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Abstract: In this paper, we use Banach’s fixed point theorem to establish suffi-
cient conditions which guarantee the existence and uniqueness of the solution for a
stochastic nonlocal random functional integral equation. As applications, an example
is presented to illustrate our obtained results.
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1 Introduction

Stochastic differential equations (SDEs) play an important role in characterizing many
social, physical, biological, and engineering problems. The theory of SDEs has developed
quickly, the investigation of SDEs has attracted considerable attention of researchers,
and many qualitative theories of SDEs have been obtained (see [2, 4, 8]).

In the last two decades, the existence and uniqueness of solution for SDEs have been
considered in many publications such as [1, 5, 7, 9, 10].

When random fluctuations have great effects on the parameters and evolution in
the mathematical model which describes a certain phenomenon, a stochastic differential
equation should be the starting point for deriving the suitable model. Recently, nonlocal
stochastic models were introduced by many authors to describe the evolution of the
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studied phenomena. Motivated by the papers [3,6], we study the existence and uniqueness
solution of the following nonlocal functional stochastic differential equation:

dx(t) =f(t, x(t), A(t)x(t))dt+ g(t, x(t), C(t)x(t))dB(t), t ∈ [0, T ],

x(0) +

p∑
k=1

ckx(tk) = x0,
(1)

which is equivalent to the following stochastic functional integral equation:

x(t) = x(0) +

∫ t

0

f(s, x(s), A(s)x(s))ds

+

∫ t

0

g(s, x(s), C(s)x(s))dB(s),

(2)

where the first integral is a mean square Riemann integral and the second is an Ito
integral.

This paper consists of four sections. In Section 2, we review some concepts, introduce
some notation and state our main result, which shows the existence and uniqueness of
solution for the stochastic nonlocal random functional integral equation (2). In Section
3, we give the proof of the main result. In Section 4, one example is given to illustrate
the theoretical result.

2 Preliminaries and Main Result

Throughout this paper, we assume that (Ω,F ,P) is a complete probability space with
a filtration {Ft}t∈[0,T ] satisfying the usual conditions (i.e., it is right continuous and F0

contains all P -null sets). Let L2(Ω,F ,P) stand for the space of all R-valued random
variables {X(t), t ∈ [0, T ]} such that

E|X|2 =

∫
Ω

|X|2 dP < ∞.

For X ∈ L2(Ω,F ,P), we let

∥X∥2 :=
(∫

Ω

|X|2 dP
)1/2

.

Then L2(Ω,F ,P) is a Hilbert space equipped with the norm ∥ · ∥2. We consider the
following nonlocal functional stochastic differential equation:

dx(t) =f(t, x(t), A(t)x(t))dt+ g(t, x(t), C(t)x(t))dB(t), t ∈ [0, T ],

x(0) +

p∑
k=1

ckx(tk) = x0,

where 0 = t0 < t1 < ... < tp ≤ T , ck are constants (k = 1, ..., p), p ∈ N, {Bt} is a
standard Brownian motion defined on the complete probability space (Ω,F ,P) adapted
to the filtration {Ft}t∈[0,T ]. x(0) is an F0-mesurable random variable independent of B
with finite second moment.
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A(t), t ∈ [0, T ], and C(t), t ∈ [0, T ], are the families of linear bounded operators
defined on Y := C([0, T ],L2(Ω,F ,P)), the space of all continuous stochastic processes
defined from [0, T ] into L2(Ω,F ,P) with values in Y . The measurable real random
functions f and g are defined on [0, T ]× Y × Y with values in the space L2(Ω,F ,P).

A(t) and C(t) are the families of bounded operators. So, there exist a function
α(t) : [0, T ] → R+ and a function γ(t) : [0, T ] → R+ such that ∥A(t)x∥Y ≤ α(t)∥x∥Y and
∥C(t)x∥Y ≤ γ(t)∥x∥Y .

For the nonlocal stochastic differential equation (1), we have the following result. It
shows that under some sufficient conditions, there exists a unique solution.

Theorem 2.1 Assume that the following conditions hold:

(i) For all x, y ∈ Y and t ∈ [0, T ], there exists a constant l > 0 such that

|f(t, x, y)| ≤ l
√

1 + |x|2 + |y|2,

|g(t, x, y)| ≤ l
√
1 + |x|2 + |y|2;

(ii) For all x, y, x′, y′ ∈ Y and t ∈ [0, T ], there exists a constant a > 0 such that

|f(t, x, y)− f(t, x′, y′)| ≤ a
√
|x− x′|2 + |y − y′|2,

|g(t, x, y)− g(t, x′, y′)| ≤ a
√
|x− x′|2 + |y − y′|2;

(iii) There exists a real continuous monotone nondecreasing mapping F defined on [0, T ]
such that s < t implies

E[|B(t)−B(s)|2] = E[∥B(t)−B(s)∥2\Fs] = F (t)− F (s);

(iv)

p∑
k=1

ck ̸= −1;

(v) a satisfies 4a2

1 +

p∑
k=1

c2k(
1 +

p∑
k=1

ck

)2

 [(1 + θ2)(T 2 + F (T )− F (0)] < 1.

Then nonlocal functional stochastic integral equation (2) has a unique continuous solution
Xt(ω) belonging to L2(Ω,F ,P), and Xt(ω) is adapted to the filtration {Ft}t≥0.

3 Proof of the Theorem

Assume that

p∑
k=1

ck ̸= −1. Integrating the equation (1) yields

x(t) = x(0) +

∫ t

0

f(s, x(s), A(s)x(s))ds

+

∫ t

0

g(s, x(s), C(s)x(s))dB(s).
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So we have

x(tk) = x(0) +

∫ tk

0

f(s, x(s), A(s)x(s))ds

+

∫ tk

0

g(s, x(s), C(s)x(s))dB(s) (k = 1, ..., p).

(3)

By (1) and (3),

x(0) +

p∑
k=1

ck

[
x(0) +

∫ tk

0

f(s, x(s), A(s)x(s))ds

+

∫ tk

0

g(s, x(s), C(s)x(s))dB(s)

]
= x0.

(4)

Since

p∑
k=1

ck ̸= −1, then (4) implies

x(0) =

(
x0 −

p∑
k=1

ck

[ ∫ tk

0

f(s, x(s), A(s)x(s))ds

+

∫ tk

0

g(s, x(s), C(s)x(s))dB(s)

])/(
1 +

p∑
k=1

ck

)
.

Then

x(t) =

x0 −
p∑

k=1

ck

[ ∫ tk

0

f(s, x(s), A(s)x(s))ds+

∫ tk

0

g(s, x(s), C(s)x(s))dB(s)

]

1 +

p∑
k=1

ck

+

∫ t

0

f(s, x(s), A(s)x(s))ds+

∫ t

0

g(s, x(s), C(s)x(s))dB(s)

Let us define the integral operator G by

Gx(t) =

x0 −
p∑

k=1

ck

[ ∫ tk

0

f(s, x(s), A(s)x(s))ds+

∫ tk

0

g(s, x(s), C(s)x(s))dB(s)

]

1 +

p∑
k=1

ck

+

∫ t

0

f(s, x(s), A(s)x(s))ds+

∫ t

0

g(s, x(s), C(s)x(s))dB(s).

Lemma 3.1 The operator G sends the space C([0, T ],L2(Ω,F ,P)) into itself.

Proof. Let 0 ≤ t1 ≤ t2 ≤ T and x ∈ C([0, T ],L2(Ω,F ,P)). By applying the Cauchy-
Schwarz inequality and the condition (iii), we obtain

E|Gx(t2)−Gx(t1)|2 ≤ 2(t2 − t1)

∫ t2

t1

E|f(s, x(s), A(s)x(s))|2ds

+ 2

∫ t2

t1

E|g(s, x(s), C(s)x(s))|2dF (s).
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Let θ = max{maxt∈[0,T ] α(t),maxt∈[0,T ] γ(t)}. Applying the growth condition yields

E|Gx(t2)−Gx(t1)|2 ≤ 2l2[(t2 − t1)
2 + F (t2)− F (t1)][1 + (1 + θ2)∥x∥2Y ].

F (t) is continuous, then

lim
t1 7→t2

∥F (t2)− F (t1)∥ = 0.

Therefore,

lim
t1 7→t2

E|Gx(t2)−Gx(t1)|2 = 0.

Consequently, Gx is continuous in mean square on [0, T ].

But the function Gx is square integrable with respect to measure probability, has a
finite second moment, and is adapted to the filtration {Ft}t∈[0,T ]. This implies that G
maps Y into itself.

Now, we will show that G is a contraction on Y .

Let x and y in Y . Applying the Cauchy-Schwarz inequality and the above conditions,
we have

E|Gx(t)−Gy(t)|2 ≤ 4

∫ t

0

E|f(s, x(s), A(s)x(s))− f(s, y(s), A(s)y(s))|2ds

+ 4

∫ t

0

E|g(s, x(s), C(s)x(s))− g(s, y(s), C(s)y(s))|2dF (s)

+ 4E

∣∣∣∣∣∣∣∣∣∣

p∑
k=1

ck

[ ∫ tk

0

f(s, x(s), A(s)x(s))− f(s, y(s), A(s)y(s))ds

]

1 +

p∑
k=1

ck

∣∣∣∣∣∣∣∣∣∣

2

+ 4E

∣∣∣∣∣∣∣∣∣∣

p∑
k=1

ck

[ ∫ tk

0

g(s, x(s), C(s)x(s))− g(s, y(s), C(s)y(s))dB(s)

]

1 +

p∑
k=1

ck

∣∣∣∣∣∣∣∣∣∣

2

≤ 4a2

1 +

p∑
k=1

c2k(
1 +

p∑
k=1

ck

)2

[
(1 + θ2)(T 2 + F (T )− F (0)

]
E|x− y|2.

4 Illustrative Example

For simplicity, let X(0) = x0. The process Xt = e0.36845t+0.87Bt starting from X(0) = 1
solves the stochastic differential equation (SDE)

dXt = 1.01Xtdt+ 0.87XtdBt,

x0 = 1.
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5 Conclusion

The main goal of this paper is to discuss the existence and uniqueness of solutions for a
kind of stochastic integral equations with nonlocal conditions. We obtained a sufficient
condition of the existence and uniqueness of solution for stochastic integral equation with
nonlocal condition.
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