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1 Introduction

Fractional calculus stands as a cornerstone in applied mathematics owing to its pro-
found implications across various scientific and technological domains. The prevalence
of fractional differential equations (FDEs) in modeling diverse natural and engineered
phenomena underscores its significance [1, 9, 13, 16, 18, 22, 28]. Notably, the exploration
of coupled systems featuring fractional derivatives, in their assorted manifestations, has
been the subject of extensive inquiry by numerous researchers [7, 15,29,30].

This pervasive utility instigates a scholarly endeavor towards the exploration of novel
fractional operators, to enrich our understanding and refine the accuracy in modeling
real-world phenomena [3, 12,23–25].

A recent milestone in this realm is the introduction by Jarad et al. [10]. of a new
definition of generalized fractional derivatives, as elucidated within the frameworks of
Caputo and Riemann-Liouville calculus. This innovation, utilizing a specialized instan-
tiation of proportional derivatives, offers a nuanced perspective [10]. Furthermore, by
leveraging the notion of proportional derivatives within the context of functional analysis,
the research presented in [11] extends and generalizes prior investigations [10]. Notably,
Ahmed et al. [2] present the Hilfer proportional fractional derivative (PFD) by amalga-
mating operators delineated in prior works [2]. Subsequently, in [17], the authors offer
a further refinement, denoted as the Φ-Hilfer PFD, accompanied by a comprehensive
examination of its properties.

Concurrently, the exploration of the Ulam-Hyers (UH) stability for fractional dif-
ferential systems has emerged as a focal point of research interest [14]. This pursuit,
characterized by its aim to approximate solutions with minimal error vis-à-vis exact
counterparts, has engendered a manifold of investigations [1].

This work, in alignment with this scholarly discourse, embarks on a rigorous examina-
tion of a coupled system involving the Φ-Hilfer PFD, seeking to illuminate its dynamics
and ramifications.

Dα,β,σ,Φ
a+

u1(z) = ξ1u1(z) + g1(z, u1(z), u2(z)), z ∈ J′ := (a, b],

Dα,β,σ,Φ
a+

u2(z) = ξ2u2(z) + g2(z, u1(z), u2(z)), z ∈ J′ := (a, b],((
I1−δ,σ,Φ
a+

u1

)
(a+),

(
I1−δ,σ,Φ
a+

u2

)
(a+)

)
= (ζ1, ζ2),

(1)

where Dα,β,σ,Φ
a+

are the Φ-Hilfer PFDs of order 0 < α < 1, type β ∈ [0, 1] and index

σ ∈ (0, 1], I1−δ,σ,Φ
a+

is the fractional proportional integral (FPI) of order 1 − δ, where
0 < δ = α + β(1 − α) < 1 and index σ, gi : J × Rn × Rn −→ Rn are given appropriate
functions specified later, ζi ∈ Rn and ξi ∈ Rn×n.

System (1) applies to a vast range of models, necessitating further investigation. For
instance, the authors in [6] employed it to study the dynamics of a measles epidemic
model. Zaitri et al. [31] use it to understand the relationship between pharmacological
effects and drugs in anesthesia modeling. Therefore, exploring coupled systems within
the Φ-Hilfer PFD with specific configurations becomes essential. We base our study on
the fixed-point argument with the vector-valued norm theory in the weighted space of
continuous functions. Finally, it is important to highlight that the findings obtained in
this study build upon and directly extend the results presented in the related literature,
see [2, 4, 5, 17].
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The work is divided into three sections. Some necessary background materials are
provided in Section 2. The main result of the work is given in Section 3 by using Perov’s
fixed point principle associated with the Bielecki vector-valued norm. The UH stability
of solutions to problem (1) is established in Section 4. An example is given in the last
section to illustrate the applicability of our result.

2 Preliminaries

This section presents some background material that will be used throughout this work.
C(J,Rn) is the space of Rn–valued continuous functions on J equipped with

∥u∥J = sup
z∈J

∥u(z)∥.

Cn(J,Rn) denotes the space of n-times continuously differentiable functions from J into
Rn.

L∞(J,Rn) is the set of all equivalence classes of measurable functions which are
essentially bounded on J equipped with

∥u∥∞ = sup
z∈J

∥u(z)∥ = inf{M > 0; ∥u(z)∥ ≤ M for almost every u ∈ J

For our convenience, define the set

S1+(J,R) = {Φ : Φ ∈ C(J,R) and Φ′(z) > 0 for all z ∈ J.}

For Φ ∈ S1+(J,R) and z, s ∈ J, (z > s), we set

Ψ(z, s) = Φ(z)− Φ(s) and Ψ(z, s)α = (Φ(z)− Φ(s))
α
.

We endow the weighted space Cδ,Φ(J,Rn) defined by

Cδ,Φ(J,Rn) =
{
u : J → Rn : Ψ(·, a)1−δu(·) ∈ C(J,Rn)

}
,

with the norm
∥u∥δ = sup

z∈J
Ψ(z, a)1−δ∥u(z)∥. (2)

Definition 2.1 [8] The Mittag-Leffler function Eµ,δ(·) is given by

Eµ,κ(u) =

∞∑
j=0

uj

Γ(jµ+ κ)
, u ∈ R, and µ, κ > 0,

where Γ(·) is the Gamma function.

Definition 2.2 [11, 12] Let σ ∈ (0, 1], α > 0 and Φ ∈ S1+(J,R). The left-sided FPI
of order α and index σ of the function u w.r.t Φ is given by

Iα,σ,Φ
a+

u(z) =
1

σαΓ(α)

∫ z

a

Lα−1
σ,Ψ (z, s)Φ′(s)u(s)ds,

where Lα−1
σ,Ψ (z, s) = e

σ−1
σ Ψ(z,s)Ψ(z, s)α−1.
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Definition 2.3 [11, 12] Let σ ∈ (0, 1], 0 < α < 1 and Φ ∈ S1+(J,R), the FPD of
order α and index σ of the function u w.r.t Φ is given by

Dα,σ,Φ
a+

u(z) = D1,σ,Φ
z

(
I1−α,σ,Φ
a+

u(z)
)
,

where D1,σ,Φ
z u(z) = Dσ,Φ

z u(z) = σ u′(z)
Φ′(z) + (1− σ)u(z).

Definition 2.4 [17] Let u ∈ C1(J,Rn) and Φ ∈ S1+(J,R). The Φ-Hilfer FPD (right-
sided/left-sided) of order 0 < α < 1, type 0 ≤ β ≤ 1 and index σ ∈ (0, 1] of u w.r.t Φ is
given by

Dα,β,σ,Φ
a±

u(z) =
(
Iβ(1−α),σ,Φ
a±

(D1,σ,Φ
z )I(1−β)(1−α),σ,Φ

a±
u
)
(z).

Lemma 2.1 [12, 17] If α ≥ 0 and β > 0, then for any σ > 0, we have

Iα,σ,Φ
a+

Lβ−1
σ,Ψ (z, a) =

Γ(β)

σαΓ(α+ β)
Lα+β−1
σ,Ψ (z, a). (3)

Remark 2.1 If α ≥ 0, β > 0 and σ ∈ (0, 1], then by the fact that e
σ−1
σ Ψ(z,s) ≤ 1, for

all a ≤ s < z ≤ b, we get

Iα,σ,Φ
a+

Ψ(z, a)β−1 ≤ σ−αJ α;Φ
a+

Ψ(z, a)β−1,

where J α;Φ
a+

(·) is the integral defined in [25]. On the order hand, by Lemma 2 from [25],
we conclude that

Iα,σ,Φ
a+

Ψ(z, a)β−1 ≤ Γ(β)

σαΓ(α+ β)
Ψ(z, a)α+β−1. (4)

Remark 2.2 Let α ≥ 0 and σ > 0, then, by Definition 2.4 and Lemma 2.1, we get

Dα,σ,Φ
a+

Lα−1
σ,Ψ (z, a) = 0.

Suppose the parameters α, β, δ fulfill the relations

δ = α+ β(1− α), 0 < α ≤ δ ≤ 1, 1 ⩾ β ⩾ 0, β < δ, 1− δ < 1− β(1− α).

Therefore, we consider the following spaces:

Cδ
δ,Φ(J,Rn) =

{
u ∈ Cδ,Φ(J,Rn) : Dδ,σ,Φ

a+
u ∈ Cδ,Φ(J,Rn)

}
,

Cα,β
δ,Φ (J,Rn) =

{
u ∈ Cδ,Φ(J,Rn) : Dα,β,σ,Φ

a+
u ∈ Cδ,Φ(J,Rn)

}
.

Since Dα,β,σ,Φ
a+

u = Iβ(1−α),σ,Φ
a+

Dδ,σ,Φ
a+

u, it follows that

Cδ
δ,Φ(J,Rn) ⊂ Cα,β

δ,Φ (J,Rn).

Lemma 2.2 [17] Let δ = β(1 − α) + α with 0 < α < 1, 0 < σ ⩽ 1 and 0 ⩽ β ⩽ 1.
If f ∈ Cδ

δ,Φ(J,Rn), then

1. Dδ,σ,Φ
a+

Iα,σ,Φ
a+

u = Dβ(1−α),σ,Φ
a+

u,
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2. Iδ,σ,Φ
a+

Dδ,σ,Φ
a+

u = Iα,σ,Φ
a+

Dα,β,σ,Φ
a+

u.

Let u, v ∈ Rn, u = (u1, . . . , un), v = (v1, . . . , vn), by u ≤ v we mean ul ≤ vl for all
l = 1, . . . , n. Also |u| = (|u1|, . . . , |un|), max(u, v) = (max(u1, v1), . . . ,
max(un, vn)) and Rn

+ = {u ∈ Rn : ul > 0}. If c ∈ R, then u ≤ c means ul ≤ c for each
l = 1, . . . , n.

Definition 2.5 [20] Let for a nonempty set X, a map d : X×X → Rn
+ be called the

vector-valued metric on X if for all x, y, z ∈ X, the following properties hold:

(a) d(x, y) = 0, then x = y,

(b) d(x, y) = d(y, x),

(c) d(x, y) ≤ d(x, z) + d(z, y).

(X, d) is called a generalized metric space with
d(x, y) := (d1(x, y), · · · , dn(x, y)).

Definition 2.6 [27] We said that a matrix M ∈ Mn×n(R) converges to zero if the
spectral radius ρ(M) < 1.

Theorem 2.1 [27] For any positive matrix M ∈ Mn×n(R), the following assertions
are equivalent:

1. ρ(M) < 1;

2. M is convergent to zero;

3. I −M is nonsingular and (I −M)−1 is a nonnegative matrix.

Lemma 2.3 Let α, δ,ϖ > 0 and σ ∈ (0, 1], then

Iα,σ,Φ
a+

Lδ−1
σ,Ψ (z, a)Eα,δ(ϖΨ(z, a)α) =

Lδ−1
σ,Ψ (z,a)

ϖσα

(
Eα,δ(ϖΨ(z, a))α)− 1

Γ(δ)

)
.

Proof. First, we can write

O = Iα,σ,Φ
a+

Lδ−1
σ,Ψ (z, a)Eα,δ(ϖΨ(z, a)α) = Iα,σ,Φ

a+

Lδ−1
σ,Ψ (z, a)

∞∑
j=0

(ϖΨ(z, a)α)
j

Γ(jα+ δ)


=

∞∑
j=0

ϖj

Γ(jα+ δ)
Iα,σ,Φ
a+

Ljα+δ−1
σ,Ψ (z, a).

From Lemma 2.1, one gets

O =
∑∞

j=0

ϖj+1L
α(j+1)+δ−1
σ,Ψ (z,a)

σαϖΓ(α(j+1)+δ) =
Lδ−1

σ,Ψ (z,a)

σαϖ

∑∞
j=0

(ϖΨ(z,a)α)j+1

Γ(α(j+1)+δ) .

Replace j + 1 by j′, we obtain

O =
Lδ−1

σ,Ψ (z,a)

σαϖ

∑∞
j=1

(ϖΨ(z,a)α)j
′

Γ(αj′+δ) =
Lδ−1

σ,Ψ (z,a)

σαϖ

[∑∞
j′=0

(ϖΨ(z,a)α)j
′

Γ(αj′+δ) − 1
Γ(δ)

]
,

and this completes the proof.
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Lemma 2.4 We define a Bielecki-type norm, denoted by ∥ · ∥σ,B, on the Banach
space Cδ,Φ(J,Rn) as follows:

∥u∥σ,B = sup
z∈J

∥u(z)∥
Lδ−1
σ,Ψ (z, a)Eα,δ(ϖΨ(z, a)α)

. (5)

Then the norms ∥ · ∥σ,B and ∥ · ∥δ defined by (2) are equivalent.

Proof. Since Eα,δ(ϖΨ(z, a)α) > 0 and e
σ−1
σ Ψ(b,a) ≤ e

σ−1
σ Ψ(z,a) ≤ 1, for z ∈ J, one

obtains
1

Eα,δ(ϖΨ(z,a)α) ≤ e
1−σ
σ

Ψ(z,a)

Eα,δ(ϖΨ(z,a)α) ≤
e
1−σ
σ

Ψ(b,a)

Eα,δ(ϖΨ(z,a)α) .

Moreover, the function Eα,δ(ϖΨ(z, a)α) is continuous on J, then there exists c∗, c∗ > 0
so that c∗ = supz∈J Eα,δ(ϖΨ(z, a)α) and c∗ = infz∈J Eα,δ(ϖΨ(z, a)α). Accordingly,

1

c∗
∥u∥Cδ,Φ

≤ ∥u∥σ,B ≤
∥u∥Cδ,Φ

c∗e
σ−1
σ Ψ(b,a)

,

which means that ∥ · ∥σ,B and ∥ · ∥δ are equivalent.

3 Uniqueness of the Solution

This section introduces sufficient conditions to prove the uniqueness of solutions of the
system (1). Firstly, consider the Banach space E := Cδ,Φ(J,Rn)× Cδ,Φ(J,Rn) equipped
with the Bielecki vector-valued norm

∥(u1, u2)∥E,B =

(
∥u1∥σ,B
∥u2∥σ,B

)
.

Next, we need the following hypotheses:

(H1) gi : J× Rn × Rn −→ Rn (i = 1, 2) are functions and

gi(z, u1(·), u2(·)) ∈ C
β(1−α)
δ,Φ (J,Rn) for any u1, u2 ∈ C

β(1−α)
δ,Φ (J,Rn),

(H2) There exist functions χi, χ̂i ∈ L∞(J,R+) such that

∥gi(z, u1, u2)− gi(z, v1, v2)∥ ≤ χi(z)∥u1 − v1∥+ χ̂i(z)∥u2 − v2∥

for all z ∈ J and each u1, u2, v1, v2 ∈ Rn.

For the sake of brevity, we will use the notation

Nσ,Φ(α, z) =
Ψ(z, a)α

σαΓ(α+ 1)
and Nσ,Φ(α, b, c∗) =

Ψ(b, a)1−β(1−α)

σαΓ(α+ 1)e
σ−1
σ Ψ(b,a)c∗

.

Theorem 3.1 Assume that the conditions (H1)− (H2) hold. Then system (1) has a
unique global solution in F := Cδ

δ,Φ(J,Rn)× Cδ
δ,Φ(J,Rn).
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Proof. By Lemma 3.9 from [17], the solutions of the system (1) are the solutions of
the following coupled integral equations:

u1(z) = ζ1
σδ−1Γ(δ)

Lδ−1
σ,Ψ (z, a) + Iα,σ,Φ

a+
(ξ1u1(z) + g1(z, u1(z), u2(z))) ,

u2(z) = ζ2
σδ−1Γ(δ)

Lδ−1
σ,Ψ (z, a) + Iα,σ,Φ

a+
(ξ2u2(z) + g2(z, u1(z), u2(z))) .

(6)

We define the operator L = (L1,L2) : E −→ E by

L(u1, u2) = (L1(u1, u2),L2(u1, u2)), (7)

where for i = 1, 2,

Li(u1, u2)(z) =
ζi

σδ−1Γ(δ)
Lδ−1
σ,Ψ (z, a) + Iα,σ,Φ

a+
(ξiui(z) + gi(z, u1(z), u2(z))) . (8)

Now, let (u1, u2), (v1, v2) ∈ E and z ∈ J, using (H2), one gets

∥L1(u1, u2)(z)− L1(v1, v2)(z)∥

≤ ∥ξ1∥Iα,σ,Φ
a+

(∥u1(z)− v1(z)∥) + Iα,σ,Φ
a+

(∥g1(z, u1(z), u2(z))− g1(z, v1(z), v2(z))∥) ,

≤ ∥ξ1∥Iα,σ,Φ
a+

(∥u1(z)− v1(z)∥) + Iα,σ,Φ
a+

(χ1(z)∥u1(z)− v1(z)∥+ χ̂1(z)∥u2(z)− v2(z)∥) ,

≤ ∥ξ1∥∥u1 − v1∥σ,BIα,σ,Φ
a+

(
Lδ−1
σ,Ψ (z, a)Eα,δ(ϖΨ(z, a)α)

)
,

+(∥χ1∥∞∥u1 − v1∥σ,B + ∥χ̂1∥∞∥u2 − v2∥σ,B) Iα,σ,Φ
a+

(
Lδ−1
σ,Ψ (z, a)Eα,δ(ϖΨ(z, a)α)

)
.

By Lemma 2.3, we have

∥L1(u1, u2)(z)− L1(v1, v2)(z)∥

≤
(
(∥ξ1∥+ ∥χ1∥∞) ∥u1 − v1∥σ,B + ∥χ̂1∥∞∥u2 − v2∥σ,B

)
×

Lδ−1
σ,Ψ (z,a)

ϖσα

(
Eα,δ(ϖΨ(z, a)α)− 1

Γ(δ)

)
.

Hence

∥L1(u1, u2)− L1(v1, v2)∥σ,B ≤
(
(∥ξ1∥+ ∥χ1∥∞) ∥u1 − v1∥σ,B + ∥χ̂1∥∞∥u2 − v2∥σ,B

)
×

1
ϖσα

(
1− 1

Γ(δ)Eα,δ(ϖΨ(z,a)α)

)
≤ ∥ξ1∥+∥χ1∥∞

ϖσα ∥u1 − v1∥σ,B + ∥χ̂1∥∞
ϖσα ∥u2 − v2∥σ,B .

By the same technique, one obtains

∥L2(u1, u2)− L2(v1, v2)∥σ,B ≤ ∥χ2∥∞
ϖσα ∥u1 − v1∥σ,B + ∥ξ2∥+∥χ̂2∥∞

ϖσα ∥u2 − v2∥σ,B .

This implies that

∥L(u1, u2)− L(v1, v2)∥E,B ≤ Aϖ∥(u1, u2)− (v1, v2)∥E,B ,
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where

Aϖ =
1

ϖσα

∥ξ1∥+ ∥χ1∥∞ ∥χ̂1∥∞

∥χ2∥∞ ∥ξ2∥+ ∥χ̂2∥∞

 . (9)

When taking ϖ large enough, the matrix Aϖ converges to zero. Therefore, by
applying Perov’s theorem [19], we show that L has a unique fixed point (u1, u2) ∈ E.
Therefore, the system (1) has a unique global solution.

Next, we show that such a fixed point (u1, u2) ∈ E is actually in F. Since y1 and y2
are the unique fixed points of L1 and L2 in E, respectively, for z ∈ (a, b], we have

y1(z) = ζ1
σδ−1Γ(δ)

Lδ−1
σ,Ψ (z, a) + Iα,σ,Φ

a+
(ξ1y1(z) + g1(z, y1(z), y2(z))) ,

y2(z) = ζ2
σδ−1Γ(δ)

Lδ−1
σ,Ψ (z, a) + Iα,σ,Φ

a+
(ξ2y2(z) + g2(z, y1(z), y2(z))) .

After multiplying both sides of the last system by Dδ,σ,Φ
a+

, it follows from Remark 2.2 and
Lemma 2.2 that Dδ,σ,Φ

a+
y1(z) = Dβ(1−α),σ,Φ

a+
(ξ1y1(z) + g1(z, y1(z), y2(z))) ,

Dδ,σ,Φ
a+

y2(z) = Dβ(1−α),σ,Φ
a+

(ξ2y2(z) + g2(z, y1(z), y2(z))) .

Since δ ≥ α and by (H1), we get Dβ(1−α),σ,Φ
a+

(ξ1y1(z) + g1(z, y1(z), y2(z))) ∈ Cδ,Φ(J,Rn),

Dβ(1−α),σ,Φ
a+

(ξ2y2(z) + g2(z, y1(z), y2(z))) ∈ Cδ,Φ(J,Rn).

Hence Dδ,σ,Φ
a+

yi ∈ Cδ,Φ(J,Rn), i = 1, 2, it follows from the definition of the space

C
β(1−α)
δ,Φ (J,Rn) that yi ∈ Cδ

δ,Φ(J,Rn), i = 1, 2. As a sequel to the steps outlined above,
we infer that the coupled system (1) has a unique solution in F.

4 Stability Results

This section discusses the stability in the UH and GUH sense of the coupled system (1).
Let η1, η2 > 0. We consider the inequalities ∥Dα,β,σ,Φ

a+
u1(z)− ξ1u1(z)− g1(z, u1(z), u2(z))∥ ≤ η1,

∥Dα,β,σ,Φ
a+

u2(z)− ξ2u2(z)− g2(z, u1(z), u2(z))∥ ≤ η2,
z ∈ J. (10)

Definition 4.1 [14, 26] The system (1) is stable in the UH sense if we can find
Ωi ⩾ 0, i = 1, 4, such that for any η1, η1 > 0 and any solution (v1, v2) ∈ E of inequalities

(10), there exists a solution (u1, u2) ∈ E of the problem (1) with ζi =
(
I1−δ,σ,Φ
a+

vi

)
(a+),

i = 1, 2, such that { ∥v1 − u1∥σ,B ≤ Ω1η1 +Ω2η2,

∥v2 − u2∥σ,B ≤ Ω3η1 +Ω4η2.
(11)
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Definition 4.2 The system (1) is stable in the GUH sence if we can find N =
(N1,N2) ∈ C(R+,R+) × C(R+,R+) with N (0) = (N1(0),N2(0)) = (0, 0) such that for
any η = (η1, η2) > 0 and any solution (v1, v2) ∈ E of inequalities (10), there exists a

solution (u1, u2) ∈ E of the problem (1) with ζi =
(
I1−δ,σ,Φ
a+

vi

)
(a+), i = 1, 2, complying

with

∥(v1, v2)− (u1, u2)∥E,B ≤ N (η).

Theorem 4.1 (Stability results) Suppose that

1. All hypotheses of Theorem 3.1 are verified,

2. For any η1, η2 > 0, the inequalities (10) have at least one solution.

Then the problem (1) is UH and GUH stable w.r.t to the Bielecki vector-valued norm.

Proof. Let η1, η2 > 0 be arbitrary numbers and let (v1, v2) ∈ E be a solution of the
inequalities (10). According to Theorem 3.1, there exists a solution (u1, u2) of the system
(1) on J with

ζi =
(
I1−δ,σ,Φ
a+

vi

)
(a+), i = 1, 2,

and it is a fixed point of the operator L defined by (7).

On the other hand, applying operator Iα,σ,Φ
a+

on both sides of (10), we get

∥Iα,σ,Φ
a+

Dα,β,σ,Φ
a+

vi(z)− Iα,σ,Φ
a+

(ξivi(z) + gi(z, v1(z), v2(z))) ∥ ≤ Iα,σ,Φ
a+

ηi, i = 1, 2.

Using Lemma 3.8 from [17] yields

∥vi(z)− Li(v1, v2)(z)∥ ≤ ηi

(
Iα,σ,Φ
a+

1
)
(z), i = 1, 2.

Hence, we have by Remark 2.1,

∥vi(z)− Li(v1, v2)(z)∥ ≤ ηiΨ(z,a)α

σαΓ(α+1) := ηiNσ,Φ(α, z), i = 1, 2. (12)

Now, by (H2) and using (12) and Lemma 2.3, we have

∥v1(z)− u1(z)∥

= ∥v1(z)− L1(v1, v2)(z) + L1(v1, v2)(z)− u1(z)∥,

≤ ∥v1(z)− L1(v1, v2)(z)∥+ ∥L1(v1, v2)(z)− L1(u1, u2)(z)∥,

≤ η1Nσ,Φ(α, z) + ((∥ξ1∥+ ∥χ1∥∞) ∥v1 − u1∥σ,B + ∥χ̂1∥∞∥v2 − u2∥σ,B)

×Lδ−1
σ,Ψ (z,a)

ϖσα

(
Eα,δ(ϖΨ(z, a)α)− 1

Γ(δ)

)
.

Hence, we get

∥v1−u1∥σ,B ≤ Nσ,Φ(α, b, c∗)η1+
∥ξ1∥+ ∥χ1∥∞

ϖσα
∥v1−u1∥σ,B+

∥χ̂1∥∞
ϖσα

∥v2−u2∥σ,B . (13)
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Similarly, we have

∥v2−u2∥σ,B ≤ Nσ,Φ(α, b, c∗)η2+
∥χ2∥∞
ϖσα

∥v1−u1∥σ,B+
∥ξ2∥+ ∥χ̂2∥∞

ϖσα
∥v2−u2∥σ,B . (14)

Inequalities (13) and (14) yield

(I− Aϖ)

(∥v1 − u1∥σ,B

∥v2 − u2∥σ,B

)
≤

(
Nσ,Φ(α, b, c∗)η1

Nσ,Φ(α, b, c∗)η2

)
, (15)

where Aϖ is defined in (9). Hence, Aϖ converges to zero when taking ϖ large enough,

by Theorem 2.1, (I− Aϖ)
−1

has nonnegative elements since the matrix (I− Aϖ) is non-
singular. Accordingly, (15) is equivalent to(∥v1 − u1∥σ,B

∥v2 − u2∥σ,B

)
≤ (I− Aϖ)

−1

(
Nσ,Φ(α, b, c∗)η1

Nσ,Φ(α, b, c∗)η2

)
, (16)

which means that { ∥v1 − u1∥σ,B ≤ Ω1η1 +Ω2η2,

∥v2 − u2∥σ,B ≤ Ω3η1 +Ω4η2,
(17)

where Ωi = θiNσ,Φ(α, b, c∗) and (θi)i=1,4 are the elements of (I− Aϖ)
−1

. This proves
that system (1) is UH stable.

Moreover, let
θ = (θ1, θ2) = (Ω1 +Ω3,Ω2 +Ω4),

we can write inequalities (17) as

∥(v1, v2)− (u1, u2)∥E,B ≤ N (η),

where N (η) = θη with N (0) = (0). This shows that the coupled system (1) is GUH
stable.

5 Examples

Here, we provide some illustrative examples to validate the obtained results.

Example 1. We consider a particular case of our systems (1) with J = [0, b] and

ξ1 =

(
1/2 1
3/2 2

)
, ξ2 =

(
5 6
7 8

)
,

and g1, g2 : J× R2 × R2 → R2 such that u1 = (t1, t2), u2 = (r1, r2) with

g1(z, u1(z), u2(z)) =

( |t1(z)|+|t2(z)|
z+5

e−2z−1 loge (1 + |r1(z)|+ |r2(z)|)

)
,

g2(z, u1(z), u2(z)) =
1

ez + 5

(
sin(|r1(z)|+ |r2(z)|)

tan−1 (t1(z) + t2(z))

)
.
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Clearly, the functions ui, i = 1, 2, are continuous. Furthermore, for all x1, x2, x̄1, x̄2 ∈ R2

and z ∈ J, one has

∥g1(z, x1, x2)− g1(z, x̄1, x̄2)∥1 ≤ 1

z + 5
∥x1 − x̄1∥1 +

1

e2z+1
∥x2 − x̄2∥1

and

∥g2(z, x1, x2)− g2(z, x̄1, x̄2)∥1 ≤ 1

ez + 5
∥x1 − x̄1∥1 +

1

ez + 5
∥x2 − x̄2∥1,

where ∥ · ∥1 is a norm in R2 defined as follows:

∥(x1, x2)∥1 = |x1|+ |x2| .

Hence the hypothesis (H2) is satisfied with

χ1(z) =
1

z + 5
, χ̂1(z) =

1

e2z+1
, χ2(z) = χ̂2(z) =

1

ez + 5
.

Obviously,

∥χ1∥L∞ =
1

5
, ∥χ̂1∥L∞ =

1

e
, ∥χ2∥L∞ = ∥χ̂2∥L∞ =

1

6
,

and
∥ξ1∥max = 2, ∥ξ2∥max = 8,

where ∥ · ∥max is a norm of the matrix A = (ak,j) defined as follows:

∥A∥max = max
k,j

|ak,j |.

Moreover, the matrix Aϖ defined by (9) has the following form:

Aϖ =

 11
5ϖσα

1
eϖσα

1
6ϖσα

49
6ϖσα

 .

It converges to zero for ϖ large enough. By Theorem 3.1, system (1) with the above
conditions, has a unique solution. System (1) is not only UH stable but also GUH
stable, according to Theorem 4.1.

Example 2. Consider the following systems: D
1
2 ,

1
2 ,

1
4 ,Φ

0+
u1(z) =

2
3u1(z) + g1(z, u1(z), u2(z)),

D
1
2 ,

1
2 ,

1
4 ,Φ

0+
u2(z) =

1
5u2(z) + g2(z, u1(z), u2(z)),

z ∈ (0, 1] (18)

with the initial conditions 
(
I1− 3

4 ,
1
4 ,Φ

0+
u1

)
(0+) =

√
2,(

I1− 3
4 ,

1
4 ,Φ

0+
u2

)
(0+) =

√
3.

(19)

In this case, we take

α = β =
1

2
, δ =

3

4
, σ =

1

4
, ξ1 =

2

3
, ξ2 =

1

5
, ζ1 =

√
2, ζ2 =

√
3, a = 0, b = 1, n = 1,
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and

g1(z, u1(z), u2(z)) = sin(u1(z))
e−z+8 + (z +

√
2) ln(|u2(z)|+ 1),

g2(z, u1(z), u2(z)) = 1
ez+8

(
1 + |u1(z)|

1+|u1(z)|

)
+ (ez + 1)(arctan(u2(z)) + 1).

Then

Cδ,Φ(J,Rn) = C3/4,Φ([0, 1],R) =
{
u : [0, 1] → R : Ψ(z, 0)1/4u ∈ C([0, 1],R)

}
,

C
β(1−α)
δ,Φ (J,Rn)=C

1/4
3/4,Φ([0, 1],R)=

{
u ∈ C3/4,Φ([0, 1],R) : D

1/4,1/4,Φ
0+ u ∈ C3/4,Φ([0, 1],R)

}
.

It is clear that the continuous functions gi ∈ C
1/4
3/4,Φ([0, 1],R), i = 1, 2. So, hypothesis

(H1) is satisfied. And, for any u1, v1, u2, v2 ∈ R and z ∈ J, we have

|g1(z, u1(z), u2(z))− g1(z, v1(z), v2(z))| ≤ χ1(z)|u1(z)− v1(z)|+ χ̂1(z)|u2(z)− v2(z)|,
|g2(z, u1(z), u2(z))− g2(z, v1(z), v2(z))| ≤ χ2(z)|u1(z)− v1(z)|+ χ̂2(z)|u2(z)− v2(z)|,

where

χ1(z) =
1

e−z + 8
, χ̂1(z) = z +

√
2, χ2(z) =

1

ez + 8
, χ̂2(z) = ez + 1.

Obviously,

∥χ1∥∞ =
1

e−1 + 8
, ∥χ̂1∥∞ = 1 +

√
2, ∥χ2∥∞ =

1

9
, ∥χ̂2∥∞ = e+ 1.

Then the matrix Aϖ has the following representation:

Aϖ =
2

ϖ

 2+19e
3+24e 1 +

√
2

1
9 e+ 6

5

 .

For ϖ > 0 suitably chosen, by virtue of Theorem 3.1, the system (18)-(19) has a
unique solution in C3/4,Φ([0, 1],R) × C3/4,Φ([0, 1],R). Therefore, from Theorem 4.1,
coupled system (18)-(19) is UH and GUH stable.

Example 3. In a particular case, for α = 1
2 , β = 1, Φ(z) = z, the coupled system for

Φ-Hilfer proportional FDE (1) reduces to the coupled system for the Caputo proportional
FDE given by

D
1
2 ,

1
4

0+
u1(z) = 2u1(z)

3 + sin(u1(z))
e−z+8 + (z +

√
2) ln(|u2(z)|+ 1), z ∈ (0, 1],

D
1
2 ,

1
4

0+
u2(z) = u2(z)

5 + 1
ez+8

(
1 + |u1(z)|

1+|u1(z)|

)
+ arctan(u2(z))+1

(ez+1)−1 , z ∈ (0, 1],
(20)

and
(I0, 12 ,z

0+
u1(0

+), I0, 12 ,z

0+
u2(0

+)) = (0, 0). (21)

We have
Cδ,Φ(J,Rn) = C1,z([0, 1],R)

and

C
β(1−α)
δ,Φ (J,Rn) = C

1/2
1,z ([0, 1],R).

As all the hypotheses of Theorem 3.1 and Theorem 4.1 are satisfied, then system (18)-(19)
has a unique solution in C1,z([0, 1],R)× C1,z([0, 1],R) and is UH and GUH stable.
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6 Conclusion

In this paper, we successfully employed the fixed-point approach in a vector-valued Ba-
nach space to establish qualitative results for a coupled system driven by the Φ-Hilfer
PFD. Our analysis relies on the convergence to zero of the matrices and introduces a new
Bielecki-type vector-valued norm, allowing us to avoid any extra assumptions. We also
investigate Ulam’s types stability. Consequently, numerous findings in the literature can
be recovered through our results. By varying the functions Φ, β, and σ, one can explore
several cases of our system (1). More precisely:

1. Proportional Φ-Riemann–Liouville FD : By taking β = 0.

2. Proportional Φ-Caputo FD : By taking β = 1.

3. Φ-Hilfer FD : By taking σ = 1.

4. Hilfer-Hadmard FD : By taking Φ(z) = ln(z).

5. Hilfer-Katugampola FD : By taking Φ(z) = zµ, where µ > 0.
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