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Abstract: This paper discusses the prey-predator model with habitats in reserved
and unreserved areas. The prey population can migrate from the reserved area to the
unreserved area and vice versa. The prey lives in the reserved and unreserved areas.
The predator freely hunts for the prey in the unreserved area. The Holling type III is
considered on the basis of its predatory characteristics. Interspecific competition for
prey occurs in the migration process. The dynamics of prey-predator is expressed as
a system of nonlinear differential equations. The stability of the interior equilibrium
point is analyzed locally. The eigenvalues of the Jacobian matrix together with the
Routh-Hurwitz stability test are used to determine the stability of the equilibrium
point. Using appropriate parameter values, simulations were conducted by varying
the parameter values of migration and interspecific competition. It was found that
there are up to three interior equilibrium points and there are conditions in which
there is no interior equilibrium point. It was also found that there are three interior
equilibrium points, one of which is unstable while the other two are bistable. The
change in migration rates and competition levels allows the prey population in the
reserved and unreserved areas and their predator to live together.
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1 Introduction

A mangrove forest is an ecosystem developed between estuaries and coastal areas. Man-
grove ecosystems are migration routes for many species of fish and other organisms.
Mangrove forests are the habitat of many species, including mangrove crabs, for feeding,
breeding, and protection from predators. In their life cycle, juvenile crabs migrate back
to the estuary, gradually enter the mangrove area, and develop into adults [1]. Mangrove
crabs are species that tend to attack and eat other mangrove crabs. Around mangrove
forests and coastal areas, the crab is preyed on by many fish, including Red Snapper
(Lutjanidae) and White Snapper (Lates calcarifer). In addition, various types of fish
dominated by carnivorous fish approach mangrove forests at high tide to find food [2].
The dynamics of population changes of migrating mangrove crabs and their predators
can be expressed in the form of a mathematical model.

The population dynamics dealing with the prey-predator model has been studied by
many researchers from different angles and with different purposes. Some researchers fo-
cus on the effect of predation functions such as the Holling function and the Beddington-
DeAngelis function, which consider the characteristics of predators in hunting to catch
their prey, see for example, [3–5]. Population dynamics in ecology also includes many
prey-predator interactions, harvesting and its consequences in the population dynamics
mechanism [6]. For certain reasons and conditions, the habitat of a population is divided
into a reserved area and an unreserved area for economic activities. Under such condi-
tions, the population is divided based on where it is located and the population can still
migrate from the reserved area to the unreserved area and vice versa [7, 8]. Migration
and harvesting in a prey-predator model can also be used as a control in bio-economic
models and an effort to prevent the population from extinction and to optimally utilize
the population as a valuable stock [9, 10].

Based on the previous research, a prey-predator model with prey migration in the
two areas and interspecific competition was developed. In this model, the influences
of migration and interspecific competition on the stability of the equilibrium point and
sustainability of the populations are analyzed. Mangrove crabs as the prey migrate from
mangrove area to the coastal area and vice versa, with mangroves as a reserved area and
the coastal zone as an unreserved area. Predator populations freely prey on mangrove
crabs in the unreserved area and follow the Holling type III predation function according
to the characteristics of populations. In the process of migration, interspecific competi-
tion between prey occurs naturally. The dynamics of prey and predator populations is
expressed as a system of nonlinear differential equations. The population dynamics is
analyzed by checking the conditions for the existence of interior equilibrium points and
analyzing the local stability. The nonlinear model is complex enough to be solved ana-
lytically. The Routh-Hurwitz stability test is used to investigate the local stability of the
interior equilibrium point of the model. The effects of migration rate and interspecific
competition on prey are analyzed using numerical simulations. The plots of trajectory
curves for prey and predator populations around the stable interior equilibrium point are
given to visualize the dynamics of prey and predator populations.

2 Methodology of Prey-Predator Model with Migration

This paper considers the dynamics of mangrove crabs or mud crabs (Scylla spp.) living
in the mangrove area and in marine waters. Mangrove crabs mate in the mangrove area
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and migrate to marine waters to spawn. After spawning and growing into juvenile crabs,
they migrate back to the upstream estuary or back to the mangrove area. When the
mangrove crabs are in the mangrove area, they are relatively safe from predators, but in
the marine waters, a certain fish as a predator will prey on the mangrove crabs. In this
case, the mangrove crab habitat is divided into two parts, namely the mangrove area
as the reserved area and the marine waters as the unreserved area. In the migration
process of mangrove crabs, interspecific competition occurs and reduces the number of
mangrove crabs [4, 11]. The mangrove crabs living in the mangrove area and marine
waters are assumed to grow according to the logistic model. Predation on the mangrove
crabs occurs only in the unreserved area and the predation function follows the Holling
type III, which is consistent with the characteristics of predation on crabs [4]. In the
predator populations, intraspecific competition occurs [12] and the prey and predator
populations are reduced by natural mortality.

The population dynamics of mangrove crabs in the reserved and unreserved areas and
of their predator are expressed in the following growth model:

dx

dt
= rx(1− x

K
)− σ1x+ σ2y −

cx2z

c1 + x2
− fx− uxy,

dy

dt
= sy(1− y

L
) + σ1x− σ2y − hy − vxy,

dz

dt
=

g1x
2z

c1 + x2
− ez − qz2.

(1)

In model (1), the variables x = x(t), and y = y(t) are the population densities of
mangrove crab as prey in the unreserved and reserved areas at time t, respectively. The
variable z = z(t) is the population density of fish as the predator at time t. The initial
conditions of all three populations are nonnegative, x (0) ≥ 0, y (0) ≥ 0, and z (0) ≥ 0.
Parameters r,K, σ1, σ2, c, c1, f, h, e, s, L, g1, q, u, and v successively express the intrinsic
growth rate of the prey population in the unreserved area, the carrying capacity of the
habitat for the prey population in the unreserved area, the weighting coefficient of prey
migration from the unreserved area to the reserved area, the weighting coefficient of
prey migration from the reserved area to the unreserved area, the maximum per capita
consumption rate of the predator, the Michaelis-Menten constant rate, prey mortality
rate in the unreserved area, prey mortality rate in the reserved area, predator mortality
rate, intrinsic growth rate of the prey population in the reserved area, carrying capacity
of the habitat for the prey population in the reserved area, conservation rate of predator,
intraspecific competition coefficient, prey competition in the reserved area, and prey
competition in the unreserved area. All parameters are assumed to be positive.

For simplicity, let R = r − σ1 − f , R1 = r
K , S = s − σ2 − h, S1 = s

L , γ = g1−e
q ,

γ1 = ec1
q . Furthermore, model (1) is expressed as

dx

dt
= x[(R−R1x)−

cx2z

c1 + x2
− uy] + σ2y, (2)

dy

dt
= y[(S − S1y)− vx] + σ1x, (3)

dz

dt
= z(

g1x
2

c1 + x2
− e− q3z). (4)
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3 Positivity and Boundedness of Solution

The positivity and boundedness of the solution of model (1) with the initial conditions
x(0) > 0, y(0) > 0, z(0) > 0 are stated in the form of theorems. The positivity and
boundedness of the solution of the model are ecologically relevant.

Theorem 3.1 The set Ψ =
{
(x, y, z) ∈ R3

+0 : 0 < ω = x+ y + z ≤ ρ
ρ1

}
is the area

for all solutions of the subsets in the positive octant, where ρ1 is a constant which satisfies

ρ1 < e, ρ = K(r−f+ρ1)
2

4r + L(s−h+ρ1)
2

4s , g1 ≤ c.

Proof. Let ω(t) = x(t) + y(t) + z(t) and ρ1 > 0 be a constant. Then dω
dt + ρ1ω =

(r − f + ρ1)x− rx2

K − (u+ v)xy + (s− h+ ρ1)y − sy2

L − (c− g1)
x2z

c1+x2 − (e− ρ1)z − qz2.
It is natural to assume that g1 ≤ c, so the equation can be written as

dω
dt + ρ1ω = − r

K (x− K
2r (r − f + ρ1))

2 − s
L (y − L

2s (s− h+ ρ1))
2 + K

4r (r − f + ρ1)
2 +

L
4s (s− h+ ρ1)

2 − (u+ v)xy − (c− g1)
x2z

c1+x2 − (e− ρ1)z − qz2.
dω
dt + ρ1ω ≤ K

4r (r − f + ρ1)
2 + L

4s (s− h+ ρ1)
2 = ρ.

By the theory of differential inequalities, we have 0 < ω(x(t), y(t), z(t)) ≤ ρ
ρ1
(1 −

1
eρ1 t ) +ω(x(t), y(t), z(t)) 1

eρ1 t . Taking limit when t → ∞, we get 0 < ω ≤ ρ
ρ1
. This proves

the theorem.

Theorem 3.2 All solutions (x(t), y(t), z(t)) of the system of equations (2), (3), and
(4) with the initial conditions x(0) > 0, y(0) > 0, z(0) > 0 are positive for all t ≥ 0.

Proof. From equation (2) together with the initial conditions x(0) > 0, y(0) >
0, z(0) > 0, we have dx

x = µ(x, y, z)dt + µ1(x, y)dt, where µ(x, y, z) = (R − R1x) −
cxz

c1+x2 −uy, and µ1(x, y) =
σ2y
x . Integrating the above equation on the interval ⌊0, τ⌋, we

have x(t) = x(0)e
∫ t
0
µ(x(τ),y(τ),z(τ))dτ+

∫ t
0
µ1(x(τ), y(τ))dτ > 0 for all τ ∈ [0, t] .

Next, from equation (3), we have dy
y = φ0 (x, y) dt+ φ1 (x, y) dt, where

φ0 (x, y) = (S − S1y) − vx, φ1 (x, y) = σ1x
y . Integrating the above equation on the in-

terval ⌊0, τ⌋, we have y(t) = y(0)e
∫ t
0
φ0(x(τ),y(τ))dτ+

∫ t
0
φ1(x(τ),y(τ))dτ > 0 for all τ ∈ [0, t] .

Next, from equation (4), we have dz
z = ρ0 (x, z) dt, where ρ0 (x, z) =

g1x
2

c1+x2 −e−qz. Inte-

grating the above equation on the interval ⌊0, τ⌋, we have z(t) = z(0)e
∫ t
0
ρ0(x(τ),z(τ))dτ > 0

for all τ ∈ [0, t]. The solutions of the equations (2), (3), and (4) are all positive.

Theorem 3.3 All solutions of the model (1) are bounded.

Proof. We construct a function ω (t) = x (t) + y (t) + c
g1
z (t). If this equation is

differentiated with respect to time (t), then we have dω
dt = rx

(
1− x

K

)
−fx−(u+ v)xy+

sy
(
1− y

L

)
− hy − ec

g1
z − q3c

g1
z2,

dω
dt = rx+ ex− rx2

K − fx− (u+ v)xy + sy + ey − sy2

L − hy − ec
g1
z − q3c

g1
z2 − ex− ey,

dω
dt ≤ rx+ ex+ sy + ey − ec

g1
z − ex− ey.

The consumption rate of the predator population to prey is assumed to follow
0 < g1 ≤ c. From the first two equations of model (1), we have K + L is the total
carrying capacity of the total prey population. We have x(t) + y(t) ≤ K + L + ϵ as
t → ∞. Suppose we take x(t) ≤ K + ϵ1 as t → ∞ and y(t) ≤ L + ϵ2 as t → ∞, where
ϵ, ϵ1, ϵ2 are three positive numbers. Let ω (t) = x (t) + y (t) + c

g1
z. The derivative of
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ω (t) with respect to t takes the form

dω

dt
≤ (r + e)x+ (s+ e) y − ec

g1
z − ex− ey

= −e

(
x+ y +

c

g1
z

)
+ (e+ r)x+ (e+ s) y

= −eω + (e+ r)x+ (e+ s) y,

dω

dt
+ eω ≤ (e+ r) (K + ϵ1) + (e+ s) (L+ ϵ2 ).

Let K1 = (e+ r) (K + ϵ1) + (e+ s) (L+ ϵ2) and integrate both sides, we obtain the
boundary ω (t) = K1

e + C1
1
eet . The inequality dω

dt ≤ K1 − eω has the solution ω (t) ≤
K1

e + C1
1
eet for t → ∞. Then we obtain lim supt→∞ ω(t) ≤ K1

e . Therefore, (x, y, z) is

bounded in R3 and (x, y, z) belongs to Ψ1 =
{
(x, y, z) ∈ R3

+0 : x+ y + ec
g1
z ≤ K1

e

}
.

4 Equilibrium Points and Local Stability Analysis

In order to investigate the behavior and changes of the populations x, y, and z, it is nec-
essary to find the interior equilibrium point and determine its stability. The equilibrium
points of model (1) are obtained by solving dx

dt = dy
dt = dz

dt = 0. Further, the non-negative
equilibrium points are obtained, namely T1 = (0, 0, 0) and T2 = (x2, y2, 0). The values of

components of the equilibrium point T2 are x2 = y2(−y2S1+S)
vy2−σ1

and y2, where y2 is the pos-

itive root of the polynomial AX3+BX2+CX+D = 0, where A = R1S1
2−uvS1, B =

RvS1 − 2SS1R1 + Suv + uS1σ1 − σ2v
2, C = S2R1 − RSv − RS1σ1 − Suσ1 + 2σ1σ2v,

and D = RSσ1−σ2σ1
2. The possible interior equilibrium point for model (1) is

T3 = (x̄, ȳ, z̄). The values of components of the equilibrium point T3 are x̄ = ȳ(−ȳS1+S)
vȳ−σ1

,

z̄ = γx̄2−γ1

x̄2+c1
, and ȳ, where ȳ is the positive root of the polynomial A1Y

11+A2Y
10+A3Y

9+

A4Y
8 + A5Y

7 + A6Y
6 + A7Y

5 + A8Y
4 + A9Y

3 + A10Y
2 + A11Y + A12 = 0, where A1,

A2, ..., A12 are real numbers that depend on the values of the model parameters.
The equilibrium point T3 = (x̄, ȳ, z̄) may not exist in the sense that not all of its

components are positive. The equilibrium point T3 = (x̄, ȳ, z̄) may consist of only
one, two, three or more components in the first octant. This condition depends on the
parameter values of the model. The only equilibrium point to be analyzed is the interior
equilibrium point, i.e., T3 = (x̄, ȳ, z̄). Due to the complexity of model (1), only the
local stability of the interior equilibrium point is considered. For this purpose, the model
is linearized around the equilibrium point and the Jacobian matrix evaluated at the
equilibrium point T3 = (x̄, ȳ, z̄) is obtained as follows:

J (T3) =

d1 d2 d3
d4 d5 0
d6 0 d7

,

where d1 = R − 2R1x̄ − 2cx̄z̄
x̄2+c1

− uȳ + 2cx̄3z̄
(x̄2+c1)

2 , d2 = σ2 − ux̄, d3 = − cx̄2

x̄2+c1
,

d4 = σ1 − v ȳ, d5 = S − vx̄− 2ȳS1, d6 = 2g1c1x̄z̄
(x̄2+c1)

2 , and d7 = g1x̄
2

x̄2+c1
− e− 2qz̄.

The next step is obtaining the characteristic equation that corresponds to the equi-
librium point T3 = (x̄, ȳ, z̄). Then we have f (λ) = λ

3
+ a1λ

2 + a2λ + a3, where a1 =
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− (d1 + d5 + d7) , a2 = d1d5+d5d7+d1d7−d2d4−d3d6, and a3 = d2d4d7−d1d5d7+d3d5d6.
In accordance with the Routh-Hurwitz stability test [13], the interior equilibrium point
T3 = (x̄, ȳ, z̄) is locally asymptotically stable if the conditions a1 > 0, a3 > 0, and
a1a2 − a3 > 0 are satisfied.

5 Numerical Simulation

The simulation is based on the analysis results obtained in the previous section. Simu-
lations are performed to investigate the effect of migration and interspecific competition
in the prey population on the existence of interior equilibrium points in the first octant
and their stability. The parameter values used in the simulation of model (1) are based
on the parameter values used by the previous researchers [6, 14, 15]. Some parameter
values have been adjusted to get interesting results. The values of migration rates and
interspecific competition are given in various combinations. The simulation is given in
four cases, which are presented in the table and plot of prey and predator population
curves in the reserved and unreserved areas.

Case 1. The value of σ1 is fixed and the value of σ2 varies.

For simulation, we use the parameter values r = 0.9,K = 100, L = 100, c = 2.5, g1 =
0.8, c1 = 1, f = 0.02, h = 0.01, e = 0.3, q = 0.3, u = 0.02, and v = 0.02 in the appropriate
units. By using these parameter values, the equilibrium points, eigenvalues, and stability
are obtained, as shown in Table 1.

σ2 = 0.1 σ2 = 0.2 σ2 = 0.4 σ2 = 0.5
T3a(7.66, 1.02, 1.62) T3a(7.18, 0.95, 1.62) T3a(6.39, 0.80, 1.60) T3a(6.08, 0.73, 1.60)
(0.52,-0.87,-0.48) (0.51,-0.85,-0.47) (0.49,-0.84,-0.46) (0.49,-0.86,-0.45)
not stable not stable not stable not stable

T3b(1.02, 54.01, 0.37) T3b(1.80, 15.63, 1.04) T3b(1.88, 5.40, 1.08)
(-10.48,-0.13,-0.48) (-2.72,-0.45,-0.18) (-0.55±0.58i,-0.14)
stable node stable node stable node

T3c(68.18, 0.53, 1.67) T3c(68.37, 0.53, 1.67) T3c(68.75, 0.52, 1.67) T3c(68.9, 0.51, 1.67)
(-0.55,-12.86,-0.50) (-0.55,-12.99,-0.50) (-0.56,-13.27,-0.50) (-0.56,-13.41,-0.50)
stable node stable node stable node stable node

Table 1: The equilibrium point T3, eigenvalues, and stability for the case σ1 = 0.1.

Table 1 shows that there are initially two equilibrium points in the first octant, one
equilibrium point is unstable and the other is locally asymptotically stable. By increasing
the value of the migration coefficient (σ2) from the reserved to the unreserved area, three
equilibrium points are obtained in the first octant, where one equilibrium point remains
unstable while the other two are locally asymptotically stable. In this case, there is
a bistable equilibrium point, i.e., the coexistence of two equilibrium points that are
jointly stable, and the type of stability is the same, i.e., they are locally asymptotically
stable with node type. By increasing the value of the migration coefficient (σ2), three
equilibrium points are still obtained in the first octant and their stability does not change.
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Increasing the value of σ2 only changes the value of the equilibrium point T3a, i.e.,
the values of the equilibrium points of the populations x, y, and z are all decreasing.
The equilibrium point T3b does not appear at first. By increasing the value of σ2, the
equilibrium point T3b appears, and the increase in the value of σ2 changes the values of
the equilibrium points T3b and T3c; that is, the values of the equilibrium points of the
populations x and z increase while the value of the equilibrium point of the population
y decreases.

Figure 1: Populations behaviour around the bistable equilibrium points for σ1 = 0.1, σ2 = 0.2.

Figure 1 shows the behaviour of the populations x, y and z around the two stable
equilibrium points. Both equilibrium points T3b and T3c are asymptotically stable, i.e.,
they are bistable equilibrium points. This means that none of the three populations
will become extinct. The initial value of the population plays an important role in
determining where the population converges. In Figure 1(a), there is a line dividing the
stability domain for the equilibrium points T3b and T3c, but in Figures 1(b) and 1(c),
the line which divides the stability domain for the equilibrium points T3b and T3c is not
clearly visible.

Case 2. The value of σ2 is fixed and the value of σ1 varies.

For simulation, we use the parameter values r = 0.9,K = 100, L = 100, c = 2.5, g1 =
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0.8, c1 = 1, f = 0.02, h = 0.01, e = 0.3, q = 0.3, u = 0.02, and v = 0.02 in the appropriate
units. By using these parameter values, the equilibrium points, eigenvalues, and stability
are obtained, as shown in Table 2.

σ1 = 0.05 σ1 = 0.1 σ1 = 0.2 σ1 = 0.25
T3a(6.02, 0.72, 1.60) T3a(7.66, 1.02, 1.62) T3a(14.39, 1.37, 1.66) T3a does not
(-0.45±0.03i,0.62) (0.52,-0.87,-0.48) (0.23,-2.20,-0.49) appear
not stable, spiral not stable not stable
T3b(80.68, 0.26, 1.67) T3b(68.18, 0.53, 1.67) T3b(39.52, 1.11, 1.67) T3b does not
(-0.67,-15.35,-0.50) (-0.55,-12.86,-0.50) (-0.23,-7.16,-0.50) appear
stable node stable node stable node

Table 2: The equilibrium point T3, eigenvalues, and stability for the case σ2 = 0.1.

There are two equilibrium points in the first octant, as Table 2 demonstrates.
At first, one equilibrium point exhibits spiral stability, while the other displays local
asymptotic stability. By increasing the value of the migration coefficient (σ1) from
the unreserved to the reserved area, two equilibrium points are still obtained in the
first octant, but the spiral unstable equilibrium point becomes an unstable node and
the other equilibrium point remains locally asymptotically stable. When increasing
the value of σ1 again, there are still two equilibrium points with the type of stability
unchanged. However, when σ1 = 0.25, the equilibrium point in the first octant
is no longer obtained. The increase of the migration value from the unreserved to
the reserved area can lead to the non-existence of the equilibrium point in the first octant.

Case 3. The value of u is fixed and the value of v varies.

For simulation, we use the parameter values r = 0.9,K = 100, L = 100, c = 2.5, g1 =
0.8, c1 = 1, f = 0.02, h = 0.01, e = 0.3, q = 0.3, σ1 = 0.3, and σ2 = 0.3 in the appropriate
units. By using these parameter values, the equilibrium points, eigenvalues, and stability
are obtained, as shown in Table 3.

v = 0.1 v = 0.2 v = 0.4 v = 0.5
T3a(13.04, 1.92, 1.65) T3a(9.26, 0.89, 1.63) T3a(8.87, 0.69, 1.63)
(0.18,-2.09,-0.49) (0.31,-3.14,-0.48) (0.33,-3.86,-0.48)
not stable not stable not stable

T3b(2.63, 38.6, 1.33) T3b(2.29, 18.79, 1.24) T3b(1.58, 5.17, 0.91) T3b(1.41, 3.02, 0.77)
(-3.51,-0.49,-0.38) (-1.00±0.02i,-0.27) (-0.38±0.74i,-0.38) (-0.28±0.71i,-0.19)
stable node stable spiral stable spiral stable spiral

T3c(34.42, 1.64, 1.66) T3c(46.44, 0.77, 1.66) T3c(48.5, 0.61, 1.66)
(-0.19,-6.34,-0.49) (-0.33,-18.00,-0.49) (-0.35,-23.67,-0.50)
stable node stable node stable node

Table 3: The equilibrium point T3, eigenvalues, and stability for the case u = 0.1.
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Table 3 shows that initially there is only one equilibrium point in the first octant,
which is locally asymptotically stable. When increasing the value of the competition
coefficient in the population y, three equilibrium points appear in the first octant, one
equilibrium point is unstable, while the other two are spiral stable and nodal stable. If
we increase the value of the competition coefficient in the population y again, we find
that there are still three equilibrium points in the first octant, and their stability does not
change. Increasing the competition coefficient only affects the value of the equilibrium
points. For the equilibrium points T3a and T3b, increasing the competition coefficient
decreases the values of the equilibrium points for the populations x, y, and z. While
for the equilibrium point T3c, the values of the equilibrium point for the population y
decreases, but the values of the equilibrium points for the populations x and z increase.

Figure 2: Populations behaviour around the bistable equilibrium points for u = 0.1, v = 0.2.

Figure 2 shows the behaviour of the populations x, y, and z around two stable
equilibrium points. Both equilibrium points T3b and T3c are asymptotically stable,
bistable equilibrium points. This means that none of the three populations will become
extinct. The initial value of the population determines to what interior equilibrium point
the population converges. In Figure 2(a), there is no clear curve that divides the domain
of stability for the equilibrium points T3b and T3c, but in Figures 2(b) and 2(c), there
is a clear curve that divides the domain of stability for the equilibrium points T3b and T3c.
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Case 4. The value of v is fixed and the value of u varies.

For simulation, we use the parameter values r = 0.9,K = 100, L = 100, c = 2.5, g1 =
0.8, c1 = 1, f = 0.02, h = 0.01, e = 0.3, q = 0.3, σ1 = 0.3, and σ2 = 0.3 in the appropriate
units. By using these parameter values, the equilibrium points, eigenvalues, and stability
are obtained as shown in Table 4.

u = 0.1 u = 0.2 u = 0.3 u = 0.4
T3a(13.04, 1.92, 1.65)
(0.18,-2.09,-0.49)
not stable
T3b(2.29, 18.79, 1.24)
(-1.00±0.02i,-0.27)
stable spiral

T3b(1.43, 35.19, 0.79)
(-7.03,-0.35,-0.27)
stable node

T3b(1.01, 43.87, 0.35)
(-13.02,-0.12,-0.40)
stable node

T3b does not ap-
pear, z becomes
negative

T3c(34.42, 1.64, 1.66)
(-0.19,-6.34,-0.49)
stable node

Table 4: The equilibrium point T3, eigenvalues, and stability for the case v = 0.2.

Table 4 shows that there are initially three equilibrium points in the first octant, i.e.,
the equilibrium point T3a is unstable, while the equilibrium points T3b and T3c are spiral
stable and node stable, respectively. By increasing the value of the competition coefficient
(u), only one unstable node equilibrium point is obtained. However, for the competition
coefficient u = 0.4, there is no equilibrium point in the first octant. Increasing the value of
the competition coefficient can lead from three equilibrium points to only one node-stable
equilibrium point, and then no more equilibrium points exist in the first octant.

6 Conclusion

The population dynamics of prey living in the reserved and unreserved areas and of
their predators living in the unreserved areas are expressed by a system of nonlinear
differential equations. This model can describe the population dynamics of mangrove
crabs living in mangrove forests and the coastal area. Mangrove crabs in the coastal area
are preyed upon by predatory fish that follow the Holling type III predation function.
The solution of the model is positive and bounded in the first octant. Simulations with
the relevant values of the model parameters have found one, two, three, and even no
interior equilibrium points. Some of these interior equilibrium points are stable, and
some are unstable.

Simulations were carried out by changing the value of the migration rates in the
prey population living in the reserved and unreserved areas. In case 1, initially, only
two interior equilibrium points were found, one stable and the other unstable. Once the
value of the migration rate σ2 is increased and three equilibrium points are obtained, one
equilibrium point is unstable and the other two equilibrium points are stable; bistable
equilibrium points occur. In case 2, two interior equilibrium points are initially obtained,
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one equilibrium point is stable and the other is unstable. By increasing the migration
rate (σ1), two interior equilibrium points are still obtained, but there is a change in the
type of stability, from unstable spiral to unstable saddle. By increasing the migration
rate (σ1) again, the interior equilibrium point is no longer found.

Simulations were also conducted by changing the level of competition in the prey
population. In case 3, initially, there is only one stable interior equilibrium point. Once
the competition level (v) is increased, three equilibrium points are obtained: one equi-
librium point is unstable, and the other two equilibrium points are stable, stable node
and stable spiral. In this case, there are bistable equilibrium points. In case 4, initially,
three interior equilibrium points are obtained, two equilibrium points are stable, stable
node and stable spiral, and the other one is unstable. By increasing the competition
level (u), only one stable node interior equilibrium point is obtained. By increasing the
competition level (u) again, the interior equilibrium point is no longer found.
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