods commonly used in solving problems, including the Simple
Additive Weighting Method (SAW), Weighted Product (WP), and Technique for
Order Preference by Similarity to Ideal Solution (TOPSIS). In this study, the SAW
and TOPSIS methods were used, then the results were compared to those of the
previous studies by using the WP method with the same data and criteria. The
results of this study indicate that differences in laptop recommendations are only
found in the second and third order. When using the SAW method, the second and
third recommended laptops in a row are A6 (HP 14-G1024 U) and A3 (Acer Aspire
E5-551). When using the TOPSIS method, the second and third recommendations for
laptops in a row are A3 (Acer Aspire E5-551) and A6 (HP 14-G1024 U). The results
of this study indicate that the SAW method gives the same laptop recommendation
results as the WP method.
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1 Introduction

Each laptop has different specifications, of course, and the differences in specifications
surely affect the performance of the laptop when you use it. Currently, the main needs
of the average student are limited to office applications and taking online courses, merely
requiring middle to lower class laptops. However, those who work as graphic designers or
gamers require devices with high specifications to meet their needs. A frequent problem
occurring is buying a laptop whose specifications do not meet your needs. Lack of
understanding by the user of laptop specifications makes the purchase not optimal. This
can be minimized by contacting the store directly, but is limited to the store staff’s
knowledge or available inventory. There are several features that serve as benchmarks
for choosing a laptop, that is, the Central Processing Unit (CPU), Graphics Processing
Unit (GPU), Random Access Memory (RAM), storage, display, and price. Some of these
features result in laptop buying recommendations.

Therefore, a system that recommends the right laptop for you is needed so that the
purchase of a laptop will meet your needs optimally for home use. Choosing the optimal
laptop according to your needs can be effectively done by using a Decision Support
System (DSS), a discipline of operations research that can be utilized for decision making
support in the form of mathematical models. DSS is an interactive software-based system
designed to help decision makers collect, analyze, and process information from raw data,
documents, frameworks, and business models to identify problems, solve them, and make
decisions. SPK is computer software used in specific situations to analyze and present
business data to help users make business decisions.

DSS has a mathematical model used as a solution to the problems. The model is
Multi Criteria Decision-Making (MCDM). MCDM is one of the methods developed and
used to help decision makers choose out of several decision options to take by several
criteria to be considered to make the right and optimal decision [6]. Fuzzy MCDM is
a decision support method whose purpose is to determine predicted alternatives out of
several alternatives based on certain criteria used in the Fuzzy Multi Criteria decision
method [7].

In terms of usefulness, MCDM is grouped into two models. They are Multi Objec-
tive Decision Making (MODM) used to solve problems in continuous space and Multi
Attribute Decision Making (MADM) used to solve problems in discrete space. And the
method used in this study is MADM.

There are several methods commonly employed in solving MADM problems, that is,
the Simple Additive Weighting Method (SAW), Weighted Product (WP), and Technique
for Order Preference by Similarity to Ideal Solution (TOPSIS). These three methods are
used in helping decision making for laptop selection.

The previous research conducted by [11] contributed results able to help make laptop
selection decisions employing the WP method. And in this study, the researchers used
the SAW and TOPSIS methods by using the same data and criteria as those the previous
research used [11]. The researchers compare the results obtained by both methods to
those obtained by the WP method.
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2 Research Method

2.1 Research method

The Simple Additive Weighting (SAW) method and the Technique for Order Preference
by Similarity to Ideal Solution (TOPSIS) can assist for laptop selection decision making.
The basic concept of the SAW method is to find out the weighted sum of the performance
ratings for each alternative on all attributes. The SAW method requires a process of
normalizing the decision matrix (X) to a scale that can be compared to all existing
alternative ratings.

rij =

{ xij

Max xij
if j : atribute of benefit,

Min xij

xij
if j : atribute of cost,

(1)

where rij is the normalized performance rating of alternative Ai on attribute Ci; i =
1, 2, . . . ,m and j = 1, 2, . . . , n. The preference value for each alternative (Vi) is given as

Vi =

n∑
j=1

wjrij , (2)

where the greater value of Vi indicates that alternative Ai is preferred or more frequently
chosen.

The TOPSIS concept is based on the concept that the best selected alternative has not
only the shortest distance from the positive ideal solution but also the longest distance
from the negative ideal solution. This concept is frequently used to solve decision making
problems in several MADMmodels because the concept is simple and easy to understand,
computationally efficient and has the ability to measure the relative performance of
decision alternatives in a simple mathematical form.

TOPSIS requires the performance rating of each alternative Ai on each normalized
criterion Cj , that is,

rij =
xij√∑m
i=1 x

2
ij

. (3)

The positive ideal solution A+ and the negative ideal solution A− can be determined
based on the normalized weight rating (yij) as follows:

yij = wirij , (4)

i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

A+ =
(
y+1 , y

+
2 , . . . , y

+
n

)
, (5)

A− =
(
y−1 , y

−
2 , . . . , y

−
n

)
(6)

with

y+j =

{
max yij ; if j : atribute of benefit,
min yij ; if j : atribute of cost,

y−j =

{
max yij ; if j : atribute of benefit,
min yij ; if j : atribute of cost.
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The distance between the alternative Ai and the positive ideal solution is formulated
as follows:

D+
i =

√√√√ n∑
j=1

(
y+i − yij

)2
; i = 1, 2, . . . ,m. (7)

The distance between the alternative Ai and the negative ideal solution is formulated as
follows:

D−
i =

√√√√ n∑
j=1

(
yij − y−i

)2
; i = 1, 2, . . . ,m. (8)

The preference value of each alternative (Vi) is given as

Vi =
D−

i

D−
i +D+

i

; i = 1, 2, . . . ,m. (9)

The higher value of Vi indicates that Ai is the preferred value.

2.2 Research material

The data and weighting used in this study are the same as those in the previous research
[11]. The data in question can be seen in Table 1.

No Alternative Criteria
C1 C2 C3 C4 C5

1 Axioo Neon Intel Celeron 2 500 Intel HD 4.100.000
TNW C825 N2940 GB GB Family

2 Axioo Neon Intel Celeron 2 500 Intel HD 4.000.000
TNN C825 Quad Core N2920 GB GB Family

3 Acer Aspire AMD A10- 4 1 AMD Raden 6.699.000
E5-551 7300 GB TB R7 M265

4 Lenovo Intel Core 2 500 NVIDIA GeForce 5.399.000
Ideapad 100 i3-5005U GB GB 920A DDR3L 2 GB

5 Toshiba Intel Core 2 500 NVIDIA GoForce 6.200.000
S40 A i3-3227u GB GB GT 740 M

6 HP 14- U AMD 2 500 AMD Radeon 3.830.000
G1024 U A4-500 GB GB HD 833

Table 1: Criteria.

From Table 1, coding is made as shown in Table 2.
In solving the selection of the best laptop by the SAW and TOPSIS methods, criteria

and weights are required to perform calculations so that the best alternative will be
obtained. The following are the criteria for decision making, based on the parameters in
determining the best laptop at SMK Mandiri Bekasi as in Table 3.

In these criteria, a level of importance of the criteria is determined based on the
predetermined weight value. The rating of each alternative on each criterion can be seen
in Table 4.

Based on the criteria from the rating of each alternative (Li) on each criterion (Ki)
already determined, the weight of each criterion (Ki) is then determined.
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No Codes Alternatives
1 A1 Axioo Neon TNW C825
2 A2 Axioo Neon TNN C825
3 A3 Acer Aspire E5-551
4 A4 Lenovo Ideapad 100
5 A5 Toshiba S40 A
6 A6 HP 14-G1024 U

Table 2: Alternative Codes.

Criteria Description
K1 Prosesor
K2 RAM
K3 Harddisk
K4 VGA
K5 Harga

Table 3: Atribute Codes.

Value Alternative
1 Very low
2 Low
3 Fair
4 High
5 Very High

Table 4: Alternative Rating.

a) Processor Weight Value (K1).
The weight value (W ) of each processor criterion has been determined by the

Very low 1
Low 2

Processor Fair 3
High 4

Very High 5

Table 5: Processor Criteria.

SMK Mandiri Bekasi school.

b) RAM Weight Criteria (K2).
The weight value (W ) of each RAM criterion has been determined by the SMK

Mandiri Bekasi school.
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1 GB 1
RAM Weight Criteria 2

RAM Capacity RAM Weight Criteria 3
8 GB 4
16 GB 5

Table 6: RAM Criteria.

c) Harddisk weight criteria (K3).
The weight value (W ) of each Harddisk criterion has been determined by the SMK

250 GB 1
320 GB 2

Harddisk Capacity 500 GB 3
750 GB 4
>750 GB 5

Table 7: Harddisk Criteria.

Mandiri Bekasi school.

d) VGA Weight Criteria (K4).

Very low 1
Low 2

Processor Fair 3
High 4

Very High 5

Table 8: VGA Criteria.

e) Price Weight Criteria (K5).

3− 4 M 1
4− 6 M 2

Price capacity 6− 8 M 3
8− 15 M 4
≥ 15 M 5

Table 9: Price Criteria.

f) Weight Value Criteria.
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W1 Processor 5
W2 RAM 4
W3 Harddisk 3
W4 VGA 5
W5 Price 3

Table 10: Weight Criteria.

3 Results and Discussion

3.1 Solving by SAW method

To determine the normalization matrix, the elements can first be determined using equa-
tion (1) or (2):

r11 =
2

max{ 2 4 1 4 4 4 }
=

2

4
= 0.5,

r21 =
4

max{ 2 4 1 4 4 4 }
=

4

4
= 1,

r31 =
1

max{ 2 4 1 4 4 4 }
=

1

4
= 0.25,

... =
...

r12 =
1

max{ 1 4 3 1 1 1 }
=

1

4
= 0.25,

r22 =
4

max{ 1 4 3 1 1 1 }
=

4

4
= 1

... =
...

and so on. Based on the results obtained, a matrix is formed as displayed in Table 11.

No Alternative Criteria
K1 K2 K3 K4 K5

1 A1 0.5 0.25 0.75 0.4 0.2
2 A2 1 1 0.75 0.4 0.5
3 A3 0.25 0.75 1 1 0.25
4 A4 1 0.25 0.75 0.4 0.2
5 A5 1 0.25 0.75 0.4 0.25
6 A6 1 0.25 0.75 0.4 1

Table 11: Calculation of Matrix Normalization.

Then each element of the normalization matrix and weight criteria are substituted in
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equation (3).

V1 = 5(0.5) + 4(0.25) + 3(0.75) + 5(0.4) + 3(0.2) = 8.35,

V2 = 5(1) + 4(1) + 3(0.75) + 5(0.4) + 3(0.5) = 14.75,

V3 = 5(0.25) + 4(0.75) + 3(1) + 5(1) + 3(0.25) = 13,

V4 = 5(1) + 4(0.25) + 3(0.75) + 5(0.4) + 3(0.2) = 10.85,

V5 = 5(1) + 4(0.25) + 3(0.75) + 5(0.4) + 3(0.25) = 11,

V6 = 5(1) + 4(0.25) + 3(0.75) + 5(0.4) + 3(1) = 13.25.

The V value shows the order of laptop recommendations ranging from the largest to
smallest. Based on the Simple Additive Weighting (SAW) method applied, the results
and order of selection priorities are as displayed in Table 12. Table 12 shows that the
priority order of the first laptop selection is A2 (Axioo Neon TNN C825), that of the
second laptop selection is A6 (HP 14-G1024 U), and so on.

Alternative Results Ranking
A1 8.35 6
A2 14.75 1
A3 13 3
A4 10.85 5
A5 11 4
A6 13.25 2

Table 12: Alternative Priority.

3.2 Solving by TOPSIS Mehod

By using equation (4), the normalized matrix is obtained as in Table 13 below.

No Alternative Criteria
K1 K2 K3 K4 K5

1 A1 0.2408 0.1857 0.3841 0.2981 0.5361
2 A2 0.4815 0.7428 0.3841 0.2981 0.2144
3 A3 0.1204 0.5571 0.5121 0.7454 0.4288
4 A4 0.4815 0.1857 0.3841 0.2981 0.5361
5 A5 0.4815 0.1857 0.3841 0.2981 0.4288
6 A6 0.4815 0.1857 0.3841 0.2981 0.1072

Table 13: Calculation of Matrix Normalization.

Then, from the normalized matrix, the weighted matrix is obtained as in Table 14.
Table 14 is obtained by multiplying the elements of each row in Table 13 by the

corresponding weight criteria.
The positive and negative ideal solution matrix is obtained from equation (5) or (6).

In the positive ideal solution, the largest value is selected for the profit attribute and the
smallest value for the cost attribute. Meanwhile in the negative ideal solution, it applies
vice versa. Then by using equations (7) and (8), the results are obtained as in Table 16.
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Alternative Criteria
K1 K2 K3 K4 K5

A1 1.204 0.7428 1.1523 1.4905 1.6083
A2 2.4075 2.9712 1.1523 1.4905 0.6432
A3 0.602 2.2284 1.5363 3.727 1.2864
A4 2.4075 0.7428 1.1523 1.4905 1.6083
A5 2.4075 0.7428 1.9205 1.4905 1.2864
A6 2.4075 0.7428 1.1523 1.4905 0.3216

Table 14: Calculation of Weighted Matrix Normalization.

Alternative Criteria
K1 K2 K3 K4 K5

A(+) 2.075 2.9712 1.9205 3.727 0.3216
A(−) 0.602 0.7428 1.1523 1.4905 1.6083

Table 15: Calculation of Positive and Negative Ideal Matrix.

Alternative Ideal Solution Distance
D(+) D(−)

A1 3.696193 0.602
A2 2.386523 3.026056
A3 2.211341 2.731303
A4 3.494771 1.8055
A5 3.301293 1.988361
A6 3.249281 2.217076

Table 16: Calculation of Alternative Distance Matrix to Positive and Negative Ideal Solutions.

By using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)
method, the results and order of selection priorities are as in Table 17.

Alternative Results Ranking
A1 0.140059 6
A2 0.559078 1
A3 0.5526 2
A4 0.340643 5
A5 0.375896 4
A6 0.405586 3

Table 17: Alternative Priority.

Based on Table 17, it can be seen that the order of priority for choosing the first
laptop is A2 (Axioo Neon TNN C825), and that for choosing the second laptop is A3

(Acer Aspire E5-551), and so on.
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4 Conclusion

The application of SAW and TOPSIS methods provides different priority orders for the
second and third laptop recommendations. By using the SAW method, the second and
third laptop recommendations are A6 (HP 14-G1024 U) and A3 (Acer Aspire E5-551).
At the same time, when using the TOPSIS method, the second and third laptop recom-
mendations are A3 (Acer Aspire E5-551) and A6 (HP 14-G1024 U). When compared to
the results of the previous studies, it can be seen that the SAW method provides the
same laptop recommendation sequence results as the WP method, that is, A6 (HP 14-
G1024 U) and A3 (Acer Aspire E5-551). Meanwhile the TOPSIS method gives different
results in the order of recommendations for the second and third laptops, that is, A6

(HP 14-G1024 U) and A3 (Acer Aspire E5-551) by the WP method and A3 (Acer Aspire
E5-551) and A6 (HP 14-G1024 U) by the TOPSIS method. The difference occurs due to
differences in calculation methods among SAW, WP, and TOPSIS.
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Abstract: In this work, we propose a mathematical model of malaria which takes
into account the vector class represented by Sv, Iv and humans class represented by
Sh, Eh, Ih and Rh. The basic reproduction number R0 of the model is determined.
We introduce two controls in our initial model. Therefore, the model with control
will be presented and studied. The objective of the model with optimal control is to
observe the effect of preventive measures, represented here by control u1, and curative
measures, represented by control u2, on the evolution of malaria disease. The controls
u1 and u2 will be characterized. Then we use the Python software for the numerical
simulation of the model.

Keywords: malaria; reproduction number; vector; simulation; optimal control.
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1 Introduction

Malaria is an acute febrile illness caused by Plasmodium parasites, which are spread to
people through the bites of infected female Anopheles mosquitoes. It is preventable and
curable. Malaria is a life-threatening disease primarily found in tropical countries. It
was first discovered in India in the 15th century. However, without prompt diagnosis and
effective treatment, a case of uncomplicated malaria can progress to a severe form of the
disease, which is often fatal without treatment. Malaria is not contagious and cannot
spread from one person to another; the disease is transmitted through the bites of female
Anopheles mosquitoes. The world’s population is at risk of exposure to malaria [9]. In
2021, an estimated 247 million people contracted malaria in 85 countries. That same
year, the disease claimed approximately 619000 lives [9]. The first symptoms of malaria
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usually appear within 10 to 15 days after the infectious bite of mosquitoes. Fever,
headache and chills are usually signs of malaria, although these symptoms can hardly be
attributed to malaria. WHO recommends rapid diagnostic testing for anyone suspected
of having malaria. If Plasmodium falciparum malaria is not treated within 24 hours, the
infection can progress to severe illness and death [9]. Malaria can be diagnosed using
tests that determine the presence of the parasites causing the disease. There are two main
types of tests, firstly, microscopic examination of blood smears and rapid diagnostic test
called (TDR). Artemisinin based combination therapies (ACT) are the most effective
antimalarial medicines available today. The resistance of the parasite to the different
treatments leads to an endemic situation. Given all these threats, a mathematical model
of malaria has been proposed to eradicate the disease. The most used means are the
preventive ones. A number of recent studies of malaria show the significant direct effect of
climatic factors such as temperature and rainfall on the transmission dynamics of vectors
[11, 13–16, 18, 19]. B. Traore et al. [20] studied a mathematical model of malaria taking
into account mosquito larvae and transmission of malaria in a periodic environment with a
constant recruitment of vector and human population. Abba B. Gumel et al. [11] studied
a malaria model taking into account seasonality and temperature variation in the mode of
malaria transmission. Our model takes into account the preventive measures (distribution
of mosquito nets, preventive medicine for children under 5 years old, spraying of areas
etc.) represented by the control (u1) and taken during a year. We use a control of cured
persons (u2) in order to allow the government to support population.

The structure of the paper is as follows. We present the mathematical model in
Section 2. In Section 3, we present and study the mathematical model with control. We
conclude in Section 4.

2 The Formulation of Mathematical Model

In this model, the human population is divided into four classes: the susceptible Sh,
the exposed Eh, the infected Ih and cured Rh. The vector population (mosquitoes) is
subdivided into two classes: susceptible vectors Sv and infected Iv. µhNh is the dynamic
recruitment of the human population. γ1Sh, γ1Eh, γ1Ih and γ1Rh are the number of
susceptible, exposed, infected and cured individuals, respectively, that die naturally.
βIvSh

Nh
is the proportions of susceptible humans that can encounter female Anopheles

with a β rate.
αEh

EhSv

Nh
and

αEh
IhSv

Nh
are the respective proportions of Anopheles that

bite exposed (Eh) and infected humans (Ih) that can infect them. γEh is the total
exposed population that manifests malaria disease at time t (exposed individuals who
pass into the Ih class). θIh is the set of sick humans who recover from malaria (humans
who enter the Rh class). Λv is the recruitment of mosquitoes. µSv and µIv are the
mosquitoes that die naturally, respectively, in classes Sv and Iv. The individual cured
(α1R) of malaria disease recontacts malaria disease in recruitment.

Remark 2.1 In our model, mosquitoes do not recover from malaria. Each person
cured of malaria (Rh) is brought back into the susceptible population.
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Figure 1: Transfer diagram, the black dashed arrows indicate the direction of the infection,
the solid arrows represent the transition from one class to another.

The mathematical model without control is given

Ṡh = Λh + α1Rh − β
IvSh

Nh
− γ1Sh,

Ėh = β
IvSh

Nh
− γEh − γ1Eh,

İh = γEh − θIh − γ1Ih,

Ṙh = θIh − (γ1 + α1)Rh,

Ṡv = Λv − αEh

EhSv

Nh
− αIh

IhSv

Nh
− µSv,

İv = αEh

EhSv

Nh
+ αIh

IhSv

Nh
− µIv

(1)

with the initial conditions

Sh(0) > 0, Sv(0) > 0, Eh(0) > 0, Ih(0) > 0,

Iv(0) > 0, Rh(0) > 0.

Total human population and the number of vectors are described by the following
equations:

Ṅh = Λh − γ1Nh(t) (2)

and

Ṅv = Λv − µNv(t). (3)
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Symbols Description values Sources
Λh Constant recruitment rate for humans 5000 [20]
γ1 Natural mortality rate of humans 0.00167 [20]
µ Natural mortality rate of mosquitoes 0.01 estimate
Λv Constant recruitment rate for mosquitoes 150 [20]
θ Transfer rate of humans from Ih to Rh 0.3 estimate
αIh Contact rate of susceptible mosquitoes

with humans infected with malaria 0.05 estimate
αEh

Contact rate of susceptible mosquitoes
with humans exposed to malaria 0.07 estimate

β Contact rate of infected mosquitoes
with susceptible humans 0.425 estimate

γ Transition rate from Eh to Ih. 0.52 estimate

Table 1: The parameters of model (1).

Estimation of the total vector population at time t. Let us consider equations (3) and
(2). The total vector population is estimated at time t by

Nv =
Λv

µ
+

(
Nv(0)−

Λv

µ

)
exp(−µt).

The total human population is estimated at time t by

Nh =
Λh

γ1
+

(
Nh(0)−

Λh

γ1

)
exp(−γ1t); t ≥ 0.

3 The Optimal Control Problem

In this section, we introduce two controls u1 (prevention) and u2 (treatment) into the
model (1). Furthermore, we first prove the existence of two optimal controls u∗

1, u
∗
2 and

then give the characterization of these two controls. So far, there is no preventive vaccine
against malaria. In our study, we use the means of prevention other than vaccine.
The basic reproduction number R0 is given by

R0 =

√
βΛvγ1

Λhµ2(γ + γ1)

(
αEh

+
αIhγ

θ + γ1

)
.

3.1 Presentation of the problem

The controls u1 and u2 are defined as follows:

• u1(t) ∈ [0, 1] is the control corresponding to the distribution of mosquito nets,
preventive medication for children under five years and other means to prevent
malaria. The rate of people sleeping under mosquito nets or protecting themselves
against mosquitoes and/or preventing malaria is denoted by u1(t) ∈ [0, 1] with
t ∈ [0, tf ]. The ideal is to get the entire population to sleep under a mosquito net
and to warn all children, in this case u1 = 1. In reality, this is not possible, we seek
to protect the maximum number of people (u1 = u1max).
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• The second control u2(t) ∈ [0, 1] represents the treatment of patients over the
interval [0; tf ]. The control u2 that we consider here can therefore represent the
treatment of symptoms or the isolation of patients in hospitals to avoid possible
new infection. If all patients are treated, then u2 = 1.
For all positive t, we unambiguously denote ui(t) simply by ui for i = 1, 2.

By inserting the controls into the model (1), we get the following controlled equations:

Ṡh = Λh + α1Rh − β(1− u1)
IvSh

Nh
− γ1Sh,

Ėh = β(1− u1)
IvSh

Nh
− γEh − γ1Eh,

İh = γEh − (θ + u2)Ih − γ1Ih,

Ṙh = (θ + u2)Ih − γ1Rh,

Ṡv = Λv − αEh

EhSv

Nh
− αIh

IhSv

Nh
− µSv,

İv = αEh

EhSv

Nh
+ αIh

IhSv

Nh
− µIv

(4)

with the initial conditions

Sh(0) > 0, Sv(0) > 0, Eh(0) > 0, Ih(0) > 0,

Iv(0) > 0, Rh(0) > 0.

The basic reproduction number (Rc
0) of the model (4) is the number of cases generated

by the primary infected individual under controls u1 and u2. This demonstrates that
controls u1 and u2 play a role in combating malaria disease. We observe that if u1 =
u2 = 0 (absence of all malaria control strategies), then we recover the same reproduction
number R0 as in the model (1) without control (Rc

0 = R0, if u1 = u2 = 0),

Rc
0 =

√
βΛvγ1(1− u1)

Λhµ2(γ + γ1)

(
αEh

+
αIhγ

θ + u2 + γ1

)
.

Remark 3.1 The objective of these controls is to observe the effect of malaria treat-
ments and the effect of preventive measures in the fight against malaria. Furthermore,
we aim to propose strategies to minimize the infected population (Ih) while maximizing
the recovered population (Rh) and the susceptible population (Sh).

3.2 Study of optimal control problem

In this section, we define the Hamiltonian associated with the control problem (4). Then
we characterize the solutions of control problem (4) after proving their existence. Mathe-
matically, for a fixed terminal time tf , the problem is to minimize the functional objective
J on [0, tf ] .

J(u1, u2) =

∫ tf

0

(
Ih(t)− Sh(t)−Rh(t) +

A1

2
u2
1(t) +

A2

2
u2
2(t)

)
dt. (5)
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The first terms represent the gain for the Ih that we wish to reduce. The constants
A1 and A2 are positive, and correspond to the weights that regularize the control for
prevention and treatment, respectively. As given in the literature, the costs are assumed
to be quadratic functions. Indeed, costs are rarely linear, and are often presented as non
-linear functions of control. Other types of functions exist in the literature [2, 4, 6, 10].
The most natural thing to do is to consider quadratic functions. These also allow us to
make the analogy with the energy that is expanded here for all these measurements. Our
objective is to limit the transmission of the disease by reducing the number of mosquitoes
and infected humans.

We determine the optimal control (u∗
1, u

∗
2) such that

J(u∗
1, u

∗
2) = min {J(u1, u2) : (u1, u2) ∈ Γ} , (6)

where

Γ =
{

(u1, u2),
{
ui(t) is a continuous function by pieces on [0,tf ]

ai≤ui(t)≤bi

}
(7)

is the set of controls and ai, bi are constants belonging to [0;1], i = 1, 2. The optimal
control problem is then solved when we determine (u∗

1, u
∗
2) ∈ Γ which minimizes the

function (5).

Definition 3.1 (the Hamiltonian of the minimization problem) Pontryagin’s maxi-
mum principle [12] converted (4), (5) and (6) into the problem of minimizing the Hamil-
tonian H defined by

H = −Sh −Rh + Ih +
A1

2
u2
1 +

A2

2
u2
2 +

6∑
i=1

λifi, (8)

where



f1

f2

f3

f4

f5

f6


=



Λh + α1Rh − β(1− u1)
IvSh

Nh
− γ1Sh

β(1− u1)
IvSh

Nh
− γEh − γ1Eh

γEh − (θ + u2)Ih − γ1Ih

(θ + u2)Ih − (γ1 + α1)Rh

Λv − αEh

EhSv

Nh
− αIh

IhSv

Nh
− µSv

αEh

EhSv

Nh
+ αIh

IhSv

Nh
− µIv


is the righ-hand side of the differential equation (1), the state variable and λi,
i = 1, ..., 6, are the adjoint variables associated with their respective states.

Theorem 3.1 Consider the optimal control problem (4) subject to (5). Then
there exist an optimal pair of controls (u∗

1, u
∗
2) and corresponding optimal states

(Sh, Eh, Ih, Rh, Sv, Iv) that minimize the objective function J(u1, u2) over the set of ad-
missible controls Γ.
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Proof. The existence of optimal control can be proved by using the results from
[7] (see Theorem 2.1) and Fleming’s results [3] (Theorem III.4.1), we must check the
following conditions:

• the set of controls and solutions present is nonempty,

• the admissible set Γ is convex and closed,

• the vector field of the state system is bounded by a linear function of control,

• the objective function is convex,

• there exist constants c1, c2 > 0 such that the integrated part of the objective
function is bounded by c1(|u1|2 + |u2|2)

p
2 − c2.

(1) We verify these conditions thanks to a result of Lukes et al. [8], which assures the
existence of solutions for the state system (1).

(2) The set Γ is convex and bounded by definition.

(3) The right-hand side of the state system (4) is bounded by a linear function in the
state and control variables.

(4) The integrated part of the objective functional is

f0(X,u1, u2) = Ih − Sh −Rh +
A1

2
u2
1 +

A2

2
u2
2.

The Hessian matrix of f0(X,u1, u2) is given by

Mf0 =

(
A1 0
0 A2

)
,

Spec(Mf0) = {A1, A2} ⊂ R∗
+.

So, by using [1], f0 is strictly convex over U .

(5) We have

f0(X,u1, u2) = Ih(t)− Sh(t)−Rh(t) +
A1

2
u2
1(t) +

A2

2
u2
2(t),

= Nh − Eh − 2Rh − 2Sh +
A1

2
u2
1(t) +

A2

2
u2
2(t),

≥ −Eh − 2Rh − 2Sh +
A1

2
u2
1(t) +

A2

2
u2
2(t),

≥ 1

2
min {A1, A2}

(
|u1(t)|2 + |u2(t)|2

)k/2 − (Eh + 2Rh + 2Sh),

≥ c1
(
|u1(t)|2 + |u2(t)|2

)k
2 − c2,

where c1 =
1

2
min {A1, A2} > 0, c2 = Eh + 2Rh + 2Sh and k ≥ 1, so the last

assertion is verified.
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Since the state variables are bounded, we deduce the existence of an optimal control
(u∗

1, u
∗
2) which minimizes the objective function J(u1, u2) in (5). 2

We are now interested in the characterization of a control u∗ = (u∗
1, u

∗
2), the solution

of (7). Pose Z = (Sh, Eh, Ih, Rh, Sv, Iv), U = (u1, u2) and L = (λ1, λ2, λ3, λ4, λ5, λ6),
being the adjoint variables. We define the Lagrangian associated with the problem (this
one corresponds to the Hamiltonian increased by the penalties).

L(Z,U,L) = Ih −Rh − Sh +
A1

2
u2
1 +

A2

2
u2
2

+ λ1

(
Λh + α1Rh − β(1− u1)

IvSh

Nh
− γ1Sh

)
+ λ2

(
β(1− u1)

IvSh

Nh
− γEh − γ1Eh

)
(9)

+ λ3 (γEh − (θ + u2)Ih − γ1Ih) + λ4 ((θ + u2)Ih − (γ1 + α1)Rh)

+ λ5

(
Λv − αEh

EhSv

Nh
− αIh

IhSv

Nh
− µSv

)
+ λ6

(
αEh

EhSv

Nh
+ αIh

IhSv

Nh
− µIv

)
− w11(u1 − a1)− w12(b1 − u1)

− w21(u2 − a2)− w22(b1 − u2),

where wij(t) ≥ 0, i, j = 1, 2, are the penalty coefficients verifying

w11(u1 − a1) = w12(b1 − u1) = 0 for optimal control u∗
1 and

w21(u2 − a2) = w22(b2 − u2) = 0 for optimal control u∗
2.

(10)

Theorem 3.2 Consider an optimal control u∗ = (u∗
1, u

∗
2) ∈ Γ and corresponding

states X = (Sh, Eh, Ih, Rh, Sv, Iv) of system (4), there exist adjoint functions (λi,
i = 1, ..., 6) satisfying

λ̇1 = −
(
−1− λ1

(
(1− u1)

βIv
Nh

− γ1

)
+ β(1− u1)

Iv
Nh

λ2

)
,

λ̇2 = −
(
−(γ1 + γ)λ2 + γλ3 −

αEh
Sv

Nh
λ5 +

αEh
Sv

Nh
λ6

)
,

λ̇3 = −
(
1− λ3(θ + u2 + γ1) + λ4(θ + u2)−

αIhSv

Nh
λ5 +

αIhSv

Nh
λ6

)
,

λ̇4 = − (α1λ1 − (γ1 + α1)λ4 − 1) ,

λ̇5 = −
(
−λ5

(
µ+

αEh
Eh

Nh
+

αIhIh
Nh

)
+ λ6

(
αEh

Eh

Nh
+

αIhIh
Nh

))
,

λ̇6 = −
(
−βSh

Nh
λ1 +

βSh

Nh
λ2 − µλ6

)

(11)

with the transversality conditions given by λi(tf ) = 0, i = 1, ..., 6. Furthermore, the
optimal controls are characterized by

u∗
1 = max

{
a1,min

{
b1,

(
λ2(t)− λ1(t)

A1

)
β
Sh

Nh

}}
,

u∗
2 = max

{
a2,min

{
b2,

(λ3(t)− λ4(t))

A2
Ih

}}
.

(12)
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Proof. The differential equations for the adjoint variables are standard results from
Pontryagin’s maximum principle [17]. The right-hand sides of the differential equations
can be easily computed. Let w∗ = (u∗

1, u
∗
2) be the corresponding solution

X = (Sh, Eh, Ih, Rh, Sv, Iv) that minimizes J(u1, u2) over Γ. By Pontryagin’s maximum
principle [17], there exist adjoint functions

p(t) = (λ1(t), λ2(t), λ3(t), λ4(t), λ5(t), λ6(t)), t ∈ [0, tf ]),

verifying the following conditions:

dp(t)

dt
= −∂H

∂X
, (13)

dX(t)

dt
=

∂H

∂p
, (14)

∂L
∂u1

=
∂L
∂u2

= 0. (15)

The condition (13) yields the system (11) and condition (14) yields the system (4). The
optimality condition (15) gives the following system:

∂L
∂u1

∣∣∣∣(u1=u∗
1)

= A1u
∗
1 + λ1β

IvSh

Nh
− λ2β

IvSh

Nh
− w11 + w12 = 0,

∂L
∂u2

∣∣∣∣(u2=u∗
2)

= A2u
∗
2 + λ1β

IvSh

Nh
− λ2β

IvSh

Nh
− w21 + w22 = 0.

(16)

By solving (16) and using (10), we obtain the result (12) 2

3.3 Numerical simulation

First, note that the optimality system is a problem with two boundary conditions. Indeed,
the state system is solved in the direction with the initial conditions
X(0) = (100, 90, 70, 100, 60). The adjoint functions are solved in the opposite direction
[5], with the transversality conditions λi(tf ) = 0, i = 1, ..., 6, where tf = 12 months.
The numerical simulations are obtained by using Python. The control curves in Figure

Figure 2: u1 and u2 control curves.

2 show the period of application for the controls u1 and u2. The curve of u1 shows
that the period of implementation for control u1 are the first nine months of the year.
The measurement control has no effect during the last quarter (October, November and
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December) of the year. The best period for implementing preventive measures (u1) is
the month of June. Furthermore, the government’s efforts should be focused on the
month of June. The best time of the year for distributing mosquito nets, spraying public
space and vaccinating the susceptible human population is June. For better prevention
results, 50% of the population should be involved. The curve of (u2) in Figure 2 shows
that the control (u2) of malaria patient care should be applied continuously throughout
the year. For better results, over +70% of malaria patients should be supported by the
government.

Figure 3: Sh(t) Figure 4: Eh(t)

Figure 5: Ih(t) Figure 6: Rh(t)

Figure 7: Sv(t) Figure 8: Iv(t),

Population dynamics with different control aspects u1 and u2.

Comment

The curves of Figure 3 describe the dynamics of the susceptible human population (Sh)
by using the treatment (u2) and prevention (u1) controls. This proves that treating only
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malaria patients (control u2) has a negligible effect in the fight against malaria. If we ap-
ply only treatment (control u2), we observe a smaller effect on the susceptible population.
Preventive measures are the best way to preserve the susceptible population (Sh) from
malaria disease. Furthermore, if prevention and treatment are applied simultaneously,
the susceptible population remains protected from malaria.

The curves of Figure 4 describe the dynamics of Eh by using u1 and u2 controls. This
proves that treating malaria patients has a great effect in the exposed population (Eh).
We have found that if all the controls are applied, the number of malaria exposed cases
(Eh) falls and comes to zero after two months. We also note that if all the controls are
applied, no individual is exposed to the disease after two month. Providing treatment is
the most effective control strategy (control u2) to be applied to the exposed population.
Moreover, if we simultaneously apply treatment (u2) and preventive measures (u1) to the
exposed population, then the number of the exposed individuals decreases to zero after
two months.

The curves in Figure 5 show the dynamics of Ih by using u1 and u2 controls. This
proves that treating malaria patients and using preventive measures have a great effect in
the fight against malaria. We have found that if all the controls are applied, the number
of malaria infected (Ih) cases falls and becomes zero after three months. We also note
that if all the controls are applied, no individual is infected with the disease after three
months. To observe the effect of controls on the infected human population (Ih), we need
to simultaneously apply both treatment (control u2) and preventive measures (control
u1).

The curves of Figure 6 show the dynamics of Rh by using u1 and u2 controls. This
proves that treating malaria patients (control u2) has a great effect in the fight against
malaria. We have found that if all the controls are applied, the number of malaria
cured persons increases. Treatment (control u2) has a significant effect on the recovery
of malaria patients. Preventive measures (control u1) have a less considerable effect on
recovered individuals (Rh).

The curves of Figure 7 describe the dynamics of Sv by using u1 and u2 controls.
This proves that treating (u2) malaria patients and using preventive measures (u1) have
a great effect in the fight against malaria. We have found that if all the controls are
applied, the number of susceptible vectors increases. If preventive measures (u1) are
applied, susceptible mosquitoes cannot become infected from the infected human popu-
lation (Ih, Eh).

The curves of Figure 8 describe the dynamics of (Iv) by using u1 and u2 controls. This
proves that treating malaria patients (Ih) has a great effect in the evolution of infected
vectors (Iv). We have found that if all the controls are applied, the number of infected
falls and becomes zero after ten months.

4 Conclusion

In this paper, we have developed a SEIRS malaria mathematical model. We considered
model (1), in which we introduced two controls, u1 and u2. The control u1 in our
model shows that the best way to prevent malaria disease is to prevent contact between
susceptible people (Sh) and infected vectors (Iv) by using impregnated mosquito nets
and spraying public spaces. If all these preventive measures are followed, malaria will
disappear after a long period of application of measures. The government should support
the susceptible population (by distributing mosquito nets, spraying public areas and
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distributing preventive pharmaceutical products to children under the age of five years).
The control u1 in our model proves that, in order to fight against malaria, it is necessary
to develop diverse strategies:

• Subsidize the access of malaria patients to hospitals or take care of all malaria
patients or take care of 90% of malaria patients. Otherwise, through the infected
people who are not treated for malaria, many Anopheles become infected and then
spread the malaria disease.

• Reduce the population’s exposure to malaria through awareness raising, free distri-
bution of impregnated mosquito nets, access to preventive care for children under
five years of age, free access to anti-malarial treatment, malaria testing, etc. We can
also, in the framework of the fight against malaria, take into account the mortality
rate of mosquitoes, that is to say, increase the mortality of mosquitoes by killing
infected Anopheles around the population (by using insecticides or other means).
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Abstract: We consider mixed boundary control systems inducted by non-isothermal
axial dispersion chemical tubular reactors. We characterize the well-posedness, ap-
proximate controllability, and transfer function of the mixed boundary control system.
There exists an admissible operator control such that the mixed boundary control
system is well-posed. By constructing an extended space, the classical solution can
be obtained explicitly. Sufficient conditions for approximate controllability of the
mixed boundary control system are identified by the eigenvalues and eigenvectors of
the Sturm-Loiuville operator using an equivalence in the extended space. A proper
transfer function of the associated boundary control system equipped with an output
can be constructed. The proper transfer function shows that the associated boundary
control system is well-posed.

Keywords: chemical tubular reactor; boundary control system; well-posed; approxi-
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1 Introduction

A non-isothermal reaction is a reaction in the process taking place at a temperature
varying from one point to another. Dynamical analysis of non-isothermal tubular re-
actors has been studied massively recently, see [1–6]. The dynamics of non-isothermal
axial dispersion chemical tubular reactors are described by nonlinear partial differential
equations (PDEs) derived from mass and energy balance equations. The nonlinearities
are usually located in the kinetic terms due to the Arrhenius law for non-isothermal
reactors. In particular, let L be the length of the tubular reactor and if the reaction is
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characterized by first-order kinetics with respect to the reactant concentration C = 1,
then the reactor temperature T (ξ, τ) at the position ξ, 0 ≤ ξ ≤ L, and the time τ govern
the boundary problem of the nonlinear PDEs:

∂T

∂τ
= D

∂T

∂ξ2
− υ

∂T

∂ξ
− ∆H

ρCp
k0e

−E/RT − 4h

ρCpd
(T − Tc(τ)),

D
∂T

∂ξ
(0, τ) = υ[T (0, τ)− Tin(τ)],

∂T

∂ξ
(L, τ) = 0,

(1)

where D, υ, ∆H, ρ, Cp, k0, E, R, h, d, Tc, and Tin denote the energy dispersion coef-
ficients, the superficial fluid velocity, the heat of reaction, the density, the specific heat,
the kinetic constant, the activation energy, the ideal gas constant, the wall heat transfer
coefficient, the reactor diameter, the coolant temperature, and the inlet temperature,
respectively.

Well-posedness for the nonlinear problem (1) is crucial. There is a complex problem
when dealing with the nonlinearity of infinite dimensional system. Linearization about
the steady state is an approximate solution to the problem. The linearization transforms
the system into a boundary control system, specifically, a mixed boundary control system
with inner and boundary controls u and v, respectively, see (5). Therefore, we will focus
on the linearized system, addressing its well-posedness, approximate controllability, and
the well-posedness of the related input-output system.

In general, the well-posedness for the control systems is determined by the well de-
finability and boundedness of the mappings of input to state, input to output, initial
state to input, and initial state to final state [7]. For the mixed boundary control system
of the linearized system of system (1), the well-posedness requires the boundedness of
the existence of the admissible control operator (input-state map) B, see Definition 2.1
below. Thus, the well-posedness of the linearized system depends on the well-posedness
of the state-space formulation (A,B). In the state-space, sufficient and necessary condi-
tions for (approximate) controllability have been investigated, see [8–11]. However, for
sufficiently smooth inputs, we can redefine the state space to be an extended state space,
for illustration, see (15). By this construction, the sufficiency for the well-posedness and
controllability of the associated problems (systems) with respect to some state space have
been investigated, see [8, 12–14]. These facts guide investigations to the well-posedness
and controllability for the linearized system of system (1).

Henceforth, we consider the associated state-space (A,B,C) of the linearized system
of system (1), where C is the input-output map. In this space, the boundedness of C
implies the well-posedness for the control system [15]. On the other hand, the bounded-
ness of C can be identified by a system transfer function. Curtain and Weiss [16] proved
that C is bounded if and only if the transfer function is uniformly bounded in a right
half-plane. Therefore, to prove the well-posedness, it is enough to show that the transfer
function is bounded in some right half-plane. Unfortunately, this approach is for only a
few systems. In a class of structural control systems that measure acceleration at a point,
the boundedness of C is proved by showing that the transfer function is proper [17]. In
the paper, the justification of the transfer function was not computed directly but the
properness of the transfer function is shown due to the fact that the infinitesimal gener-
ator generates an analytic semigroup. Now, one should justify the transfer function of
the state-space (A,B,C) for the linearized system of system (1).
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2 A Mixed Boundary Control Problem of Chemical Reactor

To facilitate analysis, the dynamic model (1) will be converted into an equivalent dimen-
sionless distributed parameter system. By putting the new state variables

t =
τυ

L
, x =

ξ

L
, Pe =

υ

D
,

B = −∆Hk0LDe
−E/RT0

υT0
, γ =

E

RT0
, β =

4hD2L

dυ
,

z =
T − T0
T0

, u =
Tc − T0
T0

, v =
Tin − T0
T0

,

where T0 is a reference temperature and Pe is a Peclet number, we get the nonlinear
dimensionless model

zt(x, t) =
1
Pe
zxx(x, t)− zx(x, t) +Beγz(x,t)/(1+z(x,t)) + β[u(t)− z(x, t)],

z(0, t)− 1
Pe
zx(0, t) = v(t),

zx(1, t) = 0.

(2)

Let zs(x), us, vs be the steady states of the system (2), so these functions satisfy

0 =
1

Pe

d2zs
dx2

(x)− dzs
dx

(x) +Beγzs(x)/(1+zs(x)) + β[us − zs(x)],

vs = zs(0)−
1

Pe

dzs
dx

(0),

0 =
dzs
dx

(1).

(3)

By linearizing the nonlinear system (2) about the steady states and using the same
symbols again, we have the linearized system

zt(x, t) =
1
Pe
zxx(x, t)− zx(x, t) + J(x)z(x, t) + βu(t),

z(0, t)− 1
Pe
zx(0, t) = v(t),

zx(1, t) = 0,

(4)

where J(x) = eγzs(x)/(1+zs(x))/(1 + zs(x))
2. We note that this problem is a distributed

parameter system controlled both internally and at the boundary, and referred to as
the mixed boundary control problem. We will focus on analyzing the mixed boundary
control problem (4) with the interior control u = u(t) and the boundary control v = v(t),
t ≥ 0.

We recall the abstract mixed boundary control problem [8,18]

ż(t) =Az(t) +Bdu(t), z(0) = z0,

Bz(t) = v(t),
(5)

where A : D(A) ⊂ Z → Z, Bd ∈ L(U,Z), B : D(B) ⊂ Z → V such that D(A) ⊂ D(B),
and Z,U, V are separable Hilbert spaces. We simplify the mixed boundary control system
(5) by (A,B).
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Definition 2.1 The mixed boundary control system (A,B) (5) is said to be well-
posed if:

(a) The operator A : D(A) → Z, where D(A) = D(A) ∩ ker (B) and

Az = Az, for all z ∈ D(A), (6)

is the infinitesimal generator of a C0-semigroup T (t) on Z;

(b) There is an admissible control operator B ∈ L(V,Z) for T (t) such that for each
v ∈ V , Bv ∈ D(A), AB ∈ L(V,Z) and

BBv = v. (7)

Condition (b) implies that the operator B is onto on V . Therefore, B has at least one
bounded right inverse F ∈ L(V,Z). In this case, we can put B = (A − A)F . Further,
we can show that

A = A+BB and B(sI −A)−1B = I (8)

for all s ∈ ρ(A).
We begin to analyze the linearized system (4). We set Z = L2(0, 1), U = V = C, and

define the operator A : D(A) ⊂ Z → Z as

A :=
1

Pe

d2

dx2
− d

dx
+ J(x) (9)

with
D(A) =

{
h ∈ L2(0, 1) : h and dh

dx are a.c., d2h
dx2 ∈ L2(0, 1),

dh
dx (1) = 0

}
,

where a.c. denotes ”absolutely continuous”.
We define an operator B : D(B) ⊂ Z → V by

Bh := h(0)− 1

Pe

dh

dx
(0) with D(B) = D(A) (10)

and an operator A : D(A) ⊂ Z → Z by

A :=
1

Pe

d2

dx2
− d

dx
+ J(x) (11)

with D(A) = D(A) ∩ kerB.

Theorem 2.1 The linearized system (4) is a well-posed mixed boundary control prob-
lem.

Proof. Let Z = L2(0, 1), U = V = C. We consider the operators A,B, and A
defined in (9), (10), and (11) on their domains, respectively. It is clear that Az = Az
for all z ∈ D(A). We see that A = −A0, where A0 is the Sturm-Liouville operator,
where ρ(x) = Pee

−Pex and p(x) = e−Pex, see [8]. Therefore, A is closed, negative, and
self-adjoint with respect to the weighted inner product

⟨h1, h2⟩ρ :=

∫ 1

0

h1(x)h2(x)ρ(x) dx.
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Additionally, the eigenvalues of A are real, simple, and form a decreasing sequence. The
corresponding eigenfunctions are also orthogonal with respect to the weight function w.
Therefore, A is the infinitesimal generator of an exponentially stable semigroup T (t) on
Z and T (t) ≥ 0 for all t ≥ 0. Let (λn, ϕn), n ∈ N ∪ {0}, be the pairs of the eigenvalue
and the corresponding eigenfunction of A, we have

T (t)z =

∞∑
n=0

eλnt⟨z, ϕn⟩ρϕn for all z ∈ Z. (12)

Henceforth, if we define an operator Bv = b(x)v for all v ∈ V , where b(x) = 1 + cePex

for some constants c, then B satisfies (7). We confirm that the operators A, A, B, and
B satisfy Definition 2.1 on Z, U , and V . We conclude that the mixed boundary control
problem (4) is well-posed.

To investigate the solution explicitly, we need to reformulate equation (5) to be an
abstract Cauchy problem. In this context, we have a relationship of the solution of the
mixed boundary control problem (5) and the solution of the related Cauchy problem.
For this purpose, several assumptions are required.

Consider the mixed boundary control system (A,B) (5) of problem (4) for v̇ ∈
L1([0, τ ], V ) and u ∈ L1([0, τ ], U), where A,B and A are defined in (9), (10) and (11),
respectively. The related abstract Cauchy problem of (5) is

ẇ(t) =Aw(t)−Bv̇(t) +ABv(t) +Bdu(t),

w(0) =w0.
(13)

The assumptions guarantee the existence and uniqueness of a classical solution to problem
(13) for w0 ∈ D(A).

Theorem 2.2 If v ∈ C2([0, τ ], V ), u ∈ C1([0, τ ], U), and w0 ∈ D(A), where w0 =
z0 −Bv(0), then problems (5) and (13) have the classical solutions related by

w(t) = z(t)−Bv(t). (14)

Moreover, problem (5) has a unique classical solution.

Proof. Let w be the classical solution of problem (13). This gives w(t) ∈ D(A) ⊂
D(A) ∩ D(B) and Bv(t) ∈ D(B). Since w(t) ∈ ker (B), (7) gives

Bz(t) = B[w(t) +Bv(t)] = Bw(t) + BBv(t) = v(t).

Further, from equations (13) and (14), we have

ż(t) = ẇ(t) +Bv̇(t) = Az(t) +Bdu(t).

Thus, the function z in (14) is the classical solution of problem (5) when w is the classical
solution of problem (13).

The converse is shown similarly and the uniqueness of z follows from the uniqueness
of w.

Alternately, we can reformulate problem (5) to be the abstract Cauchy problem (13)
without the derivative of the boundary control term. In this context, we define an
extended state space P := V ⊕ Z and reformulate problem (13) on P:

ṗ(t) = Ap(t) +Bu(t),

p(0) = p0,
(15)
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where A =

[
0 0

AB A

]
, B =

[
I 0

−B Bd

]
, p(t) =

[
v(t)
w(t)

]
, u(t) =

[
v̇(t)
u(t)

]
, and

p0 =

[
v0
w0

]
. We verify that the operator A generates a C0-semigroup K(t) on P, given

by

K(t) =

[
I 0
S(t) T (t)

]
, (16)

where S(t)p1 =
∫ t

0
T (t− s)ABp1 ds, p1 ∈ V .

Theorem 2.3 If v ∈ C2([0, τ ], V ), ud ∈ C1([0, τ ], U), and w0 ∈ D(A), then p(t) =[
v(t)
w(t)

]
is the unique classical solution of problem (15), where w is a unique classical

solution of problem (13). Moreover, if z0 = w0 + Bv(0), then the classical solution of
problem (5) is defined by

z(t) =
[
B I

]
p(t)

= Bv(t)− T (t)Bv(0) + T (t)z0 −
∫ t

0

T (t− s)Bv̇(s) ds+

∫ t

0

T (t− s)ABv(s) ds

+

∫ t

0

T (t− s)Bdu(s) ds. (17)

Proof. We see that A :=

[
0 0

AB A

]
on D(A) = V ⊕ D(A) is the infinitesimal

generator of a C0-semigroup on P and

[
I 0
B Bd

]
∈ L(V ⊕ U,P). This gives that

system (15) is well-defined. Moreover, the mild solution of problem (15) is given by

p(t) =

[
I 0
S(t) T (t)

] [
v0
w0

]
+

∫ t

0

[
I 0

S(t− s) T (t− s)

] [
I 0

−B Bd

] [
v̇(s)
u(s)

]
ds, (18)

where S(t)p1 =

∫ t

0

T (t− s)ABp1 ds, p1 ∈ V . The first component of (18) is

p1(t) = v0 +

∫ t

0

v̇(s) ds = v(0) +

∫ t

0

v̇(s) ds = v(t).

Since p(0) = p0 =

[
v0
w0

]
∈ D(A), the hypothesis and uniqueness theorem gurantee that

p(t) is the unique classical solution of problem (15) satisfying ṗ1(t) = v̇(t). Also, from
the second component of (18), we have

ṗ2(t) = ABv(t) +Aw(t)−Bv̇(t) +Bdu(t).

Since p2(0) = w0, problem (13) has a unique classical solution p2(t) = w(t).
Next, if z0 = w0 +Bv(0), then Theorem 2.2 gives[

B I
]
p(t) = Bv(t) + p2(t) = Bv(t) + w(t) = z(t).
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On the other hand, the mild solution of (13) is given by

w(t) =T (t)w0 −
∫ t

0

T (t− s)Bv̇(s) ds+

∫ t

0

T (t− s)ABv(s) ds+
∫ t

0

T (t− s)Bdu(s) ds.

The last two results give (17).

3 Approximate Controllability for Mixed Boundary Control System

We will investigate an approximate controllability for the mixed boundary control system
(4). If v is a differentiable control satisfying v̇ ∈ L2([0, τ ], V ), then the mild solution of
problem (4) is well-defined. We define the customized reachability subspace:

Rb =
{
z ∈ Z : there are a τ > 0 and a differentiable control v, with v(0) = 0,

v, v̇ ∈ L2([0, τ ], V ) and z(τ) is the classical solution (17)
}
.

The mixed boundary control system is said to be approximately controllable if Rb is
dense in Z. Let Re be the reachability subspace of the extended system (A,B) on P,
i.e.,

Re =
{
p ∈ P : there exists a τ > 0 and u ∈ L2([0, τ ], V ⊕ U) such that

p(τ) =

∫ τ

0

K(τ − s)Bu(s)ds
}
.

Theorem 3.1 If the extended system (A,B) is approximately controllable, then the
mixed boundary control system (4) is also approximately controllable.

Proof. Refer to the proof of Theorem 2.3, we have Rb =
[
B I

]
Re. This implies

that if Re is dense in P, then Rb is dense in Z.
We recall that A has real eigenvalues {λn : n ≥ 1} and a biorthogonal pair {(ϕn, ϕn) :

n ≥ 1} due to A is self-adjoint. We consider that the operator B is finite-rank defined
by

Bv =

m∑
i

bivi, bi ∈ Z, (19)

where v = (v1, v2, . . . , vm) ∈ V = Cm and bi(x) = 1 + cie
Pex for some constants ci. In

the following, we have some results of system (15) on P = V ⊕ Z.

Lemma 3.1 The operator A in (15) has the biorthogonal pair {(ϕ̃n, ψ̃n) : n ≥ 1},
where

ϕ̃n =

[
0
ϕn

]
and ψ̃n =

[
1
λn

(AB)∗ϕn
ϕn

]
,

whenever λn ̸= 0.

Proof. From the hypothesis, we see that Aϕn = λnϕn, where λn is real for all n ∈ N.
For µn ̸= 0, let ϕ̃n =

[
ϕ̃1n ϕ̃2n

]tr
and ψ̃n =

[
ψ̃1
n ψ̃2

n

]tr
, where Qtr denotes the

transpose of Q. Taking into account Aϕ̃n = µnϕ̃n gives ϕ̃1n = 0, ϕ̃2n = ϕn and µn = λn.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 24 (6) (2024) 648–662 655

Similarly, A∗ψ̃n = µnψ̃n = λnψ̃n gives (AB)∗ψ̃2
n = λnψ̃

1
n and A∗ψ̃2

n = λnψ̃
2
n. This forces

that ψ̃2
n = ϕn and ψ̃1

n = 1
λn

(AB)∗ϕn.
This lemma stresses that the operators A and A have common nonzero eigenvalues.

However, if 0 is not an eigenvalue of A (0 ∈ ρ(A)), where ρ(A) is the resolvent set of A,
we have the following.

Lemma 3.2 If 0 ∈ ρ(A), then λ0 = 0 is the eigenvalue with multiplicity m of A and
the corresponding biorthogonal pair

ϕ̃i0 =

[
ei

−A−1(AB)ei

]
, ψ̃i

0 =

[
ei
0

]
,

where {ei : i = 1, 2, . . . ,m} is the usual orthonormal basis of V = Cm.

Proof. The fact that 0 ∈ ρ(A) implies that A is invertible. Let ϕ̃i0 =
[
ϕ̃i10 ϕ̃i20

]tr
and ψ̃i

0 =
[
ψ̃i1
0 ψ̃i2

0

]tr
, i = 1, 2, . . . ,m, be the corresponding biorthogonal pair of A

associated with λ0 = 0. The equation Aϕ̃i0 = 0 gives ϕ̃i20 = −A−1(AB)ϕ̃i10 . Chooshing
ϕ̃i10 = ei gives the assertion. Finally, A∗ψ̃i

0 = 0 gives ψ̃i2
0 = 0 and ψ̃i1

0 = ei for i =
1, 2, . . . ,m.

Next, we assume the interior control Bd in (5) is given by

Bdu =

m∑
i=1

diui, di ∈ Z, (20)

where u = (u1, u2, . . . , um) ∈ V = Cm. The following theorem gives the sufficiency for
the approximate controllability of system (5).

Theorem 3.2 Let 0 ∈ ρ(A). The mixed boundary control system (5) with the interior
control (20) is approximately controllable if for each n ∈ N,

rank (⟨Ab1 − λnb1 + λnd1, ϕn⟩ρ, · · · , ⟨Abm − λnbm + λndm, ϕn⟩ρ) = 1. (21)

Proof. According to Theorem 3.1, we prove the approximate controllability of system
(15) in P. Following the proof of Theorem 4.2.3 of [8], we need to prove that Re = P.

However, Re = P is equivalent to for each n ≥ 1, there is a u(t) =

[
v̇(t)
u(t)

]
, where

v(t) = te0, u(t) = e0, e0 = (1, 1, . . . 1) ∈ Cm, implying ⟨Bu, ψ̃n⟩ ≠ 0. From the definitions
of B, u in (15) and ψ̃n in Lemma 3.1, we have

⟨Bu, ψ̃n⟩ =
〈
v̇, 1

λn
(AB)∗ϕn

〉
ρ
+ ⟨−Bv̇ +Bdu, ϕn⟩ρ

= ⟨v̇, (AB)∗ϕn⟩ρ + ⟨−λnBv̇ + λnBdu, ϕn⟩ρ
= ⟨ABv̇, ϕn⟩ρ + ⟨−λnBv̇ + λnBdu, ϕn⟩ρ
= ⟨ABv̇ − λnBv̇ + λnBdu, ϕn⟩ρ .

Equations (19) and (20) give ⟨Abi − λnbi + λndi, ϕn⟩ρ ̸= 0, i = 1, 2, . . . ,m, for each
n ∈ N, and (21) follows.

Lemma 3.3 Assume that A has the eigenvalue λ1 = 0 with the eigenvector ϕ1.
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(a) If ⟨Abi, ϕ1⟩ρ = 0 for i = 1, 2, . . . , r, then A has the corresponding eigenvectors ϕ̃i0 =[
ei
yi

]
and biorthogonal pairs ψ̃i

0 =

[
ei
0

]
, where yi = −

∑∞
n=2

1
λn

⟨Abi, ϕn⟩ρϕn,

for i = 1, 2, . . . , r.

(b) If ⟨Abi, ϕ1⟩ρ ̸= 0 for i = r + 1, . . . ,m, then A has the generalized eigenvectors

ϕ̃i0 =

[
⟨Abi, ϕ1⟩−1

ρ ei
xi

]
of order 2 satisfying Aϕ̃i0 =

[
0
ϕ1

]
with the biorthogonal

pair ψ̃i
0 =

[
⟨Abi, ϕ1⟩ρei

0

]
, where xi = −

∑∞
n=2

⟨Abi,ϕn⟩ρ
λn⟨Abi,ϕ1⟩ρϕn for i = r+1, . . . ,m.

Proof. (a) Lemma 3.2 implies that λ1 = 0 is the eigenvalue of A with multiplicity r.

Let the corresponding eigenvector of A have the form ϕ̃i0 =

[
ei
yi

]
. It gives Abi+Ayi = 0.

Multiplying this equation by ϕnρ and simplifying, we have ⟨yi, ϕn⟩ρ = − 1
λn

⟨Abi, ϕn⟩ρ.

The form of yi follows. Then the direct calculation of A∗ψ̃i
0 = 0 gives ψ̃i

0 =

[
ei
0

]
.

(b) For i fixed, r < i ≤ m, we can verify that

A2ϕ̃i0 =

[
0

A(Abi)
⟨Abi,ϕ1⟩ρ +A2xi

]
.

The facts that Abi ∈ D(A) and A is self-adjoint with respect to the inner product
⟨·, ·⟩ρ give the second component of A2ϕ̃i0 is 0. This confirms that ϕ̃i0 is the generalized

eigenvector of A of order 2. Further, A(Abi)
⟨Abi,ϕ1⟩ρ + A2xi = 0 implies that ⟨xi, ϕn⟩ρ =

− ⟨A(Abi),ϕn⟩ρ
λn⟨Abi,ϕ1⟩ρ . The required form of xi follows. The biorthogonal ψ̃i

0 is found easily.

Finally, since Abi can be expanded in ϕn, we have

Aϕ̃i0 =

[
0

Abi
⟨Abi,ϕ1⟩ρ +Axi

]
=

[
0
ϕ1

]
.

Remark 3.1 For r < i ≤ m, the set {ϕ̃n, ϕ̃i0 : n ∈ N, i = 1, 2, . . . ,m} generates a
Riesz basis of P = Cm ⊕ Z and the operator A has a spectral decomposition

Ap =

m∑
i=r+1

⟨p, ψ̃i
0⟩

[
0
ϕ1

]
+

∞∑
n=2

λn⟨p, ψ̃n⟩
[

0
ϕn

]
, p ∈ P.

Theorem 3.3 Let λ1 = 0 and A = Ã + Ah, where Ã is a Riesz operator on Ỹ =
spann≥2{ϕ̃n} and the operator Ah is finite-rank on Yh = spani=1,...,m{ϕ̃1, ϕ̃i0}. If (21)
holds for all n ≥ 2 and ⟨Abi, ϕ1⟩ ≠ 0 for all i ≥ r + 1, then the mixed boundary control
system (5) with the interior control (20) is approximately controllable.

Proof. From Exercise 4.17 of [8], the extended system (A,B) is approximately
controllable if and only if the systems (Ã, B̃) and (Ah, Bh) are approximately controllable.
We verify that (Ah, Bh) is exactly controllable. By Theorem 3.2, (Ã, B̃) is approximately
controllable when (21) holds for all n ≥ 2 and ⟨Abi, ϕ1⟩ ≠ 0 for all i ≥ r+1. The assertion
follows by Theorem 3.1.
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4 Transfer Function for Boundary Control Systems

The mixed boundary control system allows to be converted to the boundary control sys-
tem. Therefore, without loss of generality, we consider the boundary control system (4)
with u(t) = 0. Moreover, we assume that the output y(x, t) is a substrate concentration
measured at x, 0 ≤ x ≤ 1. The system equations are

zt(x, t) =
1
Pe
zxx(x, t)− zx(x, t) + J(x)z(x, t),

z(0, t)− 1
Pe
zx(0, t) = v(t),

zx(1, t) = 0,

y(x, t) = Kz(x, t),

(22)

where K ∈ L(Z, Y ) and Y is the output space. System (22) is rewritten as the abstract
boundary control system

ż(t) =Az(t), z(0) = z0,

Bz(t) = v(t),

y(t) =Kz(t).

(23)

The triple (A,B,K) denotes the boundary control system (23) with the output operator
K.

In this paper, we focus on the boundedness of the input-output map from v ∈
L2([0, τ ], V ) to y ∈ L2([0, τ ], Y ).

Definition 4.1 Let ŷ(s) and v̂(s) be the Laplace transform of the output and input
of system (23), respectively. A system transfer function is an operator G(s) such that

ŷ(s) = G(s)v̂(s)

for all s, Re s > σ for some real σ.

The definition implies that the input-output map is well-defined and the output is Laplace
transformable. Further, the system transfer function can be used to determine the bound-
edness of the input-output map.

Theorem 4.1 ( [16]) Let (A,B,K) be any boundary control system. The input-
output map of the system is bounded if and only if there exists a real number σ such that
the transfer function G(s) associated with (A,B,K) satisfies

sup
Re s>σ

∥G(s)∥L(V,Y ) <∞.

The function G(s) is said to be proper if the above inequality holds.

The boundary control system (23) can be written in the state-space form (A,B,C),
see [19]. Here, the operators A and B satisfy Definition 2.1. The operator C ∈ L(W,Y )
is defined by C = K|W , where W = ker(B). The following refers to Theorem 2.6 of [19].

Theorem 4.2 The input-output map of boundary control system (23) is well-defined
for all inputs v ∈ H2([0, τ ], V ), v(0) = 0. The output can be written as

y(t) = g(t) ∗ v(t),
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where g(t) is a distribution with the Laplace transform G(s). For each s ∈ ρ(A), the
operator G(s) ∈ L(V, Y ) is the system transfer function given by

G(s) = K(sI −A)−1B.

Proof. We consider the state-space formulation (A,B,C) of the boundary control
system (A,B,K) (23) constructed by the procedure above:

ż(t) =Az(t) +Bv(t), z(0) = z0,

y(t) =Cz(t),
(24)

where A is the infinitesimal generator of a C0-semigroup T (t) on Z. Let z be the solution
of (24). For any µ ∈ ρ(A), we can rewrite

z(t) = (µI −A)−1(µI −A)z(t)

= (µI −A)−1(µz(t)− ż(t)) + (µI −A)−1Bv(t). (25)

For all initial conditions z(0) = 0 and smooth controls v ∈ H2([0, τ ], V ) with v(0) = 0, the
first term in (25) is inW ⊂ Z for each time t because Bv ∈ D(A), see Definition 2.1. Since
A is the infinitesimal generator on Z with the domain D(A), (µI−A)−1B ∈ L(V,D(A)).
Further, for any µ ∈ ρ(A), Range(µI − A)−1B ⊂ Z and so (µI − A)−1B ∈ L(V,Z). By
applying the operator K to the solution z, we obtain the output y:

y(t) = K(µI −A)−1(µz(t)− ż(t)) +K(µI −A)−1Bv(t). (26)

Since W ⊂ Z, K(µI − A)−1 ∈ L(D(A), Y ) and K(µI − A)−1B ∈ L(V, Y ). Since both v
and z are Laplace transformable and due to the fact that z is the solution of (24), the
Laplace transform of both sides of (26) gives

ŷ(s) = K(µI −A)−1(µ− s)(sI −A)−1Bv̂(s) +K(µI −A)−1Bv̂(s).

This gives the system transfer function

G(s) = K(µI −A)−1(µ− s)(sI −A)−1B +K(µI −A)−1B.

By replacing µ = s, we obtain

G(s) = K(sI −A)−1B (27)

for any s ∈ ρ(A).
On the other hand, the input-output map of system (23) is

y(t) = K

∫ t

0

T (t− r)u(r) dr.

From (27), the distribution of G(s) is g(t) = KT (t)B. Therefore, the output can be
written as

y(t) =

∫ t

0

g(t− r)u(r) dr = g(t) ∗ u(t).

Remark 4.1 The resolvent operator R(s) := (sI−A)−1, s ∈ ρ(A), is given explicitly
by Theorem 7.1 in [20]. The reference initiated the study of the maximal and minimal
Sturm–Liouville operators, all self-adjoint restrictions of the maximal operator Tmax.
Moreover, the spectrum properties of A have been also comprehensively characterized.
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The form of the transfer function can be based entirely on the boundary control
description (23) not on the construction of a state-space realization. The transfer function
is defined in terms of an elliptic problem associated with the boundary control system.

Definition 4.2 The abstract elliptic problem (A,B)e corresponding to the boundary
control system (A,B) in (23) is

Az =sz, s ∈ C,
Bz = v.

(28)

The solution z ∈ Z is denoted by z(s).

Let α be the growth bound of the semigroup associated with (A,B). The elliptic
problem (28) has a unique solution z(s) for all v and Re s > α. The system transfer
function may be described through the solution to the abstract elliptic problem (28).

Theorem 4.3 If (A,B,K) is the boundary control system (23), then there exists an
α ∈ C such that the system transfer function G(s) is given by

G(s)v = Kz(s) for all s ∈ C, with Re s > α, (29)

where z(s) is the solution to the abstract elliptic problem (28) with input v.

Proof. Let α be the growth bound of the C0-semigroup T (t) generated by A. From
Theorem 4.2, for all s ∈ C with Re s > α, s ∈ ρ(A), we have the transfer function
G(s) = K(sI − A)−1B. Here, we note that A = A + BB and B(sI − A)−1B = I, see
(8). Therefore, we obtain A(sI − A)−1B = s(sI − A)−1B. This implies that z(s) =
(sI −A)−1Bv is the solution of abstract elliptic problem (28). The assertion follows.

Alternatively, since B is onto, for any given v ∈ V , we can choose z ∈ Z such that
Bz = v. We define G ∈ L(V, Y ) by

G(s)Bz := Kz − C(sI −A)−1(sz −Az). (30)

The definitions of A and C guarantee that G is well-defined. If z solves the associated
elliptic problem, then for any v ∈ V and s ∈ C with Re s > α, (30) gives

G(s)v = Kz(s).

Example 4.1 If the desired steady-state temperature profile of system (22) is essen-
tially uniform and the output y(t) is measured at x1, 0 ≤ x1 ≤ 1, this shows that the
control system is well-posed.

From the assumptions, we may linearize about a uniform temperature zs(x) =
constant, so J(x) becomes a constant. Let J(x) = c. We use the notations relating
with (9), (10), and (11) for J(x) = c, Z = L2(0, 1) and V = C. We have the associated
C0-semigroup T (t) is given in the form (12), where λn is the solution of the transcendental
equation

tanβn =
4Peβn

4β2
n − P 2

e

,

ϕn(x) = Bne
Pe
2 x

[
2βn

Pe
cosβnx+ sinβnx

]
,

β2
n =

4Pe(c− λn)− P 2
e

4
,
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where Bn are some constants. We note that the eigenvalues λn, n ∈ N ∪ {0}, form the
decreasing sequence of negative real numbers, see Lemma 5.1 of [1].

The elliptic problem corresponding to system (22) when the output y(t) is measured
at x1, 0 ≤ x1 ≤ 1, is

1

Pe

d2z

dx2
− dz

dx
+ cz = sz, s ∈ C,

z′(1) = 0,

z(0)− 1

Pe
z′(0) = v,

(31)

with the output equation
y = Kz(x1).

The solution of the elliptic problem (31) is

z(x, s) = e
Pe
2 x [A(v, s) cosβx+B(v, s) sinβx] ,

where

A(v, s) =
v[4Peβ cosβ + 2(P 2

e − 4β2 + 4β) sinβ]

4Peβ cosβ + (P 2
e − 4β2) sinβ

,

B(v, s) =
2Pev[2 sinβ − Pe cosβ]

4Peβ cosβ + (P 2
e − 4β2) sinβ

,

β2 =
4Pe(c− s)− P 2

e

4
.

In this problem, we have ∥T (t)∥ ≤Meλ0t, where λ0 = supn≥0 λn. Therefore, the growth
bound α = λ0. For all s ∈ C with Re s > λ0, Theorem 4.3 gives the system transfer
function

G(s) = Ke
Pe
2 x1 [A(s) cosβx1 +B(s) sinβx1] ,

where

A(s) =
4Peβ cosβ + 2(P 2

e − 4β2 + 4β) sinβ

4Peβ cosβ + (P 2
e − 4β2) sinβ

,

B(s) =
2Pe[2 sinβ − Pe cosβ]

4Peβ cosβ + (P 2
e − 4β2) sinβ

.

We see that the transfer function is proper, and in virtue of Theorem 4.1, the input-
output map is bounded. This implies that the control system is well-posed.

Remark 4.2 In the case J(x) is not a constant, using the fact that the set {ϕn} is
a basis for the state space Z, we can assume that J(x)z(x, t) can be expressed by

J(x)z(x, t) =

∞∑
n=0

fn(t)ϕn(x).

Therefore, by solving for fn, we can use the procedure above to find the transfer function.
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5 Conclusions

We concern with the mixed boundary control systems inducted by non-isothermal axial
dispersion chemical tubular reactors. The well-posedness, approximate controllability,
and transfer function of the mixed boundary control system can be determined. The well-
posedness is identified by the operator control B = 1 + cePex. Moreover, the classical
solution can be obtained using the extended space. The sufficiency for approximate
controllability is justified by the eigenvalues and eigenvectors of the Sturm-Loiuville
operator using the equivalence in the extended space. The proper transfer function of the
associated boundary control system equipped with an output can be constructed. The
transfer function ensures the well-posedness for the associated boundary control system.
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