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1 Introduction

There are many problems in applied mathematics, control theory, nonlinear dynamics,
as well as economical systems, Hamiltonian systems and mechanical problems, in which
one needs to study the differential inclusions

x′(t) ∈ F (t, x(t)),

where F (., .) is a multivalued function, see for instance [6, 20].
In recent years, many authors have investigated the existence of absolutely continu-

ous solutions for the initial value problems of multivalued differential equations, under
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lower or upper semicontinuous assumptions, for more detail, see for instance [10], and
the references therein. Also, the existence of continuous, and absolutely continuous solu-
tions for differential inclusions with nonlocal conditions, under the upper semicontinuous
assumption, has been extensively studied by several authors, see for instance [11,17] and
the references therein.

The study of integral boundary conditions has a great importance due to their various
applications in many scientific fields such as population dynamics [9] and cellular systems
[1]. Moreover, the existence of continuous, absolutely continuous, and bounded variation
solutions of boundary value problems with integral boundary conditions has been studied
by some authors such as Arara and Benchohra [4], Benchohra et al. [11], A. Boucherif [2],
Infante [18], see also the references therein.

The existence of minimal and maximal solutions for a single-valued case, i.e., differ-
ential equations, is discused by many authors, see for instance [7, 22].

In [3], the authors have proved the existence of the minimal and maximal solutions
for the following initial value problem:{

xn(t) ∈ F (t, x(t)), a.e. t ∈ I = [0, a],
xi(0) = xi ∈ ℜ, i = 1, 2, ..., n− 1.

(1)

And in [14], the author discuses the existence of the minimal and maximal solutions of
the following periodic boundary value problem:{

x′(t) ∈ F (t, x(t)), a.e. t ∈ I = [0, T ],
x(0) = x(T ).

(2)

Also, the author in [13], has proved the existence of the minimal and maximal solutions
of the following integral inclusions:

x(t)− q(t) ∈
∫ σ(t)

0

k(t, s)F (s, x(η(s)))ds (3)

for t ∈ [0, 1], where σ, η : [0, 1] → [0, 1], q : [0, 1] → [0, 1],
and k : [0, 1]× [0, 1] → ℜ.
For more detail about the extremal solutions of differential inclusions, see [21].
The main purpose of this paper is to demonstrate the existence of extremal absolutely
continuous solutions, by using a lattice fixed point theorem [15], without the convexity
condition of the following problem:

x′(t) ∈ F (t, x(t)), a.e. t ∈ I = [0, T ], (4)

with the integral condition

x(0) =

∫ T

0

g(s, x(s))ds, (5)

where F : I × ℜ → P (ℜ) is a multivalued function, when F is isotone increasing in the
second variable, P (ℜ) is the family of all nonempty subsets of ℜ and g : I ×ℜ → ℜ is a
given function.

The problem (4)-(7) has been studied recently by Boucherif [3], for the existence of a
bounded variation solution, under the bounded variation condition.

This work is organized as follows: in addition to the Introduction, we have two main
sections. In Section 2, we give some preliminary tools that we will use later. In Section 3,
we present our main results obtained. Finally, as an application, we provide an example
to demonstrate the validity of our results.
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2 Preliminaries

In this section, we present the necessary notations, definitions, and some basic facts that
are used in this paper, for more detail, we refer the reader to [3, 5, 8, 12,14–16,19].
Let (X, ∥.∥X) be a normed space.
P (X) is the set of all nonempty subsets of X.
Pcl(X) = {Y ∈ P (X) : Y is closed}.
Pcv(X) = {Y ∈ P (X) : Y is convex}.
Pbd(X) = {Y ∈ P (X) : Y is bounded}.
Pcl,cv(X) = {Y ∈ P (X) : Y is closed and convex}.
Pcp,cv(X) = {Y ∈ P (X) : Y is compact and convex}.

Definition 2.1 A set-valued function F : X → P (X) is called convex (closed) valued
if F (x) is convex (closed) for all x ∈ X.

Definition 2.2 A set-valued function F : X → P (X) is called bounded valued on
the bounded sets B if F (B) =

⋃
x∈B F (x) is bounded in X for all B ∈ Pbd(X)

or, equivalently, supx∈B{sup{|u| : u ∈ F (x)}} <∞.

Definition 2.3 A set-valued function F : X → P (X) is called upper semicontinuous
(u.s.c) on X if for each x0 ∈ X, the set F (x0) is a nonempty closed subset of X, and if for
each open set N of X containing F (x0), there exists an open neighborhood N0 of x0 such
that F (N0) ⊆ N . In other words, F is u.s.c if the set F−1(A) = {x ∈ X : F (x) ⊂ A}
is open in X for every open set A in X. Or for every closed subset A of X, the set
F+(A) = {x ∈ X : A

⋂
F (x) ̸= ∅} is closed in X.

Definition 2.4 A multivalued map N : I → Pcl(ℜ) is said to be measurable if for
every y ∈ ℜ, the function

t 7→ d(y,N(t)) = inf{|y − z|; z ∈ N(t)}

is measurable.

Definition 2.5 A multivalued map F : I ×ℜ → P (ℜ) is said to be Carathéodory if

(i) t 7→ F (t, x) is measurable for each x ∈ ℜ,

(ii) u 7→ F (t, u) is upper semicontinuous for almost all t ∈ I.

For each x ∈ C(I,ℜ), we denote by S1
F,x the set of Lebesgue integrable selections of

F , i.e.,
S1
F,x = {v ∈ L1(I,ℜ); v(t) ∈ F (t, x(t)) a.e. t ∈ I},

and AC(I,ℜ) is the space of all absolutely continuous real-valued functions on I, and it
is a Banach space with respect to the norm

∥x∥ = sup{|x(t)|, t ∈ I},

where |.| is the norm on ℜ.

Theorem 2.1 Assume that the multivalued function

F : I ×ℜ → P (ℜ)

satisfies the following assumptions:
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(1) F is a Carathéodory multivalued function,

(2) for each r > 0,∃hr ∈ L1(I,ℜ+) such that

|F (t, x)| = sup{|v|, v ∈ F (t, x)} ≤ hr(t),∀|x| ≤ r, and for a.e. t ∈ I.

Then the set S1
F,x is nonempty.

Definition 2.6 A partially ordered set (N,≤) is called a lattice if for any x, y ∈
N, x ∧ y = inf{x, y} and x ∨ y = sup{x, y} exist.

Let A be any subset of N , by ∧A we mean an element a∗ ∈ N such that x ∧ a∗ = a∗
for all x ∈ A. Similarly, by ∨A we mean an element a∗ such that x ∨ a∗ = a∗ for all
x ∈ A. The elements a∗ and a∗ are respectively called the infimum and supremum of A.

Definition 2.7 A lattice (N,≤) is called a complete lattice if every subset of N has
the infimum and supremum in N .

Definition 2.8 A function f : N → N is called isotone increasing if for any x, y ∈
N, x ≤ y, we have f(x) ≤ f(y).

Definition 2.9 A multivalued function T : N → P (N) is called isotone increasing if
for any x, y ∈ N, x ≤ y implies T (x) ≤ T (y).

Definition 2.10 A function α ∈ AC(I,ℜ) is called the lower solution of the problem

(4)-(7) if for any v ∈ S1
F,α, we have α

′
(t) ≤ v(t), a.e t ∈ I and α(0) ≤

∫ T

0
g(s, α(s))ds.

Definition 2.11 A function β ∈ AC(I,ℜ) is called the upper solution of the problem

(4)-(7) if for any v ∈ S1
F,β , we have β

′
(t) ≥ v(t), a.e t ∈ I and β(0) ≥

∫ T

0
g(s, β(s))ds.

Definition 2.12 A function u ∈ AC(I,ℜ) is said to be a maximal solution of (4)-(7)
if it satisfies (4)-(7) on I, and for any other solution x ∈ AC(I,ℜ) of (4)-(7) on I, we
have x(t) ≤ u(t) for t ∈ I. Similarly, we can define a minimal solution y ∈ AC(I,ℜ) of
(4)-(7).

Theorem 2.2 Let F : [0, T ]×ℜ → P (ℜ) be a multivalued function, assume that the
multivalued function F satisfies the following assumptions:

(1) F (t, x) is nonempty closed for all (t, x) ∈ I ×ℜ,

(2) F (t, .) is lower semicontinuous from ℜ into P (ℜ),

(3) F (., .) is measurable.

Then there exists a measurable selection of F .

Theorem 2.3 Let (N,≤) be a complete lattice, and T : N → P (N) be a multivalued
map. Suppose the following conditions hold:

(i) T is isotone increasing on N ,

(ii) infTx ∈ Tx, supTx ∈ Tx for each x ∈ N .
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Then the set P = {u ∈ N : u ∈ Tu} is nonempty, and there exists u1, u2 ∈ N with
u1 ∈ Tu1, u2 ∈ Tu2 with

u1 ≤ u ≤ u2

for all u ∈ N with u ∈ Tu.

Theorem 2.4 Let X be a Banach space, and let (X,≤) be a complete lattice.
Suppose that T : X → P (X) is a multivalued function such that

(i) T is isotone increasing, and

(ii) T (x) is closed for each x ∈ X.

Then the set of fixed points of T is non-empty, and has the minimal and maximal ele-
ments.

3 Existence Results

In this section, we state and prove our main results.

Theorem 3.1 Suppose that the following conditions hold:

(H1) F (t, x) is closed for each (t, x) ∈ I ×ℜ,

(H2) F is isotone increasing in x almost everywhere for t ∈ I,

(H3) F is Caratheodory,

(H4) ∃hF ∈ L1(I,ℜ+) such that

|F (t, x)| ≤ hF (t), a.e. t ∈ I,

for all x ∈ ℜ,

(H5) t 7→ g(t, x) is measurable for each x ∈ ℜ and x 7→ g(t, x) is continuous for a.e.
t ∈ I,

(H6) ∃hg ∈ L1(I,ℜ+) such that

|g(t, x)| ≤ hg(t), a.e. t ∈ I,

for all x ∈ ℜ,

(H7) g is isotone increasing in x almost everywhere for t ∈ I.

Then the problem (4)-(7) has the minimal and maximal solutions on I.

Proof. We have from the assumption (H3), there exists a measurable selection v of
F (i.e., v(t) ∈ F (t, x)), and from the assumption (H4), this selection is integrable, i.e.,
v(.) ∈ L1(I,ℜ) (by Theorem 2.1). Now we define the multivalued function T by

Tx(t) = {h ∈ C(I,ℜ) s.t;h(t) =
∫ T

0

g(s, x(s))ds

+

∫ t

0

v(s)ds, v(t) ∈ F (t, x(t)), a.e. t ∈ I}, (6)
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let
N = {x ∈ AC(I,ℜ); ∥x∥ ≤M},

where M = ∥hg∥1 + ∥hF ∥1, we have N is a closed and bounded subset of the complete
lattice (AC(I,ℜ),≤) and so (N,≤) is complete.
Now, we show that T maps N into P (N), to see this, let x ∈ N , and for each u ∈ Tx,
∃v ∈ L1 such that v(t) ∈ F (t, x(t)) a.e. t ∈ I with

u(t) =

∫ T

0

g(s, x(s))ds+

∫ t

0

v(s)ds,

and therefore

|u(t)| ≤
∫ T

0

|g(s, x(s))|ds+
∫ t

0

|v(s)|ds ≤ ∥hg∥1 + ∥hF ∥1,

and hence T : N → P (N).
Next, we show that Tx is a closed subset of N for each x ∈ N , to see this, it is enough

to show that the values of the operator Q defined by Qx = {v ∈ L1(I,ℜ); v ∈ S1
F,x} are

closed, let (v)n be a sequence in L1(I,ℜ) such that vn → v, then vn → v in measure
so there exists a subsequence (v)kn (we take (v)n) such that vn → v a.e. and from the
assumption (H1), we have that the values of Q are closed in L1(I,ℜ), therefore for each
x ∈ N, Tx is a closed and bounded subset of N .

Now, we show that T is isotone increasing on N , to see this, let x, y ∈ N such that

x ≤ y, let u1 ∈ Tx, then ∃v1 ∈ S1
F,x such that u1(t) =

∫ T

0
g(s, x(s))ds +

∫ t

0
v1(s)ds,

and since F (t, .) and g(t, .) are isotone increasing, we have ∃v2 ∈ S1
F,y such that v1(t) ≤

v2(t),∀t ∈ I, and hence

u1(t) =

∫ T

0

g(s, x(s))ds+

∫ t

0

v1(s)ds ≤
∫ T

0

g(s, y(s))ds+

∫ t

0

v2(s)ds = u2(t)

for all t ∈ I, u2 ∈ Ty. Similarly, let u2 ∈ Ty, then ∃v2 ∈ S1
F,y such that

u2(t) =

∫ T

0

g(s, y(s))ds+

∫ t

0

v2(s)ds

by the fact that F and g are isotone increasing, ∃v1 ∈ S1
F,x such that v1(t) ≤ v2(t) for

t ∈ I, hence we have

u2(t) =

∫ T

0

g(s, y(s))ds+

∫ t

0

v2(s)ds ≥
∫ T

0

g(s, x(s))ds+

∫ t

0

v1(s)ds = u1(t)

for all t ∈ I, therefore u1 ∈ Tx, hence

Tx ≤ Ty,

i.e., T is isotone increasing on N . Therefore, all conditions of Theorem 2.4 are satisfied,
and hence T has a fixed point, and the set of fixed points has the minimal and maximal
elements, and therefore the problem (4)-(7) has the minimal and maximal solutions on
I.

Now, we give another existence theorem for the minimal and maximal solutions of
the problem (4)-(7).
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Theorem 3.2 Assume that the following assumptions hold:

(A1) F (t, x) is nonempty and closed for all (t, x) ∈ I ×ℜ,

(A2) F (t, x) is isotone increasing in x for a.e. t ∈ I,

(A3) g is measurable in the first variable and continuous in the second variable,

(A4) ∃hg ∈ L1(I,ℜ+) such that |g(t, x)| ≤ hg(t), a.e. t ∈ I,

(A5) F (t, .) is lower semicontinuous from ℜ into ℜ,

(A6) F (., .) is measurable,

(A7) ∃q ∈ L1(I,ℜ+) and there exists a continuous nondecreasing ψ : [0,+∞) → [0,+∞)
such that

|F (t, x)| ≤ q(t)ψ(|x|) for a.e. t ∈ I, ∀x ∈ ℜ,

and ∫ a

0

q(t)dt ≤
∫ +∞

∥h∥1

du

ψ(u)
,

(A8) g is isotone increasing in x for a.e. t ∈ I.

Then the problem (4)-(7) has the minimal and maximal solutions in I.

Proof. We have from the assumptions (A1),(A5), and (A6) that there exists a mea-
surable selection v of F (i.e., v(t) ∈ F (t, x)), and from the assumption (A7), this selection
is integrable, i.e., v(.) ∈ L1(I,ℜ) (by Theorem 2.2). Now we define the multivalued func-
tion T by

Tx(t) = {h ∈ C(I,ℜ)s.t;h(t) =
∫ T

0

g(s, x(s))ds+

∫ t

0

v(s)ds, v(t) ∈ F (t, x(t)), a.e t ∈ I.}

Let
N = {x ∈ AC(I,ℜ);α(t) ≤ x(t) ≤ β(t), for t ∈ I},

where

α(t) = −J−1(

∫ t

0

q(s)ds)

and

β(t) = J−1(

∫ t

0

q(s)ds)

with

J(z) =

∫ z

hg

du

ψ(u)
.

Firstly, we show that α is a lower solution of (4)-(7), and β is an upper solution of (4)-(7),
we have for each t ∈ I, β

′
(t) = 1

J′ (β(t))
q(t) = ψ(β(t))× q(t) and −α(t) = q(t)ψ(−α(t)).

Also, we have β(0) = ∥hg∥1 ≥
∫ T

0
g(s, β(s))ds and α(0) = −∥hg∥1 ≤

∫ T

0
g(s, α(s))ds.

Now, let v ∈ S1
F,β , then by (A7), we have |v(t)| ≤ q(t)ψ(β(t)) = β

′
(t) a.e t ∈ I, as a

result we have
v(t) ≤ |v(t)| ≤ β

′
(t) a.e t ∈ I,
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thus β is an upper solution of the problem (4)-(7).
Now, let v ∈ S1

F,α, and from (A7), we have

−v(t) ≤ |v(t)| ≤ q(t)ψ(|α(t)|) = q(t)ψ(−α(t)) = −α
′
(t) a.e t ∈ I,

therefore

α
′
(t) ≤ v(t) a.e t ∈ I.

Thus α is a lower solution of the problem (4)-(7).
Now, we prove that T is isotone increasing, to see this, let x, y ∈ N such that x ≤ y, let

u1 ∈ Tx, then ∃v1 ∈ S1
F,x such that u1(t) =

∫ T

0
g(s, x(s))ds+

∫ t

0
v1(s)ds and since F (t, .)

and g(t, .) are isotone increasing, we have ∃v2 ∈ S1
F,y such that v1(t) ≤ v2(t),∀t ∈ I, and

hence

u1(t) =

∫ T

0

g(s, x(s))ds+

∫ t

0

v1(s)ds ≤
∫ T

0

g(s, y(s))ds+

∫ t

0

v2(s)ds = u2(t)

for all t ∈ I, u2 ∈ Ty. Similarly, let u2 ∈ Ty, then ∃v2 ∈ S1
F,y such that

u2(t) =

∫ T

0

g(s, y(s))ds+

∫ t

0

v2(s)ds

by the fact that F and g are isotone increasing, ∃v1 ∈ S1
F,x such that v1(t) ≤ v2(t) for

t ∈ I, hence we have

u2(t) =

∫ T

0

g(s, y(s))ds+

∫ t

0

v2(s)ds ≥
∫ T

0

g(s, x(s))ds+

∫ t

0

v1(s)ds = u1(t)

for all t ∈ I. Therefore u1 ∈ Tx and hence

Tx ≤ Ty,

i.e., T is isotone increasing on N .
Next, we show that T : N → P (N), to see this let x ∈ N (α(t) ≤ x(t) ≤ β(t)), so for
each u ∈ Tβ,∃v ∈ S1

F,β(i.e., v(t) ∈ F (t, β(t)) t ∈ I ) with

u(t) =

∫ T

0

g(s, β(s))ds+

∫ t

v(s)ds,

and since β is an upper solution of the problem (4)-(7), we have v(s) ≤ β
′
(s) a.e s ∈ I.

As a result, for each t ∈ I, we have

u(t) =

∫ T

0

g(s, β(s))ds+

∫ t

0

v(s)ds

≤
∫ T

0

g(s, β(s))ds+

∫ t

0

β
′
(s)ds

=

∫ T

0

g(s, β(s))ds+ β(t)− β(0) ≤ β(t) (β(0) ≥
∫ T

0

g(s, β(s))ds).
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Consequently, Tβ ≤ β. A similar argument guarantees that α ≤ Tα, and since T
is isotone increasing on N and α ≤ x ≤ β, we have α ≤ Tα ≤ Tx ≤ Tβ ≤ β, so
T : N → P (N).

As in the proof of Theorem 3.1, we deduce that Tx is closed for each x ∈ N , thus for
each x ∈ N , we have Tx is a nonempty closed and bounded subset of N , so as a result
we have that supTx ∈ Tx (also infTx ∈ Tx), and by Theorem 2.3, we have that T has
the minimal and maximal elements, therefore the problem (4)-(7) has the minimal and
maximal solutions in N .

4 Example

As an example of our result, we consider the following boundary value problem with
integral condition: {

x′(t) ∈ 1
3et+2 [1, 1 + |x(t)|], t ∈ I = [0, T ],

x(0) =
∫ T

0
1

2es+4 (1 + x(s))ds.
(7)

Set

F (t, x) =
1

3et+2
[1, 1 + |x|], t ∈ I.

For each x ∈ ℜ, and t ∈ I, we have

∥F (t, x)∥ = sup{|v| : v ∈ F (t, x)} ≤ 1

3et+2
(1 + |x|).

Hence for each r > 0, ∃hF,r ∈ L1(I,ℜ+) such that

hF,r(t) =
1 + r

3et+2
|x| ≤ r

and

g(t, x(t)) =
1

2et+4
(1 + x(t)),

we have also

|g(t, x)| ≤ 1 + r

2et+4
= hg(t)

for each |x| ≤ r.
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