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Abstract: In this paper, we consider a model of a dynamic viscoelastic wave equa-
tion with a nonlinear source and boundary dissipation. Our fundamental goal is to
establish the general decay rates of the energy solutions under a class of generality of
the relaxation function g : R+ → R+ satisfying the inequality g′(t) ≤ −H(g(t)) for all
t ≥ 0, where H is a function satisfying some specific properties. This work extends
the previous works with a viscoelastic wave equation and improves earlier results in
the literature.
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1 Introduction

In this paper, we are concerned with the following nonlinear viscoelastic wave equations:
utt − k0∆u+

∫ t

0
g (t− s) div(a(x)∇u (s))ds+ b (x)ut = |u|p−2

u in Ω× R+,

k0
∂u
∂ν −

∫ t

0
g (t− s) (a (x)∇u (s)) νds+ h (ut) = 0 on Γ1 × R+,

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,

u = 0 on Γ0 × R+,

(1)

where k0 > 0, and Ω is a bounded domain in Rn (n ≥ 1) with a smooth boundary
Γ = Γ0 ∪ Γ1. Hence Γ0 and Γ1 are closed and disjoint with mes (Γ0) > 0 and ν is the
unit outward normal to Γ. b : Ω → R+ is a function, and

2 < p ≤ 2n

(n− 2)
, n ≥ 3, (2)
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p > 2, n = 1, 2.

We consider the following hypotheses.
(G1) g : R+ → R+ is a C1 function satisfying

g (0) > 0, k0 −
∫ ∞

0

g (s) ds = l > 0. (3)

(G2) H : R+ → R+ is a C1 (R+) function with H (0) = 0, and H is a linear or strictly
increasing and strictly convex C2 function on (0, r], r < 1, such that

g′ (t) ≤ −H (g (t)) , ∀t ≥ 0. (4)

(G3) h : R → R is a nondecreasing function with

h (s) s ≥ α |s|2 , ∀s ∈ R, (5)

|h (s)| ≤ γ |s| , ∀s ∈ R, (6)

where α, γ are positive constants.
(G4) a : Ω → R is a non negative function and a ∈ C1

(
Ω
)
such that

a (x) ≥ a0 > 0, (7)

|∇a (x)|2 ≤ a21 |a (x)| , ∀s ∈ R,

for some positive constant a1.

This type of problems has been considered by many authors and several results con-
cerning existence, nonexistence, and asymptotic behavior have been established. In this
regard, Messaoudi [4, 5] considered

utt −∆u+

∫ t

0

g (t− s)∆u (s) ds = b |u|p−2
u (8)

for p ≥ 2 and b = 0 or 1, and the relaxation function satisfies a relation of the form

g′ (t) ≤ −ξ (t) g (t) , (9)

where ξ is a differentiable nonincreasing positive function. He established a more general
decay result, from which the usual exponential and polynomial decay rates are the only
special cases. Also, Messaoudi and Mustafa [1] treated the following system:

utt −∆u+
∫ t

0
g (t− s)∆u (s) ds = 0 in Ω× R+,

∂u
∂ν −

∫ t

0
g (t− s) ∂u

∂ν (s) νds+ h (ut) = 0 on Γ1 × R+,

u = 0 on Γ0 × R+,

(10)

where g satisfies (9) and h satisfies weaker conditions than those in [2], and obtained an
explicit and general formula for the decay rate of the energy. In [9], Mustafa considered
the nonlinear abstract equation subject to a competing effect of viscoelastic and frictional
dampings: {

utt −∆u+
∫ t

0
g (t− s)Au (s) ds+ h(ut) = j(u), t > 0

u (0) = u0, ut (0) = u1,
(11)
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and studied the simultaneous effect of viscoelastic and frictional dampings on the energy
decay rates, with minimal conditions on both h and g, where g satisfies

g′ (t) ≤ −ξ (t)H (g (t)) , (12)

and H is an increasing and convex function. In this context, we refer to the work [6]
by Alabu-Boussouria and Cannarsa, in which they considered the following viscoelastic
problem: 

utt −△u+
∫ t

0
g (t− s)△ u (s) ds = 0 in Ω× R+,

u = 0 on Γ× R+,

u (x, 0) = u0, ut (x, 0) = u1, x ∈ Ω,

(13)

and g is a positive function satisfying

g′(t) ≤ −χ(g(t)), (14)

where χ is a nonnegative function with χ (0) = χ′ (0) = 0, and χ is strictly increasing
and strictly convex on (0, k0] for some k0 > 0. They also required that∫ k0

0

dx

χ (x)
= +∞,

∫ k0

0

x

χ (x)
dx < 1, lim inf

s→0+

χ(s)
s

χ′ (s)
>

1

2
,

in this case, an explicit rate of decay is given.
In this work, we present an explicit formula for energy decay, which extends the class

of functions g beyond that in [6].

2 Preliminaries

We use the standard Lebesgue and Sobolev spaces with their usual scalar products and
norms, we set

H1
Γ0

= {u ∈ H2(Ω) : u = 0 on Γ0}.

We first have the embedding H1
Γ0

↪→ L2(p+1) (Ω) . Let B > 0 be the optimal constant of
the Sobolev embedding which satisfies the following inequality:

∥u∥2(p+1) ≤ B ∥∇u∥2 , ∀u ∈ H1
Γ0
. (15)

Use the trace-Sobolev embedding H1
Γ0

↪→ Lk(Γ1), 1 ≤ k ≤ 2(n−1)
n−2 , in this case, the

embedding constant is denoted by B1, that is,

∥u∥k,Γ1
≤ B1 ∥∇u∥2 . (16)

Now, we introduce the following functionals:

J (t) =
1

2

(
k0 − a (x)

∫ t

0

g (s) ds

)
∥∇u∥22 +

1

2
(g ◦ ∇u) (t)− 1

p
∥u∥pp ,

E (t) =
1

2
∥ut∥22 + J (u (t)) for t ∈ [0, T ) ,

I (t) = I (u (t)) =

(
k0 −

∫ t

0

g (s) ds

)
∥∇u∥22 + (g ◦ ∇u) (t)− ∥u∥pp , (17)
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where

(g ◦ v) (t) =
∫ t

0

g (t− s) ∥v (t)− v (s)∥22 ds.

Lemma 2.1 Let u be the solution of (1), then, under assumptions (G1)-(G3), E (t)
is a nonincreasing function on [0, T ) and

E′ (t) = −1

2

∫
Ω

a (x) g (t) |∇u (t)|2 dx+
1

2
(g′ ◦ ∇u) (t)−

∫
Ω

b (x) |ut (t)|2 dx ≤ 0. (18)

Proof. Multiplying the first equation in (1) by ut and integrating over Ω and using
integration by parts and the boundary condition, and hypotheses (G1) , (G2) , we obtain
(18).

By using the Galerkin method and procedure similar to that from [3,7], we can have
the following local existence result for problem (1).

Theorem 2.1 Assume that u0 ∈ H1
Γ0

∩ H2 (Ω) and u1 ∈ H1
Γ0
. Then there exists a

strong solution u of (1) satisfying

u ∈ L∞ ([0, T ) ;H1
Γ0

∩H2 (Ω)
)
, ut ∈ L∞ ([0, T );H1

Γ0

)
, utt ∈ L∞ ([0, T );L2 (Ω)

)
for some T > 0.

Lemma 2.2 Suppose that (G1), (G3) and (2) hold. Assume further that (u0, u1) ∈
H1

Γ0
× L2 (Ω) such that

β =
Bp

l

(
2p

(p− 2) l
E (0)

)(p−2)/2

< 1 (19)

and I (u0) > 0, then I(u(t)) > 0, ∀t > 0, where B is the best Poincaré constant, and
E (0) = E (u0, u1) .

Proof. Since I (u0) > 0, there exists (by continuity) Ti < T such that

I (u (t)) ≥ 0, ∀t ∈ [0, Ti] ,

this gives

J (t) =
1

2

(
k0 −

∫ t

0

g (s) ds

)
∥∇u∥22 +

1

2
(g ◦ ∇u) (t)− 1

p
∥u∥pp

=

(
p− 2

2p

)((
k0 −

∫ t

0

g (s) ds

)
∥∇u (t)∥22 + (g ◦ ∇u) (t)

)
+

1

p
I (t)

≥
(
p− 2

2p

)((
k0 −

∫ t

0

g (s) ds

)
∥∇u (t)∥22 + (g ◦ ∇u) (t)

)
. (20)

By using (G1), (17), (18) and (20) , we easily have

l ∥∇u∥22 ≤
(

2p

p− 2

)
J (t) ≤

(
2p

p− 2

)
E (0) , ∀t ∈ [0, Ti] . (21)
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We then exploit (G1), (15), (19) and (21) to obtain

∥u∥pp ≤ Bp ∥∇u (t)∥p2 ≤ Bp

l
∥∇u (t)∥p−2

2 l ∥∇u (t)∥22 ≤ βl ∥∇u (t)∥22

<

(
k0 −

∫ t

0

g (s) ds

)
∥∇u (t)∥22 , ∀t ∈ [0, Ti] . (22)

Therefore

I (t) =

(
k0 −

∫ t

0

g (s) ds

)
∥∇u∥22 + (g ◦ ∇u) (t)− ∥u∥pp > 0

for all t ∈ [0, Ti]. By repeating this procedure, and using the fact that

lim
t→Ti

Bp

l

(
2p

(p− 2) l
E (0)

)(p−2)/2

≤ β < 1,

Ti is extended to T .

3 Global Existence

In this section, we give some lemmas and the result on the existence of the global solution.

Lemma 3.1 For any u ∈ C1
(
0, T ;H1 (Ω)

)
, we have∫

Ω

∫ t

0

g (t− s)∇u (s)∇ut (t) dsdx

= −1

2

∫
Ω

g (t) |∇u (t)|2 dx+
1

2
(g′ ◦ ∇u) (t)

−1

2

d

dt

[
(g ◦ ∇u) (t)−

∫
Ω

∫ t

0

g (s) ds |∇u (t)|2 dx
]
. (23)

Proof. See [3].

Lemma 3.2 There exist positive constants d and t1 such that

g′ (t) ≤ −dg (t) , ∀t ∈ [0, t1] . (24)

Proof. By (G1) and (G2) , we easily deduce that limt→+∞ g (t) = 0. Hence, there is
t1 ≥ 0 large enough such that

g (t1) = r1

and
g (t) ≤ r1, ∀t ≥ t1. (25)

As g is non increasing, g (0) > 0 and g (t1) > 0, then g (t) > 0 for any t ∈ [0, t1] and

0 < g (t1) ≤ g (t) ≤ g (0) , ∀t ∈ [0, t1] .

Therefore, since H is a positive continuous function, we get

a ≤ H (g (t)) ≤ b, ∀t ∈ [0, t1] ,
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for some positive constants a and b.
Consequently, for all t ∈ [0, t1] ,

g′ (t) ≤ −H (g (t)) ≤ −a = − a

g (0)
g (0) ≤ − a

g (0)
g (t) ,

which gives

g′ (t) ≤ −dg (t) , ∀t ∈ [0, t1] .

Remark 3.1 By (G1) and (G2) , we easily deduce that limt→+∞g (t) = 0 and

max {g (t) ,−g′ (t)} < min {r,H (r) , H0 (r)} ,∀t ≥ t1. (26)

Theorem 3.1 Suppose that (G1) , (G2) and (2) hold. If (u0, u1) ∈ H1
Γ0

×L2(Ω) and
satisfies (19), then the solution is global and bounded.

4 Decay of Solution

In this section, we state and prove the main result of our work. First, we define some
functionals. Let

L (t) = E (t) + ε1Φ (t) + ε2Ψ(t) , (27)

where

Φ (t) =

∫
Ω

u.ut dx, (28)

Ψ (t) =

∫
Ω

a (x)ut

∫ t

0

g (t− s) (u (s)− u (t)) ds dx, (29)

and ε1, ε2 are some positive constants to be specified later.

Lemma 4.1 There exist two positive constants β1 and β2 such that the relation

β1E (t) ≤ L (t) ≤ β2E (t) (30)

holds for ε1, ε2 > 0 small enough.

Lemma 4.2 Assume that (G1)-(G4) hold, then the functional

Φ (t) =

∫
Ω

uut dx

satisfies, along the solution of (1),

Φ′ (t) ≤ −1

4

∫
Ω

|∇u|2 dx+

∫
Ω

|ut|2 dx+
(k0 − l)

2l
(g ◦ ∇u) (t)

+
2β2B2

∗
l

∫
Γ1

u2
tdΓ +

2B2 ∥b∥∞
l

∫
Ω

b (x)u2
tdx+ ∥u∥pp . (31)
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Proof. We estimate the derivative of Φ (t) . From (28) and using (1) , we have

Φ′ (t) =

∫
Ω

u2
tdx− k0

∫
Ω

|∇u|2 dx+

∫
Ω

∇u (t) a (x)

∫ t

0

g (t− s)∇u (s) ds dx

−
∫
Γ1

h (ut)u dΓ−
∫
Ω

b (x)uutdx+

∫
Ω

|u|p dx. (32)

The third, and the fourth, and the fifth terms on the right-hand side of (32) can be
estimated as follows. From Hölder’s inequality, Young’s inequality and (23), for η > 0,
we have∫

Ω

∇u (t) a(x)

∫ t

0

g (t− s)∇u (s) dsdx

≤ k0
2

∫
Ω

|∇u|2 dx+
1

2k0

∫
Ω

a (x)

(∫ t

0

g (t− s) (∇u (s)−∇u (t) +∇u (t)) ds

)2

dx

≤
[
k0
2

+
1

2k0
(1 + η) (k0 − l)

2

]
∥∇u∥22 +

1

2k0

(
1 +

1

η

)
(k0 − l) (g ◦ ∇u) (t) . (33)

Employing Hölder’s inequality, Young’s inequality, (G1) and (15) , for δ1, δ2 > 0, we
see that ∣∣∣∣∫

Γ1

h (ut)u dΓ

∣∣∣∣ ≤ δ1B
2
∗ ∥∇u∥22 +

β2

4δ1

∫
Γ1

u2
tdΓ, (34)

and ∫
Ω

b(x)uutdx ≤ δ2B
2 ∥∇u∥22 +

1

4δ2

∫
Ω

b (x)u2
t dx. (35)

A substitution of (33) - (34) into (32) yields

Φ′ (t) ≤ −
(
k0
2

− 1

2k0
(1 + η) (k0 − l)

2 − δ1B
2
∗ −B2 ∥b∥∞ δ2

)∫
Ω

|∇u|2 dx

+
1

2k0

(
1 +

1

η

)
(k0 − l) (g ◦ ∇u) (t) +

β2

4δ1

∫
Γ1

u2
tdΓ

+

∫
Ω

u2
tdx+

1

4δ2

∫
Ω

b (x)u2
tdx+

∫
Ω

|u|p dx.

Letting η = l/ (k0 − l) > 0, δ1 = l/8B2
∗ and δ2 = l/8β2 ∥b∥∞ in the above inequality, we

obtain

Φ′ (t) ≤ −1

4

∫
Ω

|∇u|2 dx+

∫
Ω

u2
tdx+

(k0 − l)

2l
(g ◦ ∇u) (t) +

2β2B2
∗

l

∫
Γ1

u2
tdΓ1

+
2B2 ∥b∥∞

4δ2

∫
Ω

b (x)u2
tdx+

∫
Ω

|u|p dx. (36)

Then (31) is established.

Lemma 4.3 Assume that (G1)-(G4) hold. Then the functional

Ψ(t) = −
∫
Ω

a (x)ut

∫ t

0

g (t− s) (u (t)− u (s)) ds dx
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satisfies, for some positive constants c5, c6,

Ψ′ (t) ≤ −
(
a0

∫ t

0

g (s) ds−δ

)
∥ut∥22+δc5 ∥∇u∥22+c6 (g ◦ ∇u) (t) + δ ∥b∥∞

∫
Ω

b(x)u2
t dx

−
g (0) ∥b∥2∞ B2

4a0δ
(g′ ◦ ∇u) (t) + β2δ

∫
Γ1

u2
tdΓ1. (37)

Proof. The proof is similar to the proof of Lemma 4.2.

Theorem 4.1 Let (u0, u1) ∈ H1
Γ0

× L2 (Ω) be given, satisfying (19). Assume that
(G1) and (G2) hold. Then there exist positive constants c1, c2, c3 and ε0 such that the
following statements hold:
(A) In the special case, H (t) = ctp with 1 ≤ p < 3

2 , the solution energy of (1) satisfies

E (t) ≤ c1e
−c2t if p = 1, (38)

E (t) ≤ c3

(c1t+ c2)
1

2(p−1)

if 1 < p <
3

2
. (39)

(B) In the general case, the solution energy of (1) satisfies

E (t) ≤ c3H
−1
1 (c1t+ c2) , ∀t ≥ 0, (40)

where

H1 (t) =

∫ 1

t

1

sH ′
0 (ε0s)

ds and H0 (t) = H (S (t)) ,

provided that S is a positive C1 function and that H0 is a strictly increasing and strictly
convex C2 function on (0, r] with S (0) = 0.∫ +∞

0

g (s)

H−1
0 (−g′ (s))

ds < +∞. (41)

Proof. By using (18) , (27) , (31) and (37) , we obtain

L′ (t) ≤ − (ε2 (a0g0 − δ)− ε1) ∥ut∥22 −
(
ε1l

4
− ε2δc5

)
∥∇u∥22

+

(
ε2c6 +

(k0 − l) ε1
2l

)
(g ◦ ∇u) (t) + ε1

∫
Ω

|u|p dx

−
(
1−

2ε1B
2 ∥b∥∞
l

− ε2δ ∥b∥∞

)∫
Ω

b (x)u2
tdx

−

(
1

2
− ε2

g (0) ∥a∥2∞ B2

4δa0

)
(−g ◦ ∇u) (t)

−
(
α− 2B2

∗ε1β
2

l
− ε2δβ

2

)∫
Γ1

|ut|2 dΓ, ∀t ≥ t1.

We have used the fact that for any t1 > 0,∫ t

0

g (s) ds ≥
∫ t1

0

g (s) ds = g0 ∀t ≥ t1. (42)
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At this point, we choose δ small enough so that

4δc5
l

<
a0g0
2

< a0g0 − δ, (43)

where δ is fixed, the choice of any two positive constants ε1 and ε2 satisfying

4δc5ε2
l

< ε1 <
a0g0
2

ε2 (44)

will make

k1 =
ε1l

4
− ε2δc5 > 0 (45)

and
k2 = ε2 (a0g0 − δ)− ε1 > 0. (46)

Then we choose δ, ε1 and ε2 small so that (30) and (43) remain valid, further

k3 = 1−
2ε1B

2 ∥b∥∞
l

− ε2δ ∥b∥∞ > 0 (47)

k4 = α− 2B2
∗ε1β

2

l
− ε2δβ

2 > 0 (48)

k5 =
1

2
− ε2

g (0) ∥a∥2∞ B2

4δa0
> 0. (49)

Hence, for all t1 > 0, we arrive at

L′ (t) ≤ −k1 ∥∇u∥22 − k2 ∥ut∥22 + c7 (g ◦ ∇u) (t) + c8 (g
′ ◦ ∇u) (t)

−k3

∫
Ω

b(x)u2
tdx− k4

∫
Γ1

|ut|2 dΓ + ε1 ∥u∥pp , (50)

which yields that if needed, one can choose ε1 sufficiently small

L′ (t) ≤ −mE(t) + C (g ◦ ∇u) (t) , (51)

where ci = 7, 8 m, C are some positive constants.
Now, we use (18) and (24) to conclude that, for any t ≥ t1,∫ t1

0

g (s)

∫
Ω

|∇u (t)−∇u (t− s) |2dxds ≤ −1

d

∫ t1

0

g′ (s)

∫
Ω

|∇u (t)−∇u (t− s) |2dxds

≤ −cE′ (t) . (52)

Next, we take F (t) = L (t) + cE (t) , which is clearly equivalent to E (t) . From (51) and
(52) , we get, for all t ≥ t1,

F ′ (t) ≤ −mE (t) + c

∫ t1

0

g (s)

∫
Ω

|∇u (t)−∇u (t− s) |2dxds. (53)

(I) H (t) = ctp and 1 ≤ p < 3
2 .

Case 1 p = 1 : Estimate (53) yields

F ′ (t) ≤ −mE (t) + c (g′ ◦ ∇u) (t) ≤ −mE (t)− cE′(t), ∀t ≥ t1,
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which gives
(F + cE)

′
(t) ≤ −mE (t) , ∀t ≥ t1.

Hence, using the fact that F + cE ∼ E, we easily obtain (38) .

Case 2 1 < p < 3
2 : One can easily show that

∫ +∞
0

g1−δ0 (s) ds < +∞ for any δ0 < 2−p
(see [7]). Using this fact and (18) , and choosing t1 even larger if needed, we deduce that,
for all t ≥ t1,

η (t) :=

∫ t

t1

g1−δ0 (s)

∫
Ω

|∇u (t)−∇u (t− s) |2dxds

≤ 2

∫ t

t1

g1−δ0 (s)

∫ 1

0

(
|∇u (t) |2 + |∇u (t− s) |2

)
dxds ≤ cE (0)

∫ t

t1

g1−δ0 (s) < 1. (54)

Then, Jensen’s inequality, (18), hypothesis (G1) and (54) lead to∫ t

t1

g (s)

∫
Ω

|∇u (t)−∇u (t− s) |2dxds =
∫ t

t1

gδ0 (s) g1−δ0 (s)

∫
Ω

|∇u (t)−∇u (t− s) |2dxds

=

∫ t

t1

g
(p−1+δ0)

(
δ0

p−1+δ0

)
(s) g1−δ0 (s)

∫
Ω

|∇u (t)−∇u (t− s) |2dxds

≤ c

[∫ t

t1

−g′ (s)

∫
Ω

|∇u (t)−∇u (t− s) |2dxds
] δ0

p−1+δ0

≤ c [−E′ (t)]
δ0

p−1+δ0 .

Then, particularly for δ0 = 1
2 , we find that (53) becomes

F ′ (t) ≤ −mE (t) + c [−E′ (t)]
1

2p−1 .

Now, we multiply by Eα (t) , with α = 2p− 2, to get, using (18) ,

(FEα)
′
(t) ≤ F ′ (t)Eα (t) ≤ −mE1+α (t) + cEα (t) [−E′ (t)]

1
1+α .

Then Young’s inequality, with q = 1 + α and q′ = 1+α
α , gives

(FEα)
′
(t) ≤ −mE1+α (t) + ϵE1+α (t) + Cε (−E′ (t) ) .

Consequently, picking ε < m, we obtain

F ′
0 (t) ≤ −m′E1+α (t) ,

where F0 = FEα + CεE ∼ E. Hence we have, for some a0 > 0,

F ′
0 (t) ≤ −a0F

1+α
0 (t) ,

from which we easily deduce that

E (t) ≤ c3

(c1t+ c2)
1

2(p−1)

. (55)

(II) The general case: We define I (t) by

I (t) :=

∫ t

t1

g (s)

H−1
0 (−g′ (s))

∫
Ω

|∇u (t)−∇u (t− s) |2dxds,
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where H0 is such that (41) is satisfied. As in (54), we find that I (t) satisfies, for all
t ≥ t1,

0 < I (t) < 1. (56)

We also assume, without loss of generality, that I (t) ≥ β > 0 for all t ≥ t1; otherwise
(53) yields an exponential decay. In addition, we define λ(t) by

λ(t) := −
∫ t

t1

g′ (s)
g (s)

H−1
0 (−g′ (s))

∫
Ω

|∇u (t)−∇u (t− s) |2dxds

and infer from (G1) and the properties of H0 and S that

g (s)

H−1
0 (−g′ (s))

≤ g (s)

H−1
0 (H (g (s)))

=
g (s)

S−1 (g (s))
≤ σ0

for some positive constant σ0. Then, using (18) and choosing t1 even larger (if needed),
one can easily see that λ (t) satisfies, for all t ≥ t1,

λ(t) ≤ −k0

∫ t

t1

g′ (s)

∫
Ω

|∇u (t)−∇u (t− s) |2dxds

≤ −cE (0)

∫ t

t1

g′ (s) ds ≤ cg (t1)E (0) < min {r,H (r) , H0 (r)} .

Since H0 is strictly convex on (0, r] and H0(0) = 0, one has H0 (θx) ≤ θH0 (x) , provided
0 ≤ θ < 1 and x ∈ (0, r] . The use of hypothesis (G1) , (26) , (56) , (57) and Jensen’s
inequality leads to

λ (t) =
1

I (t)

∫ t

t1

I (t)H0[H
−1
0 (−g′ (s))]

g (s)

H−1
0 (−g′ (s))

∫
Ω

|∇u (t)−∇u (t− s) |2dxds

≥ 1

I (t)

∫ t

t1

H0[I (t)H−1
0 (−g′ (s))]

g (s)

H−1
0 (−g′ (s))

∫
Ω

|∇u (t)−∇u (t− s) |2dxds

= H0

(∫ t

t1

g (s)

∫
Ω

|∇u (t)−∇u (t− s) |2dxds
)
.

This implies that∫ t

t1

g (s)

∫
Ω

|∇u (t)−∇u (t− s) |2dxds ≤ H−1
0 (λ (t)) ,

then (53) becomes
F ′ (t) ≤ −mE (t) + cH−1

0 (λ (t)) ,∀t ≥ t1. (57)

Now, for ε0 < r and c0 > 0, using (57) and the fact that E′ ≤ 0, H ′
0 > 0, H ′′

0 > 0 on
(0, r] , we find that the functional F1 defined by

F1 (t) := H ′
0

(
ε0

E (t)

E (0)

)
F (t) + c0E (t)

satisfies, for some α1, α2 > 0,

α1F1 (t) ≤ E (t) ≤ α2F1 (t) (58)
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and

F ′
1 (t) = ε0

E′ (t)

E (0)
H ′′

0

(
ε0

E (t)

E (0)

)
F (t) +H ′

0

(
ε0

E (t)

E (0)

)
F ′ (t) + c0E

′ (t)

≤ −mE (t)H ′
0

(
ε0

E (t)

E (0)

)
+ cH ′

0

(
ε0

E (t)

E (0)

)
H−1

0 (λ (t)) + c0E
′ (t) . (59)

Let H∗
0 be the convex conjugate of H0 in the sense of Young (see [8], p.61-64), then

H∗
0 (s) = s (H ′

0)
−1

(s)−H0

[
(H ′

0)
−1

(s)
]

if s ∈ (0, H ′
0 (r)] (60)

and H∗
0 satisfies the following Young’s inequality:

AB ≤ H∗
0 (A) +H0 (B) if A ∈ (0, H ′

0 (r)] , B ∈ (0, r] . (61)

With A = H ′
0

(
ε0

E (t)

E (0)

)
and B = H−1

0 (λ (t)) , using (18) , (53) and (59)-(61) , we arrive

at

F ′
1 (t) ≤ −mE (t)H ′

0

(
ε0

E (t)

E (0)

)
+ cH∗

0

(
H ′

0

(
ε0

E (t)

E (0)

))
+ cλ (t) + c0E

′ (t)

≤ −mE (t)H ′
0

(
ε0

E (t)

E (0)

)
+ cε0

(
E (t)

E (0)

)
H ′

0

(
ε0

E (t)

E (0)

)
− cE′ (t) + c0E

′ (t) .(62)

Consequently, with a suitable choice of ε0 and c0, we obtain, for all t ≥ t1,

F ′
1 (t) ≤ −k

(
E (t)

E (0)

)
H ′

0

(
ε0

E (t)

E (0)

)
= −kH2

(
ε0

E (t)

E (0)

)
, (63)

where H2 (t) = tH ′
0 (ε0t) .

Since H ′
2 (t) = H ′

0 (ε0t) + ε0tH
′′
0 (εt) , using the strict convexity of H0 on (0, 1], we

find that H ′
2 (t) , H2 (t) > 0 on (0, r] . Thus, with

R0 (t) = α1
εF1 (t)

E (0)
, 0 < ε < 1,

taking in account (58) and (63) , we have

R0 (t) ∼ E (t) (64)

and, for some k′0 > 0,

R′
0 (t) ≤ −εk′0H2 (R0 (t)) , ∀t ≥ t1.

Then a simple integration and a suitable choice of ε yield, for some k′1, k
′
2 > 0,

R0 (t) ≤ H−1
1 (k′1t+ k′2) , ∀t ≥ t1, (65)

where H1 (t) =
∫ 1

t

1

H2 (s)
ds.

By a combination of (64) and (65) , estimate (40) is established.
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5 Conclusion

In this paper, we studied the asymptotic behavior of the dynamic viscoelastic wave equa-
tion with boundary dissipation and a nonlinear source term. The existence of dissipation
through boundary conditions ensures the decay of energy. By using the convexity of the
relaxation function g and without imposing any restrictive growth assumption on the
damping term, we establish a general decay rate. These results have potential for appli-
cation in the fields of physics and nonlinear dynamics. A similar study for the models
of dynamic viscoelastic wave equations with a logarithmic nonlinear source term and
thermal dissipation will be the purpose for future research.
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