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Abstract: In this paper, we consider a model of a dynamic viscoelastic wave equa-
tion with a nonlinear source and boundary dissipation. Our fundamental goal is to
establish the general decay rates of the energy solutions under a class of generality of
the relaxation function g : Rt — R* satisfying the inequality ¢’(t) < —H/(g(t)) for all
t > 0, where H is a function satisfying some specific properties. This work extends
the previous works with a viscoelastic wave equation and improves earlier results in
the literature.
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1 Introduction

In this paper, we are concerned with the following nonlinear viscoelastic wave equations:

utt—kkofg (t — s)div(a(z)Vu (s))ds + b (z) u = [uf’ u  in Q x R,

fo (t —s)(a(x)Vu(s))vds+ h(u;) =0 on 'y x RT, 1)
(x,O)—uo( ), ut (2,0) = ug (x), x €,
u=0 on 'y x RT,

where ko > 0, and Q is a bounded domain in R™ (n > 1) with a smooth boundary
I' =Ty UTy. Hence T'y and I'; are closed and disjoint with mes (I'g) > 0 and v is the
unit outward normal to I". b: Q@ — RT is a function, and

2
"o on>3, 2)

2 < —
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p>2, n=12
We consider the following hypotheses.
(G1) g:RT — RT is a C! function satisfying

g(0) >0, ko—/ooog(s)ds:l>0. (3)
(G2) H:RT — RT isa C'(RT) function with H (0) = 0, and H is a linear or strictly
increasing and strictly convex C? function on (0,7], » < 1, such that
g (t)<-H(g(t), vt=0. (4)
(G3) h:R — R is a nondecreasing function with
h(s)s>als|”, VseR, (5)
[h(s)l <vls|, Vs eR, (6)

where «, v are positive constants. B
(G4) a:Q — R is a non negative function and a € C* (Q) such that

a(x) > ag >0, (7)
IVa (z)|* < a?la(z)], VseR,

for some positive constant a;.

This type of problems has been considered by many authors and several results con-
cerning existence, nonexistence, and asymptotic behavior have been established. In this
regard, Messaoudi [41[5] considered

t
utt—Au—l—/g(t—s)Au(s)ds:b|u|p72u (8)
0

for p > 2 and b= 0 or 1, and the relaxation function satisfies a relation of the form

g ) <-Et)g (@), (9)

where £ is a differentiable nonincreasing positive function. He established a more general
decay result, from which the usual exponential and polynomial decay rates are the only
special cases. Also, Messaoudi and Mustafa [1] treated the following system:

utt—Au—&—fotg(t—s)Au(s)dS:O in Q x R,
Gu _ [Tg(t—s) 0% (s)vds+h(u)=0 onTl;xR*, (10)
u=0 on 'y x RT,

where g satisfies @ and h satisfies weaker conditions than those in [2], and obtained an
explicit and general formula for the decay rate of the energy. In [9], Mustafa considered
the nonlinear abstract equation subject to a competing effect of viscoelastic and frictional
dampings:

(11)

utt—Au—i—fotg(t—s)Au(s)ds—i—h(ut):j(u), t>0
u (0) = ug, u (0) = u,
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and studied the simultaneous effect of viscoelastic and frictional dampings on the energy
decay rates, with minimal conditions on both h and g, where g satisfies

g (t)<—=¢(t) H(g(t), (12)

and H is an increasing and convex function. In this context, we refer to the work [6]
by Alabu-Boussouria and Cannarsa, in which they considered the following viscoelastic
problem:

utt—Au+fgg(t—s)Au(s)ds:0 in Q xR,

u=0 on T x RT, (13)

u(z,0) = ug, ut (x,0) = uq, x € Q,

and ¢ is a positive function satisfying

g'(t) < —x(9(1)), (14)

where y is a nonnegative function with x (0) = x’(0) = 0, and x is strictly increasing
and strictly convex on (0, ko] for some kg > 0. They also required that

ko g ko x(s) 1
/ T 400, / de <1, liminf —*— >
o x() o Xx(z) s—0+ X' (s) 2

in this case, an explicit rate of decay is given.
In this work, we present an explicit formula for energy decay, which extends the class
of functions g beyond that in [6)].

2 Preliminaries

We use the standard Lebesgue and Sobolev spaces with their usual scalar products and
norms, we set
Hp, ={ue H*Q):u=0onTy}.

We first have the embedding H{ < L2#1 (Q). Let B > 0 be the optimal constant of
the Sobolev embedding which satisfies the following inequality:

lullypyry < BlIVully, Yu € Hy,. (15)

Use the trace-Sobolev embedding Hllo — LKTy), 1 <k < 2(:_721), in this case, the
embedding constant is denoted by B, that is,

[ullyr, < Bil[Vull- (16)

Now, we introduce the following functionals:

70 = 3 (k=@ [aGas) IV + 5 @oTu 0 - Sl
B = glul+ () forte),

1) = Nﬂm=<%—49@%)VM?HWVMW—W%, )
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where .
o0 (6)= [ alt=s) o)~ v ds
Lemma 2.1 Let u be the solution of (1), then, under assumptions (G1)-(G3), E (t)

is a nonincreasing function on [0,T) and

1

E' (t) = ~3 /Q a(z)g(t)|Vu ()] dz + % (¢g' o Vu) (t) — /Q b(z) |ug (8))* dz < 0. (18)

Proof. Multiplying the first equation in by u; and integrating over 2 and using
integration by parts and the boundary condition, and hypotheses (G1), (G2), we obtain

(18).
By using the Galerkin method and procedure similar to that from [37], we can have
the following local existence result for problem .

Theorem 2.1 Assume that ug € Hp N H?(Q) and wy € Hy, . Then there exists a
strong solution u of satisfying

ue L™ ([0,T); Hi, N H? (Q)) ,u, € L™ ([0,T); Ht, ) s ue € L ([0,7); L* ()
for some T > 0.

Lemma 2.2 Suppose that (G1), (G3) and hold. Assume further that (ug,u1) €
Hyp < L?(Q) such that

" (-2)/2
8= BT <(p 37“2) lE(O)) <1 (19)

and I (ug) > 0, then I(u(t)) > 0, ¥t > 0, where B is the best Poincaré constant, and
E (0) = E(’U,o,ul) .

Proof. Since I (ug) > 0, there exists (by continuity) 7; < T such that
I(u(t))>0, Vte|0,T5],
this gives

5@ = g (k= [a@as)IVul+ 30w 0 - Sl

- (22 ((w- "g(s) i) I9u (01 + (9070 () + 110

() (- [ g(s) ) IV Ol + (g0 V0 (1)) (20)

By using (G1), (17), and (20) , we easily have

Hval? < <p2_p2>J(t)§ (1)2_1)2>E(0), vt e (0,71 (21)
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We then exploit (G1), (15), and to obtain
p D p Bp p—2 2 2
lull, < BPIIVu@®)lly < == IVu @Iy " HIVe @)ll; < BV @)l

< (k / g(s)ds) Iu ()2, Ve 0.7, (22)

Therefore .
1) = (k ~[o ds) I9ul2 + (g 0 V) (£) — Jul2 > 0
0

for all ¢ € [0, T;]. By repeating this procedure, and using the fact that

BP 2p (p—2)/2
lim — ( ——F < 1
Py A <(p —-2)1 (0)> sp<t

T; is extended to T'.

3 Global Existence

In this section, we give some lemmas and the result on the existence of the global solution.

Lemma 3.1 For any u € C! (O,T; H! (Q)) , we have

// g (t —5)Vu(s) Vuy (t) dsdx
QJo
() |Vu (8] dx + % (¢’ o Vu) (t)

g
goVu)( s)ds |Vu (t)|* dz| . (23)
[ 0-[ [ ot

Lemma 3.2 There exist positive constants d and t1 such that

&\&\

[\D\H [\')M—l

Proof. See [3].

g (t) < —dg(t), Vtel0t]. (24)

Proof. By (G1) and (G2), we easily deduce that lim;_, . g (t) = 0. Hence, there is
t1 > 0 large enough such that

g(t) =
and
g(t) S’I"l, Vtztl (25)

As ¢ is non increasing, g (0) > 0 and g (t1) > 0, then g (¢) > 0 for any ¢ € [0,¢;1] and
O<g(t1)§g(t)§g(0), Vt€[0,t1].
Therefore, since H is a positive continuous function, we get

a<H(g(t)<b Vtel0,t],
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for some positive constants a and b.
Consequently, for all ¢ € [0,4],

gt)<-H(g(t) <-a= IOk 0) < ——=

which gives
g (t)<—dg(t), Vte[0t].

Remark 3.1 By (G1) and (G2), we easily deduce that lim;_, y-g (f) = 0 and
max {g (t),—g (t)} <min{r,H (r),Ho (r)},Vt > t;. (26)

Theorem 3.1 Suppose that (G1), (G2) and @) hold. If (uo,u1) € Hf x L*(Q) and
satisfies , then the solution is global and bounded.

4 Decay of Solution

In this section, we state and prove the main result of our work. First, we define some
functionals. Let

L) = E(t) +e1®(t)+ 220 (1), (27)
where

d(t) = /Qu.ut dz, (28)

U (t) = /Qa(x) ut/o g(t—s) (u(s) — u (b)) ds dz, (29)

and €1, €9 are some positive constants to be specified later.
Lemma 4.1 There exist two positive constants 81 and By such that the relation
GiE (t) < L(t) < BE (1) (30)
holds for e1, e2 > 0 small enough.

Lemma 4.2 Assume that (G1)-(G4) hold, then the functional

o (t) = / uuy dx
Q
satisfies, along the solution of ,

o (t) < 71/ |Vu|2dm+/ |ut\2dx+(k0_l)
1/, o 2

232 B? 2B2 ||b
+ 5[ */ ude—k%/b(x)ufdm—kHuHZ. (31)
I Q

(90 Vu) ()
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Proof. We estimate the derivative of ® (¢). From and using (1]}, we have

o (t) = /Qufdx—ko/ﬂ|Vu|2dx+/QVu(t)a(x)/0tg(t—s)Vu(s)dsdac
—/Flh(ut)u dI‘—/Qb(m)uutdac—&—/Q|u|pdx. (32)

The third, and the fourth, and the fifth terms on the right-hand side of can be
estimated as follows. From Hélder’s inequality, Young’s inequality and , for n > 0,
we have

/ Vu (t) a(z) /t g (t —s)Vu(s)dsdz

2

< /|V 2 d:v—&— a(x )(/O g(t—s)(Vu(s)—Vu(t)—i—Vu(t))ds) dx
< |2 +21k0<1+n><kow}||w||§ s (143 o= DoV 0. G

Employing Hélder’s inequality, Young’s inequality, (G1) and , for 41, 92 > 0, we
see that

h(ug)u dF' < 6, B?||Vull; + ﬁs fdr, (34)
Iy
and
/ b(z)uuedz < 83 B? | Vuls + —— e b(x) u? de. (35)
Q
A substitution of - into yields
k 1
V() < - (0 g CEnkhe =0t = 0B - B bl ) [ [Vulds
2 2k o

1 1 82
t3 (145) o= govw 0+ f= [ witar

- P
/ dx—|—462/b dx—|—/ﬂ|u| dz.

Letting n =1/ (ko — 1) > 0, §; = 1/8B? and d, = /832 ||b]| in the above inequality, we

obtain
1 ko — 1 2 2B2
—1/|Vu|2d:v+/ufdx—i—%(goVu)(t)—i- Bl */ u?dly
Q Q I

282 ||b
—I—w/ b(x) ufda:—&—/ |ul” d. (36)
402 Q )

Then is established.

Lemma 4.3 Assume that (G1)-(G4) hold. Then the functional

\Il(t):f/ﬂa(ac)ut/o gt—s)(u(t) —u(s))ds dx
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satisfies, for some positive constants cs, cg,
t

w0 < - (a0 [ 9()as=0) full+ies IVuli o (oo Vo) 0+ S0l [ olod ds
0 Q

0) ||b]|*. B2
_ 9O Wl B oGy () + 52 [ u2ary. (37)
4agd I

Proof. The proof is similar to the proof of Lemma

Theorem 4.1 Let (ug,u1) € Hllo x L2 (Q) be given, satisfying . Assume that
(G1) and (G2) hold. Then there exist positive constants c1,ce,c3 and €9 such that the

following statements hold:
(A) In the special case, H (t) = ct? with 1 < p < 3, the solution energy of (1) satisfies

E(t) < cre” if p=1, (38)
3

E()< — B if 1<p<?. (39)
(ert + ¢3) 77D 2

(B) In the general case, the solution energy of satisfies

E(t) <c3H{ (et +ca), VE>0, (40)
where )
1

provided that S is a positive C' function and that Hy is a strictly increasing and strictly
convexr C? function on (0,r] with S (0) = 0.

e g(s)
o Hy'(=g'(s))
Proof. By using , , and , we obtain

ds < +oo. (41)

e1l
0 < —(alangn—8) el - (5~ e ) [9ul

(14;()—1)51) (g o Vu) (t) +81/ uf? dz
2 o
2¢1 B?
- (1 _ 2B Bl s |b||oo) / b () uldz
Q

a 2 2

+ (Ezce +

232 2
— <a — %16 — 52662) ‘Ut‘Q dF, Vit Z tl.
I

We have used the fact that for any t; > 0,

/g(s)dsZ/lg(s)ds:go Vit > ty. (42)
0 0
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At this point, we choose § small enough so that

4565 apgo
<
l 2

< apgo — 57 (43)

where § is fixed, the choice of any two positive constants £; and e, satisfying

40csen apgo

— 44
] g1 < B €9 ( )
will make
€1l
ki = T —g90c5 >0 (45)
and
ko = g9 (aogo — (5) —e1 > 0. (46)

Then we choose d, £1 and £5 small so that and remain valid, further

26187 b
1 2217 Plleo
l
2B2e,
l

1 g(0)]al3, B
ks == —gp———2— > (. 4
> 2 c2 45@0 > ( 9)

Hence, for all t; > 0, we arrive at

ks = — &35 ||bl|, > 0 (47)

ks =« — 825ﬁ2 >0 (48)

L) < —ki||Vaullz = ko [luell; + e7 (9.0 Va) (£) + s (9 0 V) (¢)

_kg/ b(w)ulds — k4/ e dT + €4 2, (50)
Q Iy
which yields that if needed, one can choose ¢; sufficiently small

L' (t) < —mE(t)+ C (go Vu)(t), (51)

where ¢; = 7,8 m, C are some positive constants.
Now, we use and to conclude that, for any t > tq,

IN

_5/0 ' q (s) /Q [Vu (t) — Vu (t — s) |2d;1:d$
< —cE(t). (52)

/Otlg(s)/QIVu(t)_vu(t_s) dads

Next, we take F (t) = L (t) + cE (t), which is clearly equivalent to E (). From and
(52) , we get, for all t > ¢4,

F'(t) < —mE (t) + C/O 1 g (s)/Q |V (t) — Vu (t — s) |*dxds. (53)

M H@E#)=ct?and 1 <p< 2.
Case 1 p=1: Estimate yields

F ()< —mE @) +c(g oVu)(t) < —mE (t) — cE'(t), Vt>ty,
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which gives
(F+cE) (t) < —mE(t), Vt>t.

Hence, using the fact that F 4+ cE ~ E, we easily obtain .
Case 2 1<p < 2 : One can easily show that f+oo 1=do ( )ds < 400 for any §p < 2—p

(see |7]). Using thls fact and . , and choosing t; even larger if needed, we deduce that,
for all t > tq,

n(t) = / g 7% (s) /Q |Vu () — Vu (t — s) |Pdads

t1

g2/t gi=b (s)/o (\Vu(t)\2+|Vu(t—s)\2)dxdsch(O)/ g (s) < 1. (54)

ty
Then, Jensen’s inequality, , hypothesis (G1) and lead to

t

/ 9 () | [Vu(t)=Vu(t - s) Pdds = / 4% () g% (s) [ |Vu(t)—Vu(t - s) Pdeds

t1 Q ty Q
! 143
:/ g(p_ +60) (7=t ) gt ( /|Vu — Vu (t — s)|*dvds
t1

<c[/tlt g (3)/Q|Vu(t)—Vu(t—s)| dxds}ﬁ% < C[-E ()75

Then, particularly for dg = %, we find that becomes
F () < —mE (t) + ¢ [~ ()] 7 .
Now, we multiply by E® (t), with a = 2p — 2, to get, using ,
(FE*)' (t) < F'(t) E* (t) < —mE'™ (t) + cE® (t) [-E' (t)] =
Then Young’s inequality, with ¢ = 1 + « and ¢’ , gives
(FEY) (t) < —mEY™ ™ (t) + eE'"™ (1) + C. (=E' (1) ) .

Consequently, picking ¢ < m, we obtain

Ry (1) < —m'B™° (1),
where Fy = FE“ 4+ C.FE ~ E. Hence we have, for some ag > 0,

Fy (1) < —aoFi+™ (1),

from which we easily deduce that
c3

By<— B
(Clt + 02) 2(p—1)

(55)
(IT) The general case: We define Z (t) by

¢
Z(t):= / |V (t) — Vu (t — s) [Pdads,
t1 HO
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where Hj is such that is satisfied. As in (54), we find that Z (t) satisfies, for all
t 2>t
0<Z(t)<1. (56)

We also assume, without loss of generality, that Z (t) > 8 > 0 for all ¢ > ¢;; otherwise
yields an exponential decay. In addition, we define A(t) by

o t/S g(s) u —Vu (t — 3)2dzrds
A== [ o 0 s 19 = =) P
and infer from (G1) and the properties of Hy and S that
g(s) 9(5) __9()
Hy'(=g'(s)) ~ Hy ' (H(g(s)) S (g(s))

for some positive constant og. Then, using and choosing t; even larger (if needed),
one can easily see that A (¢) satisfies, for all ¢ > t1,

<og

At) < —ko/t q (5)/Q |V (t) — Vu (t — s) |*deds
< —¢E(0) /t g (s)ds < cg (t1) E (0) < min {r, H (r), Ho ()}

Since Hy is strictly convex on (0,7] and Hy(0) = 0, one has Hy (6z) < 0Hy (), provided
0 <6 <1anda € (0,r]. The use of hypothesis (G1), , , and Jensen’s
inequality leads to

At) = % /t1 Z(t) Ho[Ho_l (-9 (S))]H_lg(isg)’(s)) i IV (t) — Vu (t — s) |2dxds
1 t B / 0 (5) 2
Z(t)/tl HoZ(t)H, (—g (s))]m Q|Vu(t)—Vu(t—3)| duds

= Hy </l:g(s)/Q [Vu (t) — Vu(t —s) |2dxds> .

This implies that
t
/ g (s)/ |V (t) — Vu (t — s) |Pdeds < Hy ' (A (1)),
t1 Q
then becomes

F'(t) < —mE (t) + cHy ' (A (1)), Vt > t;. (57)
Now, for g9 < r and c¢g > 0, using and the fact that £’ < 0, H), > 0, HY > 0 on
(0,7], we find that the functional F; defined by
E(t)
E(0)

Fy (t) := H|, <60 ) F(t) + coE (2)

satisfies, for some ay, as > 0,

OélFl (t) S E (t) S a2F1 (t) (58)
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and
Fll (t) = 802((5)) H(/)/ (Eom) ]:(t) + H(l) <Eo§:((é))) F (t) + C()E/ (t)
< —mE (t) H] (505(%))> +CH, <50§((?)> Hi'ON(0) + B (1), (59)

Let H{ be the convex conjugate of Hy in the sense of Young (see [§], p.61-64), then
H; (5) = 5 (HE) ™" () = Ho [(H) ™ ()] if s € (0, Hp ()] (60)
and H{ satisfies the following Young’s inequality:
AB < Hj (A)+ Hy(B) if Ae(0,H,(r)],B¢€(0,r]. (61)
With A = H|| (Eog((é))> and B = H; ' (\(t)), using , and (59)-(61)) , we arrive

at

F{ (t) < —mE (t) H}, (505((8))) + cHj (H{) (50 g((é)))) + e (t) + coFE' (¢)

< —mE (t) H} (505((3))) + cgo (ll*;j(((t)))> H; (sog(((t)))> —cE' (t) + coE' (t) (62)
Consequently, with a suitable choice of £y and ¢y, we obtain, for all ¢ > 1,
F{(t) < -k (%) Hy (%558) = —kH; (Eog(((t)))> . (63)

where Hy (t) = tH/ (eot) .

Since H} (t) = HY (eot) + eotH{/ (et), using the strict convexity of Hy on (0,1], we
find that H} (t), Haz (t) > 0 on (0,7]. Thus, with

€F1 (t)
t) = 1
RO() alE(O)? 0<€< )
taking in account (58|) and (63f), we have
Ry (t) ~ B (t) (64)

and, for some k{, > 0,
R6 (t) § —Ek(/)HQ (RO (t)) ; Vit 2 tl.
Then a simple integration and a suitable choice of € yield, for some k7, k5 > 0,
Ro(t) < H{ Y (Kit+Kb), Vt>t, (65)

where Hy (t) = ftl %(S)ds.

By a combination of and , estimate is established.
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5 Conclusion

In this paper, we studied the asymptotic behavior of the dynamic viscoelastic wave equa-
tion with boundary dissipation and a nonlinear source term. The existence of dissipation
through boundary conditions ensures the decay of energy. By using the convexity of the
relaxation function g and without imposing any restrictive growth assumption on the
damping term, we establish a general decay rate. These results have potential for appli-
cation in the fields of physics and nonlinear dynamics. A similar study for the models
of dynamic viscoelastic wave equations with a logarithmic nonlinear source term and
thermal dissipation will be the purpose for future research.
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