Nonlinear Dynamics and Systems Theory, $\mathbf{25}(1)$ (2025) 13–26

Φ-Hilfer Proportional Fractional Differential System: Uniqueness and Stability Result

Ahmad Alhabahbeh¹, Ma'mon Abu Hammad², Oualid Zentar³, Mohamed Ziane³, Shameseddin Alshorm^{4*} and Ali Ateiwi⁵

¹ Department of Basic and Applied Sciences, Shoubak University College, Al-Balqa Applied University, P.O. Box 71911, Shoubak, Jordan.

² Department of Mathematics, Al-Zaytoonah University of Jordan, Amman 11733, Jordan.

 ³ Department of Computer Science, University of Tiaret, Tiaret, Algeria and Laboratory of Research in Artificial Intelligence and Systems (LRAIS), University of Tiaret, Algeria.
⁴ Department of Mathematics, Al al-Bayt University, Mafraq 25113, Jordan.

⁵ Department of Mathematics, Faculty of Science, Al-Hussein Bin Talal University, P.O. Box 20, Ma'an, Jordan.

Received: May 16, 2024; Revised: January 30, 2025

Abstract: This work derives uniqueness and Ulam-Hyers (UH) stability results for a coupled system with the Φ -Hilfer proportional fractional derivative. We first construct a new Bielecki-type vector-valued norm in weighted space and then use the fixed-point argument to achieve a new uniqueness criterion. Secondly, the UH and the generalized Ulam-Hyers (GUH) stability is established. To verify the obtained result, an example is provided.

Keywords: Φ -Hilfer proportional fractional derivative; uniqueness; Ulam-Hyers stability; fixed point theorem.

Mathematics Subject Classification (2020): 26A33, 34A07, 34A08, 70K20.

^{*} Corresponding author: mailto:alshormanshams@gmail.com

^{© 2025} InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua 13