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Abstract: In this study, by the uniform control of the singularity and energy esti-
mates, we establish the existence of solutions for the reaction-diffusion model with
singularity due to Quenching phenomena in the boundary.

∂u1

∂t
− div

(
a(x, t,∇u1)

)
= f1(t, x)hγ(u1, u2) in QT ,

∂u2

∂t
− div

(
a(x, t,∇u2)

)
= f2(t, x)hγ(u1, u2) in QT ,

(1)

where the operator A(u) = div
(
a(x, t,∇ui)

)
is a generalized Leray-Lions operator

defined on the inhomogeneous Musielak-Orlicz spaces (the vector field a(x, t,∇ui)
has a growth prescribed by a generalized N-function).
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