Nonlinear Dynamics and Systems Theory, 25(1) (2025) 101-111

Theoretical and Numerical Results for Nonlinear Optimization Problems

C. Souli^{1*} and A. Leulmi²

¹ Laboratory of Fundamental and Numerical Mathematics, Ferhat Abbas University of Setif-1, Algeria.

² Department of Mathematics, Ferhat Abbas University of Setif-1, Algeria.

Received: August 16, 2024; Revised: January 26, 2025

Abstract: In this work, we develop a new approach for solving a large class of programming optimization problems by employing a logarithmic barrier interior point method, leveraging a vector $\rho \in \mathbb{R}^n_+$ as the penalty term based on some new minorant function. Firstly, we compute the direction by Newton's method. Then, we propose a new alternative way to determine the step length along the direction, our proposed strategy enables easy and quick computation of the step length. Finally, we illustrate the out-performance of our new minorant functions with respect to the line search one through a numerical experiment on numerous collections of test problems.

Keywords: nonlinear optimization; logarithmic barrier method; applications; minorant function; secant technique; step length.

Mathematics Subject Classification (2020): 90C25, 90C30, 90C51, 93C95, 70k75.

1 Introduction

We consider the nonlinear constrained optimization problem

$$\{\min f(x): x \in \mathcal{L}\},\tag{1}$$

where f is a convex and twice continuously differentiable function on \mathcal{L} and $\mathcal{L} = \{x \in \mathbb{R}^n : x \ge 0, Ax = c\}$, with $c \in \mathbb{R}^m$ and $A \in \mathbb{R}^{m \times n}$ being a matrix.

Nonlinear optimization is crucial in various fields such as engineering, economics, machine learning, and nonlinear dynamics and systems (see [3, 8]) for finding optimal solutions under complex constraints.

^{*} Corresponding author: mailto:as_smaleulmi@yahoo.fr

^{© 2025} InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua101