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Abstract: We propose an efficient variant of the conjugate gradient method for
nonlinear optimization based on a new parameter βk. We show that the new search
direction fills the sufficient descent condition and we prove the global convergence of
the corresponding algorithm using the strong Wolfe inexact line search. The estab-
lished numerical results show that the new algorithm is more efficient in comparison
with the standard Fletcher-Reeves method in terms of either the iteration number or
CPU time.
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1 Introduction

Consider the following unconstrained nonlinear optimization problem:

{
min f(x),
x ∈ Rn,

(1)

where f : Rn −→ R is a continuously differentiable function.
Conjugate gradient methods are efficient to solve unconstrained optimization problem

(1), especially for large scale problems. These methods generate the following sequence:

xk+1 = xk + αkdk, (2)
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where xk is the current iterate point, αk > 0 is the step size which can be found by one
of the line search methods, and dk is the search direction defined by

dk =

{
−gk
−gk + βkdk−1

for k = 1,
for k ≥ 2,

(3)

where gk = ∇f(xk) is the gradient of f at xk, and βk is a scalar conjugacy coefficient.
Different conjugate gradient methods correspond to different values of the coefficient

βk, a survey of these methods was given by Hager an Zhang in [11].
Recently, a great contribution in the area of conjugate gradient methods and their

application has been done by Andrei in [1].
Among the well known formulas of βk, we can cite Hestenes-Stiefel (HS) [13], Fletcher-

Reeves (FR) [10], Polak-Ribière-Polyak (PRP) [15,16], Conjugate Descent-Fletcher (CD)
[9], Liu-Story (LS) [14] and Dai-Yuan (DY) [4], which are given as follows:

βHS
k =

gTk yk−1

dTk−1yk−1
,

βFR
k =

∥ gk ∥2

∥ gk−1 ∥2
,

βPRP
k =

gTk yk−1

∥ gk−1 ∥2
,

βCD
k = − ∥ gk ∥2

gTk−1dk−1
,

βLS
k = − gTk yk−1

gTk−1dk−1
,

βDY
k =

∥ gk−1 ∥2

dTk−1yk−1
,

where yk−1 = gk − gk−1.
If f is a strongly convex quadratic function and the line search is exact, then all the

above formulas of βk are the same.
In the general case, where f is non-quadratic, the algorithms corresponding to each

βk have different numerical performances.
There are many other conjugate gradient methods such as those where the scalar is

given by parametric formulas like the βk proposed by Sellami and Chaib in [17,18].
Several researchers have also proposed hybrid conjugate gradient methods combining

the existing βk [3, 5–8,12] .
There are many convergence results with some line search conditions which have been

widely studied, there the method can guarantee the descent property of each direction
which provided the step length α computed by carrying out a line search and it satisfies
the strong Wolfe conditions such that

f(xk + αdk) ≤ f(xk) + ραgTk dk, (4)∣∣gTk+1dk
∣∣ ≤ −σgTk dk, (5)

where 0 < ρ < σ < 1
2 .
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The aim of this paper is to ameliorate the conjugate gradient method for nonlinear
optimization using a new parameter which leads to a new descent direction.

The rest of the paper is organized as follows. In Section 2, we define the formula of the
new conjugate gradient coefficient using the Fletcher-Reeves formula with a modification
in its denominator, then we give the description of the corresponding algorithm. In the
second part, we present a complete analysis of the descent condition of the obtained
direction, then we show the global convergence of the corresponding algorithm. Section
3 contains numerical experiments on some examples considering the well known test
functions in the literature. Finally, we end with a conclusion in Section 4.

2 Convergence Analysis of the Algorithm Based on the New Parameter βk

In this section, we propose a new conjugate gradient coefficient using the Fletcher-Reeves
formula [10] with a modification in its denominator. This coefficient is defined as follows:

βMSD
k =

∥gk∥2

∥gk−1∥2 + µ
∣∣gTk dk−1

∣∣ , (6)

where µ > 0.

Recall that the case µ = 0 corresponds to the Fletcher-Reeves coefficient [10].

2.1 Description of the conjugate gradient algorithm

2.1.1 Algorithm MSD

Begin algorithm

• Given a starting point x1 ∈ Rn and a parameter ε > 0.

• Set k = 1 and compute d1 = −g1.

• While ∥gk∥ > ε do

• Find αk > 0 satisfying the strong Wolfe conditions (4, 5).

• Take xk+1 = xk + αkdk.

• Compute βk+1 by the new formula (6).

• Set dk+1 = −gk+1 + βk+1dk and k = k + 1.

• End while.

End algorithm.

2.2 Sufficient descent property and global convergence analysis

We make the following basic assumptions on the objective function in order to establish
the global convergence results for the new algorithm.
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2.2.1 Assumptions

• (i) f is a lower bounded function on the level set

Ω = {x ∈ Rn : f(x) ≤ f(x0)} .

• (ii) In some neighborhood Ω0 of Ω, f is differentiable and its gradient g(x) is
Lipschitz continuous, namely, there exists a constant L > 0 such that

∥g(x)− g(y)∥ ≤ L∥x− y∥,∀x, y ∈ Ω0. (7)

Under these assumptions, there exists a constant ε > 0 such that

∥gk∥ ≤ ε, ∀k. (8)

To prove the global convergence of the nonlinear conjugate gradient methods, we use
the following lemma, called the Zoutendijk condition [19].

Lemma 2.1 [19] Suppose that the assumptions (i), (ii) hold. Let the sequence {xk}
be generated by (2) and dk satisfy gTk dk < 0. If αk is determined by the Wolfe line search
conditions, then we have ∑

k≥1

(
gTk dk

)2
∥dk∥2

< +∞.

Lemma 2.2 Suppose that the assumption (ii) holds, let the sequence {xk} be gen-
erated by (2) and the step length αk satisfy the strong Wolfe conditions with 0 < σ < 1

2 ,
then for any k,

− 1

1− σ
≤ gTk dk

∥gk∥2
≤ 2σ − 1

1− σ
. (9)

As soon as gk ̸= 0 for all k, the descent property of dk is satisfied, i.e.,

gTk dk < 0. (10)

Proof. The lemma is proved by induction. For k = 1, since d1 = −g1, the relations
(9) and (10) are true.

For some k > 1, we suppose that (9) and (10) are true. By using (3), we get

gTk+1dk+1

∥gk+1∥2
= −1 +

βk+1g
T
k+1dk

∥gk+1∥2
. (11)

From the second strong Wolfe condition (5) and (11), we get

−1 + σ
βk+1g

T
k dk

∥gk+1∥2
≤

gTk+1dk+1

∥gk+1∥2
≤ −1− σ

βk+1g
T
k dk

∥gk+1∥2
. (12)

By using (6), we have

−1 + σ
gTk dk

∥gk∥2 + µ
∣∣gTk+1dk

∣∣ ≤ gTk+1dk+1

∥gk+1∥2
≤ −1− σ

gTk dk

∥gk∥2 + µ
∣∣gTk+1dk

∣∣ . (13)
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Observe that for all k, we have

1

∥gk∥2 + µ
∣∣gTk+1dk

∣∣ ≤ 1

∥gk∥2
. (14)

By introducing (14) in (13), we get

−1 + σ
gTk dk
∥gk∥2

≤
gTk+1dk+1

∥gk+1∥2
≤ −1− σ

gTk dk
∥gk∥2

. (15)

From (9), it follows that for all k,

−1− σ

1− σ
≤

gTk+1dk+1

∥gk+1∥2
≤ −1 +

σ

1− σ
,

which implies

− 1

1− σ
≤

gTk+1dk+1

∥gk+1∥2
≤ 2σ − 1

1− σ
.

This gives the formula (9).

Since 0 < σ < 1
2 , it results from (9) that gTk dk < 0.

This completes the proof of the lemma.

Theorem 2.1 Consider the sequence {xk} generated by (2), where dk is defined by
(3) and satisfies gTk dk < 0 and suppose that the assumptions (i) and (ii) hold. Then the
Algorithm MSD either stops at a stationary point or converges in the sense that

lim
k−→∞

inf ∥gk∥ = 0. (16)

Proof. From the second strong Wolfe condition (5) and (9), we get

∣∣gTk dk−1

∣∣ ≤ −σgTk−1dk−1 ≤ σ

1− σ
∥gk−1∥2, (17)

using (3), (14) and (17), we obtain

∥dk∥2 = ∥gk∥2 − 2βkg
T
k dk−1 + β2

k ∥dk−1∥2

≤ ∥gk∥2 + βk
2σ

1− σ
∥gk−1∥2 + β2

k ∥dk−1∥2

≤ ∥gk∥2 +
2σ

1− σ
∥gk∥2 + β2

k ∥dk−1∥2

≤
(
1 + σ

1− σ

)
∥gk∥2 + β2

k ∥dk−1∥2 . (18)



96 M. L. OUAOUA AND S. KHELLADI

After defining τ = 1+σ
1−σ and applying (18) repeatedly, and using (14), it follows that

∥dk∥2 ≤ τ∥gk∥2 + β2
k ∥dk−1∥2

≤ τ
[
∥gk∥2 + β2

k ∥gk−1∥2 + β2
kβ

2
k−1 ∥gk−2∥2 + · · ·+ β2

kβ
2
k−1 · · · β2

3 ∥g2∥
2
]

+β2
kβ

2
k−1 · · · β2

2 ∥d1∥
2

≤ τ

[
∥gk∥2 +

∥gk∥4

∥gk−1∥2
+

∥gk∥4

∥gk−2∥2
+ · · ·+ ∥gk∥4

∥g2∥2

]
+

∥gk∥4

∥g1∥2

≤ τ∥gk∥4
[

k∑
i=2

1

∥gi∥2

]
+

∥gk∥4

∥g1∥2

≤ τ∥gk∥4
[

k∑
i=1

1

∥gi∥2

]
. (19)

Now, if (16) is not true, then there exists a constant ε > 0 such that ∥gk∥ > ε for all k.
From (19), we obtain

∥gk∥4

∥dk∥2
≥ ε2

τk
,

which implies

∞∑
k=1

∥gk∥4

∥dk∥2
= ∞. (20)

By using (9), we have

(gkdk)
2

∥dk∥2
≥

(
1− 2σ

1− σ

)2 ∥gk∥4

∥dk∥2
, (21)

which implies

∞∑
k=1

(gkdk)
2

∥dk∥2
= ∞, (22)

thus contradicting the Zoutendijk condition.
This completes the proof of the theorem.

3 Numerical Experiments

In this section, we present some numerical tests on a set of test functions [1,2] of uncon-
strained nonlinear optimization problems using Matlab language.

The objective of these experiments is to show the performance of our new coefficient
in comparison with other class of existing classical coefficients. In numerical tests, we
consider the Algorithm MSD based on our new coefficient βMSD

k (6) compared with the
FR method with βFR

k [10].
In the tables of results, we designate by

• n: the size of the problem
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• iter: the number of iterations

• time: the total time in seconds required to complete the evaluation process.

Test function Size βMSD
k βFR

k

n iter time iter time
Raydan 1 100 8 0,000411 15 0,000535

200 8 0,000604 15 0,000852
500 8 0,001085 15 0,001769
1000 8 0,002022 15 0,003233

Raydan 2 100 16 0,000421 52 0,001469
200 16 0,000543 57 0,002259
500 21 0,001113 3241 0,232550
1000 21 0,001937 NAN NAN

Diagonal 4 100 41 0,003746 63 0,005513
200 42 0,007477 60 0,009580
500 44 0,016702 62 0,020083
1000 44 0,038645 99 0,081462

Extended Woods 100 369 0,062696 839 0,162356
200 471 0,131264 782 0,233382
500 430 0,271904 659 0,472802
1000 430 0,029804 932 1,597367

HIMMELBC 100 30 0,004411 42 0,004066
200 30 0,006783 43 0,007018
500 32 0,014692 43 0,016906
1000 32 0,054439 44 0,040352

DIXMAANC 100 14 0,005565 32 0,011920
200 15 0,012137 23 0,016665
500 18 0,030703 21 0,033251
1000 16 0,054192 17 0,073482

HARKERP 100 91 0,004411 302 0,014902
200 98 0,006783 102 0,007951
500 108 0,014692 156 0,020768
1000 255 0,054439 NAN NAN

PROD1 100 26 0,020014 36 0,022772
200 26 0,075946 37 0,099651
500 13 0,262461 13 0,274593
1000 13 1,105908 14 1,160563
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Test function Size βMSD
k βFR

k

n iter time iter time
Extended Block 100 23 0,002571 103 0,016227
Diagonal 1 200 24 0,004266 107 0,026036

500 24 0,013149 103 0,064142
1000 25 0,028290 114 0,144926

Extended Maratos 100 41 0,002943 42 0,005326
200 41 0,005166 42 0,009220
500 41 0,012851 42 0,021821
1000 42 0,029804 43 0,045364

DIXMAANB 100 13 0,005753 19 0,007854
200 13 0,011356 20 0,014953
500 12 0,023140 20 0,031973
1000 12 0,041619 22 0,066770

Extended Beale 100 66 0,033441 79 0,041068
200 66/ 0,061550 128 0,136998
500 70 0,155799 90 0,220902
1000 70 0,312607 132 0,665937

Extended White 100 48 0,021397 63 0,025315
and holst 200 48 0,037467 74 0,054997

500 51 0,093806 144 0,293700
1000 52 0,187531 78 0,279982

Quadratic Diagonal 100 102 0,005432 126 0,008635
Perturbed 1 200 155 0,009727 1073 0,065435

500 280 0,029289 1332 0,145182
1000 421 0,078164 1983 0,411533

DIXMAANA 100 12 0,005473 19 0,007968
200 12 0,010762 21 0,015383
500 13 0,025386 20 0,031282
1000 13 0,046094 20 0,064289

DENSCHNA 100 35 0,009824 58 0,016107
200 35 0,020065 61 0,031975
500 35 0,041322 59 0,066094
1000 36 0,081710 64 0,149320

Freudenstein 100 136 0,018940 265 0,038783
and Roth 200 115 0,026829 171 0,038423

500 119 0,065969 145 0,085392
1000 111 0,142784 112 0,143777

Nondiag 100 138 0,014461 NAN NAN
200 136 0,011197 NAN NAN
500 240 0,043510 NAN NAN
1000 835 0,243155 NAN NAN
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Remark 3.1 In the results tables, NAN means that the algorithm does not display
the optimal solution after a maximum number of iterations kmax.

3.1 Commentaries

From the results obtained in the tables above, it is clear that our new algorithm based
on the βMSD

k parameter is more efficient than the FR method in terms of the number
of iterations and computation time. There is a significant reduction in the number of
iterations when using the algorithm MSD compared to FR. On the other hand, when the
size of certain examples becomes large n > 1000, the FR algorithms fail to provide the
optimal solution after the number of iterations kmax = 50000.

4 Conclusion

We proposed a new βk, and also provided the proof of the global convergence of the new
Algorithm MSD. We have proven the effectiveness of this algorithm based on the new
βMSD
k . It has a good performance compared with other conjugate gradient methods such

as the FR method when considering the selected list of test problems.
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