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Abstract: In this work, we develop a new approach for solving a large class of
programming optimization problems by employing a logarithmic barrier interior point
method, leveraging a vector ρ ∈ Rn

+ as the penalty term based on some new minorant
function. Firstly, we compute the direction by Newton’s method. Then, we propose
a new alternative way to determine the step length along the direction, our proposed
strategy enables easy and quick computation of the step length. Finally, we illustrate
the out-performance of our new minorant functions with respect to the line search
one through a numerical experiment on numerous collections of test problems.
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1 Introduction

We consider the nonlinear constrained optimization problem

{min f(x) : x ∈ L}, (1)

where f is a convex and twice continuously differentiable function on L and L = {x ∈
Rn : x ≥ 0, Ax = c}, with c ∈ Rm and A ∈ Rm×n being a matrix.
Nonlinear optimization is crucial in various fields such as engineering, economics, machine
learning, and nonlinear dynamics and systems (see [3, 8]) for finding optimal solutions
under complex constraints.
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The paper highlights the evolution of interior point methods, a significant approach
to solving such problems. These methods date back to 1955, see K. R. Frisch [6], and
were significantly developed in the contributions of P. Huard [7] in 1967, and A. V. Fiacco
and G. P. McCormick [5] in 1968. Notably, the development of logarithmic barrier meth-
ods, which replace non-negativity constraints with penalty terms, transforms constrained
problems into unconstrained ones, allowing for the use of majorant or minorant functions.
Based on this concept, various logarithmic barrier interior point methods leveraging the
majorant or minorant functions have been introduced. Crouzeix and Merikhi [2] were the
first to develop a logarithmic barrier algorithm based on majorant functions explicitly
designed for semidefinite programming. Fellahi and Merikhi [4] introduced new majorant
functions for nonlinear programming. Recently, Leulmi et al. [10] focused on devising
minorant functions applicable to semidefinite programming while in [9] and [11], they
explored the application of minorant functions in the contexts of linear and nonlinear
programming, respectively.

Inspired by the methods mentioned above, we propose a novel approach centered on
determining the step length in a straightforward manner through the utilization of a
minorant function technique. The remainder of this paper is organized as follows. In
the next Section 2, we present some useful inequalities that will be utilized throughout
the paper. In Section 3, we replace the original problem with a perturbed problem. In
Section 4, we study the existence and uniqueness of the optimal solution to the perturbed
problem and analyze its convergence. In Section 5, we choose a descent direction and
propose new minorant functions to calculate the step length. In Section 6, we describe
the algorithm in detail. In the last section, numerical results are reported and some
conclusions are drawn.

2 Some Useful Inequalities

In this section, we present some useful inequalities that will be used throughout the
paper.

Proposition 2.1 [14]
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z̄ and σz are, respectively, the mean and the standard deviation of a statistical series
of n real numbers,

z̄ =
1

n

n∑
i=1

zi and σ2
z =

1

n

n∑
i=1

z2i − z̄2 =
1

n

n∑
i=1

(zi − z̄)2.

3 Penalization

In this section, we approximated the problem (1) by a perturbed problem where the
parameter of penalization is a vector ρ ∈ Rn

+. Let our problem (1) be considered with
the following mild assumptions:

1. A is an (m× n) full-rank matrix and c ∈ Rm(m < n).

2. The optimal solution set of the problem (1) is nonempty and bounded.

3. ∃x0 > 0 such that Ax0 = c.

We have from the optimality conditions that x∗ is an optimal solution of (1) if and
only if there exists u∗ ∈ Rm and v∗ ∈ Rn

+,

∇f(x∗) +Atu∗ − v∗ = 0, Ax∗ = c, < v∗, x >= 0. (3)

3.1 The perturbed problem

Let us present the function φ : Rn
+ × Rn → Rn ∪ {+∞} by

φ(ρ, x) =

{
f(x) + ϑ(ρ, x) if x, ρ ≥ 0, Ax = c.

+∞ otherwise,

where the function ϑ : Rn
+ × Rn → Rn ∪ {+∞} is given by

ϑ(ρ, x) =


∑n

i=1 ρi ln (ρi)−
∑n

i=1 ρi ln(xi) if x, ρ > 0,

0 if x ≥ 0 and ρ = 0,

+∞ otherwise.

The two functions are convex, lower semicountinuous and proper. Let us now provide
the convex function Ω defined by

Ω(ρ) = inf
x
[φρ(x) := φ(ρ, x) : x ∈ R]. (4)

Remark 3.1 The problems (1) and (4) coincide when ∥ρ∥ tents to 0.

4 Theoretical Aspects of the Perturbed Problem

4.1 Existence and uniqueness of optimal solution

The next lemma deals with the issue of the existence and uniqueness of optimal solution
of (4).
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Lemma 4.1 The perturbed problem (4) possesses a unique optimal solution if and
only if the recession cone Cd(φρ) reduces to the origin, i.e.,

Cd(φρ) = {d ∈ Rn : [φρ]∞(d) ≤ 0, Ad = 0, d ≥ 0} = {0}. (5)

Proof. For the proof, see [4].
The strictly convex problem (4) possesses a unique optimal solution x(ρ) in its feasible

set.

4.2 The convergence analysis

We are now prepared to state the convergence result of the perturbed problem (4).

Lemma 4.2 Let x(ρ) be the optimal solution of the perturbed problem (4), and x∗ be
the optimal solution of the the original problem (1),

if ∥ρ∥ → 0, then xρ → x.

Proof. For the proof, see [4]

Note: If either the original problem (1) or its perturbed version (4) possesses an
optimal solution with finite and equal objective function values, then the other problem
also has an optimal solution.

5 The Numerical Aspects of the Perturbed Problem

This section focuses on numerically solving problem (4). Our study starts with computing
the descent direction and determining the step length, employing an innovative technique
involving minorant functions.

5.1 The descent direction

When x belongs to the feasible set L, the Newton descent direction d is obtained by
solving the following convex quadratic optimization problem:{

mind
{

1
2 ⟨∇

2φρ(x)d, d⟩+ ⟨∇φρ(x), d⟩
}
,

Ad = 0.

From the necessary and sufficient optimality conditions, there exists v ∈ R such that{
∇2φρ(x)d+∇φρ(x) +Av = 0,

Ad = 0

is equal to (
∇2f(x) + PX−2 At

A 0

)(
d
v

)
=

(
X−1ρ−∇f(x)

0

)
,

where X, P are diagonal matrices with Xii = xi and Pii = ρi, i = 1, n. Then we obtain

(
dt 0

)(∇2f(x) + PX−2 At

A 0

)(
d
v

)
=
(
dt 0

)(X−1ρ−∇f(x)
0

)
.
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Then
⟨∇2f(x)d, d⟩+ ⟨∇f(x), d⟩ = ⟨ρ,X−1d⟩ − ⟨PX−1d,X−1d⟩ (6)

is equivalent to (
X∇2f(x)X + P XAt

AX 0

)(
X−1d
v

)
=

(
ρ−X∇f(x)

0

)
.

The descent direction being acquired.

5.2 The proposed calculation of the step length

Typically, the most commonly employed approaches within line search techniques involve
traditional iterative methods, but these methods might involve computationally expen-
sive procedures, especially when function evaluations are costly. Hence, Leulmi et al. [2]
introduced the minorant function concept, approximating the function G(α), to provide
a simple step length for linear semidefinite programming and linear programming, re-
spectively. Building upon this concept, we propose in this study to approximate the
function G(α) using a minorant function. This function offers, at each iteration k, a step
length in an easy and much simpler way than the line search methods. Let the function
G0 be as

G0(α) = φρ(x+ αd)− φρ(x) = f(x+ αd)− f(x)−
n∑

i=1

ρi ln(1 + αyi),

where y = X−1d and α ∈]0, α̂0[, α̂0 = max{α : 1 + αyi > 0}. From Proposition 2.1, we
have ρi ≤ maxi ρi ≤ ρ̄+ σρ

√
n− 1 for all i = 1, ..., n.

For τ = ρ̄+ σρ

√
n− 1 and for all α ∈]0, α̂0[, we obtain

G(α) ≥ G1(α) =
1

τ
(f(x+ αd)− f(x))−

n∑
i=1

ln(1 + αyi), (7)

where G(α) = G0(α)
τ . It easy to show that

G′(α) =
1

τ

(
⟨∇f(x+ αd), d⟩ −

n∑
i=1

ρi
yi

1 + αyi

)
,

G′′(α) =
1

τ

(
⟨∇2f(x+ αd)d, d⟩ −

n∑
i=1

ρi
y2i

(1 + αyi)2

)
,

and

G′
1(α) =

1

τ

(
⟨∇f(x+ αd), d⟩ −

n∑
i=1

yi
1 + αyi

)
,

G′′
1(α) =

1

τ

(
⟨∇2f(x+ αd)d, d⟩ −

n∑
i=1

y2i
(1 + αyi)2

)
.

G1 verifies the significant decrease because

(i) From(6) : G′(0) +G′′(0) = 0 and G′′(0) ≥ 0, then we deduce that G′(0) ≤ 0.

(ii) G′
1(0) ≤ 0 if
1. yi ≥ 0.
2. yi < 0, we have from (6): G′

1(0) +G′′
1(0) = 0 and G′′

1(0) ≥ 0.
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5.3 The first minorant function

This approach involves minimizing the minorant approximation, denoted as G2, of G
within the interval [0, α̂]. For effectiveness, this approximation necessitates simplicity
while maintaining a close proximity to G1. In our case, it requires that

G(0) = G1(0) = G2(0) = 0, G′
1(0) = G′

2(0), G′′
1(0) = G′′

2(0) > 0. (8)

In what follows, we take xi = 1 + αyi, x̄i = 1 + αȳi and σx = ασy.
From Theorem 2.1, we have

∑n
i=1 ln(xi) ≤ B, after a simple calculation, we obtain

G2(α) ≤ G1(α), in which

G2(α) =
1

τ
(f(x+ αd)− f(x))− (n− 1) ln(1 + αγ)− ln(1 + αβ),

where α ∈]0, α̂[, γ = ȳ− σy√
n−1

, β = ȳ+σy

√
n− 1 and α̂ = min{α̂0,max{α : 1+αγ > 0}}.

It is clear that

G′
2(α) =

1

τ
⟨∇f(x+ αd), d⟩ − (n− 1)

γ

1 + αγ
− β

1 + αβ
,

G′′
2(α) =

1

τ
⟨∇2f(x+ αd)d, d⟩+ (n− 1)

γ2

(1 + αγ)2
+

β2

(1 + αβ)2
.

G2 verifies the conditions (8), hence the strictly convex function G2 is a good approx-
imation of G1 in ]0, α̂[. Moreover, the unique minimum α∗ of G2 verifies

G2(α
∗) ≤ G1(α

∗) ≤ G(α∗).

5.4 The auxiliary function ζ

5.4.1 If the objective function f is linear

We take f(x) = ctx, where c, x ∈ Rn, the auxiliary function is defined by

ζ(α) = nηα− (n− 1) ln(1 + αγ)− ln(1 + αβ), η =
1

τn
ctd.

The two functions ζ and G2 coincide. The unique solution of ζ ′(α) = 0 is the same
unique root of G′

2(α) = 0 and the unique ᾱ verifies G2(ᾱ) ≤ G1(ᾱ) ≤ G(ᾱ).

5.4.2 If the objective function f is only convex

Under these circumstances, the equation G′
2(ᾱ) = 0 no longer simplifies to a second-

degree equation. To address this, we explore an alternative function better than G2,
employing the secant technique. Let ᾱ ∈]0, α̂[ for all α ∈]ᾱ, α̂[, then we have

α

τᾱ
(h(x+ ᾱd)− h(x)) ≤ 1

τ
(h(x+ αd)− h(x)).

So, the auxiliary function is given by

ζ(α) = nηα− (n− 1) ln(1 + αγ)− ln(1 + αβ), where η =
1

nτᾱ
(f(x+ ᾱd)− f(x)),

then we have the following results:
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(i) If ᾱ = 1 and α̂ > 1, then ζ ′(ᾱ) = 0.

(ii) If ᾱ ̸= 1, then
1. If α∗ ≤ ᾱ, we must take another ᾱ ∈]α∗, α̂[, for example, we choose ᾱ =

α∗ + ξ(α∗ − α̂), ξ ∈ [0, 1].
2. If α∗ ≥ ᾱ, we have ζ(α∗) ≤ G2(α

∗) ≤ G1(α
∗) ≤ G(α∗).

5.4.3 Minimization of the auxiliary function

We have
ζ(α) = nηα− (n− 1) ln(1 + αγ)− ln(1 + αβ).

We obtain

ζ ′(α) = nη − (n− 1)
γ

1 + αγ
− β

1 + αβ
, ζ ′′(α) = (n− 1)

γ2

(1 + αγ)2
− β2

(1 + αβ)2
.

We note that ζ(0) = 0, ζ ′(0) = n(η− ȳ), ζ ′′(0) = n(ȳ2+σ2
y) = ∥y∥2 and we impose that

ζ ′(0) ≤ 0 and ζ ′′(0) ≥ 0. ζ ′(α) = 0 is similar to ηγβα2 + (η(α+ β)− γβ)α+ η− ȳ = 0.
We obtain

α∗ =


−ȳ
γβ if η = 0,
ȳ−η
ηβ if γ = 0,
ȳ−η
ηγ if β = 0.

(9)

In the case of ηγβ ̸= 0, we have two solutions, we choose only the root α∗ that belongs
to the domain of ζ, we have

α∗
1 =

1

2

(
1

η
− 1

γ
− 1

β
−
√
∆

)
, α∗

2 =
1

2

(
1

η
− 1

γ
− 1

β
+

√
∆

)
,

where

∆ =
1

η2
+

1

γ2
+

1

β2
− 2

γβ
−
(
2n− 4

nη

)(
1

γ
− 1

β

)
.

We take α∗ ∈]0, α̂− ϵ[, where ϵ > 0.

Remark 5.1 The computation of α∗ is conducted using a dichotomous procedure
under the conditions where α∗ is not within the interval ]0, α̂− ϵ[ and G′(α∗) > 0.
Take a = 0, b = α̂− ϵ.
While |b− a| > ϵ do
- c = a+b

2 .
- If G′(c) < 0, then b = c else a = c.
This computation ensures an improved approximation of the minimum of G(α) while
maintaining adherence to the domain of G.

5.5 The second minorant function

In this context, our aim is to discover another function simpler than G1, hence we used
the following inequality:

(∥y∥ − nȳ)α− ln(1 + α∥y∥) ≤ −
n∑

i=1

ln(1 + αyi). (10)
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From (7) and (10), we take

G3(t) =
1

τ
(f(x+ αd)− f(x)) + (∥y∥ − nȳ)α− ln(1 + α∥y∥),

where α ∈ [0, α̂[, it is clear that

G′
3(α) =

1

τ
⟨∇f(x+αd), d⟩+∥y∥−nȳ− ∥y∥

1 + α∥y∥
, G′′

3(α) =
1

τ
⟨∇2f(x+αd)d, d⟩+ ∥y∥2

(1 + αγ)2
.

The strictly convex function G3 is a good approximation of G1 in ]0, α̂[ and the unique
root α∗of G′

3(α) = 0 verifies G3(α
∗) ≤ G2(α

∗) ≤ G1(α
∗).

Because we have G(0) = G1(0) = G2(0) = G3(0) = 0, G′
3(0) = G′

1(0) = G′
2(0) <

0 and G′′
3(0) = G′′

1(0) = G′′
2(0) > 0.

5.5.1 Minimization of an auxiliary function

Let the auxiliary function ζ2 be defined as

ζ2(α) = nηα+ (∥y∥ − nȳ)α− ln(1 + α∥y∥),

we have

ζ ′2(α) = nη + ∥y∥ − nȳ − ∥y∥
1 + α∥y∥

, ζ ′′2 (α) =
∥y∥2

(1 + α∥y∥)2
.

We note that ζ2(0) = 0, ζ ′2(0) = n(η−ȳ), ζ ′′2 (0) = ∥y∥2 and we impose that ζ ′2(0) ≤ 0
and ζ ′′2 (0) ≥ 0. The minimum α∗ is the root of ζ ′2(α) = 0.

We take α∗ ∈ [0, α̂ − ϵ[, where G′
1(α

∗) < 0. We use Remark 5.1 to obtain a good
approximation for the minimum of G′

1(α) while α∗ /∈ [0, α̂− ϵ[.

6 The Algorithm

The algorithm below summarizes the main steps of the proposed method.
Algorithm.

Step 0: (Initialization) Select x0 ∈ L, Xii = (x0)i and the parameters ρs, ρ ∈ Rn
+,

b ∈ [0, 1]n and ϵ > 0.
Step 1: Calculate d and y = X−1d.
Step 2:

- If ∥y∥ ≤ ϵ, then we have a good approximation of Ω(ρ), So if ∥ρ∥ ≤ ρs, then
stop; (We have a good approximation of the optimal solution), otherwise we put ρ = b×ρ
with b× ρ = (b1 × ρ1, ..., bn × ρn) and go to the Step 1.

- If ∥y∥ ≥ ϵ,
* Compute η, γ, β and calculate α∗ > 0 using the equation ζ ′(α) = 0.
*Put x = x+ α∗d and return to the Step 1.

End Algorithm.

7 Numerical Experiments

To evaluate the enhanced performance and accuracy of our algorithm, which leverages
minorant functions, we conduct numerical tests to compare our new approach with the
traditional line search method. In this section, we present comparative numerical tests
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using various examples from the literature [12, 13]. The results were obtained by imple-
menting the algorithm in MATLAB on an Intel Core i7-7700HQ (2.80 GHz) machine
with 16 GB of RAM. In the following tables, we take ϵ = 10−4. We also note that

- (iter) is the number of iterations.

- (time) is the computational time in seconds (s).

- (sti)i=1,2 represents the strategy of approximate functions introduced in this paper.

- (LS) represents the classical line search method.

• Example 1: (Erikson’s problem [13]).

We consider the following quadratic problem, with n = 2m :

ζ = min

[
f (x) =

n∑
i=1

xi ln

(
xi

ai

)
: xi + xi+m = b, x ≥ 0

]
,

where ai > 0 and b ∈ Rm are fixed.
We test this example for the different values of n, ai and bi.
The following table resumes the obtained result in the case

(ai = 2,∀i = 1, ..., n, bi = 4,∀i = 1, ...,m) .

ex(m,n) st1 st2 LS
iter time iter time iter time

30× 60 1 0.0009 1 0.0013 3 0.023
150× 300 1 0.0035 2 0.0091 4 0.0645
300× 600 2 0.0035 3 0.0212 5 3.199
500× 1000 2 0.1112 3 0.0987 5 5.324

Table 1: Example of Erikson’s problem (with variable size (Example 1)).

• Example 2: Quadratic case [12].
We consider the following quadratic problem with n = m+ 2:

f∗ = min{f(x) : Ax = c, x ≥ 0},

with f(x) = 1
2 ⟨x,Qx⟩, Q[i, j] =


2 if i = j = 1 or i = j = m,

4 if i = j and i ̸= {1,m},
2 if i = j − 1 or i = j + 1,

0 otherwise,

and A[i, j] =


1 if i = j,

2 if i = j − 1,

3 if i = j − 2,

0 otherwise.
fi = 1 ∀i, j = 1, .., n. We test this example for the different values of n.
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ex(n) st1 st2 LS
iter time iter time iter time

30 5 0.0041 3 0.0053 26 18.3244
400 3 0.0985 1 0.0121 35 60.1003
600 3 9.6544 1 7.0129 23 79.0024
1000 5 11.9912 3 9.0473 33 91.3358

Table 2: Example of Quadratic case (with variable size (Example 2)).

8 Conclusion

In this paper, we introduced a logarithmic barrier method for solving nonlinear program-
ming. Based on some new minorant functions and secant technique, this method calcu-
lates the step length in a straightforward manner. The numerical simulations demon-
strate the efficacy of our approach as a significant alternative, yielding promising out-
comes when compared to traditional line search methods. Exploring new approximate
functions presents a promising direction for future research in various classes of opti-
mization. We plan to apply our key findings to a range of issues in nonlinear dynamics
problems.
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