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1 Introduction

In various scenarios, information about a particular medium is often depicted as a series
of measurements taken over consecutive time intervals, commonly known as a time series.
The key disparity between the analysis of time series and situations typically examined in
classical statistics lies in the fact that measurements within a time series tend to exhibit
stochastic dependence, whereas classical statistics assumes independence among obser-
vations. One potential contributor to the intricate nature of time series is the presence of
random elements such as measurement errors, system noise, and so forth. At the highest
level of randomness, we may encounter a time series representing a sequence of outcomes
from independent random variables without any discernible structure. Conversely, the
theory of dynamical systems explores the opposite of pure randomness, where future
evolution is uniquely determined by the initial state and governing laws. However, the
behavior of a deterministic system is not necessarily straightforward. Indeed, advance-
ments in nonlinear dynamical systems reveal the existence of deterministic time series
exhibiting highly erratic behavior, resembling realizations of random processes. Such
instances are often referred to as chaotic dynamics.

The primary objective of time series analysis revolves around capturing the rela-
tionship between future observations and their preceding ones. Dating back to Yule’s
introduction of linear autoregression in 1927 to analyze sunspot data, linear models have
held sway in time series analysis for roughly fifty years. To accommodate complex behav-
iors within such a simplistic framework, the presence of external random perturbations
is necessary. In conventional models propelled by noise, for example, the AR and ARMA
models, a future observation is construed as a combination of a specific number of pre-
ceding observations and random disturbances, often Gaussian in nature, referred to as
innovations (see [1]). However, there are straightforward examples of time series such as
those related to chaotic dynamical systems. This poses new challenges: how to recognize
such time series and which methods to employ for their modeling and prediction.

In general, when discussing stationary time series, we have a concept of representing
the model Xt, where t ∈ Z, representing the observations of the dynamical system, from
which we can define a set of autocovariance as

γ(t; s) = E [(Xt − µ)(Xs − µ)] .

This autocovariance depends only on the distance between t and s, γ(t; s) = γ(t +
h; s + h) for all h ∈ Z. The idea here is to approximate an analytical function by a
weighted sum of sine or cosine functions [12], [13]. The idea is as follows: we seek a
model of the form

Xt =
∑
i

ai cos(ωit) + bi sin(ωit) + εi =
∑
i

√
a2i + b2i sin(ωi − θi) + εi, (1)

where (εi) is a sequence of independently and identically distributed random variables. If
we define ρi =

√
a2i + b2i , then ρi represents the amplitude of the ith periodic component,

indicating the weight of that component within the sum.

When considering a sample X0, X2, ...XN−1 and using frequencies ωj = 2πj
N , the
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dynamical periodogram is defined as

I(ωj) =
1

2πN

∣∣∣∣∣
k=N−1∑
k=0

Xke
ikωj

∣∣∣∣∣
2

.

It is then possible to demonstrate that
I(ωj)
N is a consistent estimator of ρj in the sense

that this estimator converges in probability as the number of observations increases.

Spectral density estimation is an important problem and there is a rich literature.
However, restrictive structural conditions have been imposed in many earlier results. For
example, Brillinger [5] assumed that all moments existed and cumulants of all orders were
summable. Reuman et al. [8] revealed a spectral analysis of stochasticity on nonlinear
population dynamics. Recently, Grytsay and Musatenko [4] gave invariant measurements
in studying the dynamics of a metabolic process for spectral analysis. Spectral analysis
is commonly used in signal processing with the aim of enhancing our understanding
of a signal by exploring its frequency domain. Spectral analysis seeks to extract the
energy spectrum of a signal. When assuming stationarity, the spectrum becomes a one-
dimensional representation of frequency and fully describes the signal’s energy content up
to the second order. Since most signals originate from random processes, spectral analysis
often relies on the domains of probability and statistics [15], [16]. A spectrum can be
estimated through a diverse range of methods that utilize information from the observed
signal and possibly a priori signal models, whether they are physical or mathematical
models. This leads to algorithmic complexity generated by a set of parameters whose
choice influences performance. The choices made, the a priori assumptions, and the
statistical performance are crucial elements for interpreting the spectrum [10].

Our work involves the analysis of time series for the system with estimation of the
spectral density. We employ a technique to construct a spectral density estimator, this is
carried out as an asymptotic study. The paper is organized as follows. Section 2 presents
the formulation of the baseline model, including some essential concepts and our problem
definition. Section 3 lists the asymptotic properties, and exhibits our results. In Section
4, we present a numerical example with simulations.

2 Baseline Model Formulation

Consider any set of observations x1, . . . , xn that can take complex values. If u =
(u1, . . . , un)

′ and v = (v1, . . . , vn)
′ are two vectors in Cn, we can define the inner product

of u and v as follows:

⟨u, v⟩ =

i=n∑
i=1

uivi. (2)

Let Fn be a dynamical system of Fourier frequencies defined as

Fn = j ∈ Z,−π < ωj =
2πj

n
≤ π = −[

n− 1

2
], . . . , [

n

2
],

where [x] denotes the floor function of x.
We define the vectors ej for j in Fn as

ej = n−1/2(eiωj , e2iωj , . . . , eniωj)′. (3)
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Proposition 2.1 The vectors ej, for j ∈ Fn, defined above form an orthonormal
basis for Cn.

Proof. We have

⟨ej , ek⟩ = n−1
r=n∑
r=1

eir(ωj−ωk)

=

{
n−1

∑r=n
r=1 e

0 = n
n = 1, if j = k;

n−1ei(ωj−ωk)( 1−ein(ωj−ωk)

1−ei(ωj−ωk) ) = 0, ifj ̸= k.

Let us further justify the case when j ̸= k. The first equality arises because we have
a geometric series with a common ratio of ei(ωj−ωk).

Furthermore, the numerator of the fraction becomes zero because, by the definition
of ωj and ωk,

ein(ωj−ωk) = ei2π(j−k) = 1

since j − k is a non-zero integer. 2

The value I(ωj) of the dynamical periodogram of the vector x = (x1, . . . , xn) at
frequency ωj =

2πj
n is given by

I(ωj) =
1

n

∣∣∣∣∣
t=n∑
t=1

xte
−itωj

∣∣∣∣∣
2

=
1

n

[(∑
t = 1t=nxt cosωjt

)2

+

(∑
t = 1t=nxt sinωjt

)2]
. (4)

The dynamical periodogram is a powerful tool for detecting a signal because if X
contains a sinusoidal component with frequency ω0, then, when we are close to this
frequency, the factors X(t) and e−iω0t are in phase and make a significant contribution
to the sum in equation (4). For other values of ω, some terms in the sum are positive,
while others are negative, thus canceling each other out in the sum, which becomes small.
In summary, we can detect the presence of a sinusoidal signal when a large value of I(.)
appears for a certain value of ω.

Proposition 2.2 If ωj is a non-zero Fourier frequency, then

I(ωj) =
∑

|K|<n

γ̂(k)e−ikωj ,

where

γ̂(k) = n−1
t=n−k∑
t=1

(xt+k −m)(xt −m)

with m being the empirical mean of xi, m = n−1
∑t=n

t=1 xt, and (.) denoting complex

conjugation. Also, γ̂(−k) = γ̂(k) when k < 0.
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We show a strong resemblance between the obtained expression for I(ωj) and the
expression of the spectral density of a stationary dynamical system given by

f(ω) =
1

2π

+∞∑
k=−∞

γ(k)e−ikω when

+∞∑
k=−∞

|γ(k)| <∞.

So, we can take
I(ωj)
2π as an estimator of f(ωj).

3 Asymptotic Properties and Main Results

In this section, we will focus on the asymptotic properties of the periodogram of a
stationary dynamical system with a mean µ and a covariance function that is absolutely
summable, i.e.,

∑+∞
k=−∞ |γ(k)| <∞. Based on the previous remark, we take the estimator

of f(ωj) as I(ωj)/(2π).
We begin by extending the dynamical periodogram to all ω ∈ [−π, π] so that it is no

longer limited to the Fourier frequencies.
For any ω ∈ [−π, π], the dynamical periodogram is defined as follows:

In(ω) =

 In(ωj) = n−1|
∑t=n

t=1 Xte
−itωj |2

if −π
n < ω ≤ π

nand ω ∈ [0, π];
In(−ω) if ω ∈ [−π, 0].

For every ω ∈ [0, π], let us denote g(n, ω) as the multiple of 2π
n closest to ω. For every

ω ∈ [−π, 0], we define g(n, ω) = g(n,−ω). Thus

In(ω) = In(g(n, ω)).

Proposition 3.1 Let (Xt)t ∈ Z be a second-order stationary dynamical system with

a mean µ and an absolutely summable autocovariance function γ(.)

( ∞∑
k=−∞

|γ(k)| <∞

)
,

then

when n→ ∞ :

{
(E(In(0))− nµ2) −→ 2πf(0),
E(In(ω)) −→ 2πf(ω) if ω ̸= 0

with
In(0) = n|X|2 and I(ωj) =

∑
|K|<n

γ̂(k)e−ikωj if ωj ̸= 0.

Remark 3.1 If µ = 0, then E(In(ω)) converges uniformly to 2πf(ω) for all ω ∈
[−π, π].

Proof.

E(In(0)) = nE(|X|2) = n[V ar(X) + (E(X))2] = nV ar(X) + nµ2.

So

E(In(0))− nµ2 = nV ar(X).
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On the other hand,

nV ar(X) =
1

n

i=n∑
i=1

j=n∑
j=1

cov(Xi, Xj) =
∑
|h|<n

(1− |h|
n
)γ(h)

if
∑∞

k=−∞ |γ(k)| < ∞. According to the dominated convergence theorem (Theorem
3.3.1) from [6], we have

lim
n→∞

nV ar(X) = lim
n→∞

∑
|h|<n

(1− |h|
n
)γ(h) =

∞∑
h=−∞

γ(h) = 2πf(0),

E(In(ω)) =
∑
|k|<n

1

n

n−|k|∑
t=1

E
[
(Xt − µ)(Xt+|k| − µ)

]
e−ikg(n,ω) =

∑
|k|<n

(
1−|k|

n

)
γ(k)e−ikg(n,ω).

Since
∑

k∈Z |γ(k)| <∞ and according to the dominated convergence theorem (Theorem
3.3.1) from [6],

∑
|k|<n

(
1− |k|

n

)
γ(k)e−ikg(n,λ) → 2πf(λ).

On the other hand, we have g(n, ω) → ω. So

E(In(ω)) → 2πf(ω).

2

Theorem 3.1 Let {Xt} be a time series process defined by

Xt =

+∞∑
k=−∞

ψkεt−k,

where εt is a strong white noise IID(0, σ2) with E(ε2t ) < ∞. We assume that
+∞∑

j=−∞
|ψj ||j|

1
2 and ψ(e−iλ) =

+∞∑
k=−∞

ψke
−ikλ ̸= 0. We know that

fX(ω) =
σ2

2π
|ψ(e−iω)|2.

1. For fixed frequencies 0 < λ1 < . . . λm < π as n → +∞, the random vector
(In,X(λ1)/fX(λ1), ..., In,X(λm)/fX(λm))′ converges by law to a vector of indepen-
dent random variables with the same exponential distribution with a mean of 1.

2. We have

V ar(In,X(ωj)) =


2f2X(ωj) +O(n− 1

2 )
if ωj = 0 or π;

f2X(ωj) +O(n− 1
2 )

if 0 < ωj < π
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and Cov(In,X(ωj), In,X(ωk)) = O(n−1) if ωj ̸= ωk.

Thus, we show the previous Theorem 3.1 by using the following intermediate lemmas.

Lemma 3.1 Let {εt}{t∈Z} be an i.i.d. white noise process with a zero mean and

finite variance σ2 < ∞. Its spectral distribution has a density function of fε(ω) = σ2

2π
and let In be the dynamical periodogram of {εt}.

1. Suppose 0 < λ1 < λ2 < . . . λm < π are fixed frequencies. Then, as n → +∞,
the random vector (In(λ1), In(λ2), . . . , In(λm))′ converges by law to a vector of

independent random variables same as a mean of σ2

2π ;

2. If E(ε4t ) = ησ4 <∞ and 0 ≤ ωj =
2πj
n ≤ π are the Fourier frequencies, then

V ar(In(ωj)) =


2f2ε (ωj) + κ4

4π2n
if ωj = 0 or π;

fε2(ωj) + κ4

4π2n
if 0 < ωj < π

=


σ4

2π2 + κ4

4π2n
if ωj = 0 or π;

σ4

4π2 + κ4

4π2n
if 0 < ωj < π

and Cov(In(ωj), In(ωk)) = κ4

4π2n if ωj ̸= ωk, where κ4 is the fourth-order
cumulant of the variable εt defined as κ4 = E{ε4t} − 3(E{ε2t})2;

3. Let us assume that the random variables εt are Gaussian. In this case, κ4 = 0 and

for all n, the random variables In(ωk)/fε(ω), k ∈ {1, ...⌊ (n−1)
2 ⌋} are independent

and identically distributed according to an exponential distribution with a mean of 1.

Proof.

1. Let us note {
αn(ωj) =

√
2πn

∑n
t=1 εtcos(ωjt),

βn(ωj) =
√
2πn

∑n
t=1 εtsin(ωjt)

(5)

are the real and imaginary parts of the discrete Fourier transform of εt at the
frequency points ωj =

2πj
n . For an arbitrary frequency ω, we have

In(ωj) =
1

2
(αZ

n (g(n, ωj))
2 + βZ

n (g(n, ωj))
2)2.

Recall that if a sequence of random vectors Yn converges by law to a random
variable Y and ϕ is a continuous function, then ϕ(Yn) converges by law to ϕ(Y ).
It is sufficient to show that the random vector

(αn(ω1), βn(ω1), . . . , αn(ωm), βn(ωm)) (6)

converges by law to a normal distribution with a zero mean and an asymptotic

covariance matrix (σ
2

4π )I2m, where I2m is the identity matrix (2m × 2m). We will
first focus on the case m = 1. The proof follows from the following corollary.
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Corollary 3.1 Let Un,t, where t = 1, . . . , n and n = 1, 2, . . . , be a triangular se-
quence of centered random variables with finite variances. For all n, the dynam-
ics variables {Un,1, . . . , Un,n} are independent. We define Yn =

∑n
t=1 Un,t and

ϑ2n =
∑n

t=1 var(Un,t). Then, if for every ϵ > 0,

lim
n→+∞

n∑
t=1

1

ϑ2n
E
[
U2
n,tI(|Un,t| > ϵϑn)

]
= 0,

we have
Yn/ϑn −→d N (0, 1).

Let u and v be arbitrary fixed real numbers, and ωj ∈ (0, π). Consider the variable
Yn = uαn(g(n, ωj)) + vβn(g(n, ωj)), which can also be written as

Yn =

n∑
t=1

Un,t,where Un,t =
1√
2πn

(u cos(g(n, ωj)t) + v sin(g(n, ωj)t))εt.

Note that, for a fixed n, the random variables {Un,t} are independent. Furthermore,
for all ωj ̸= 0, it is easy to verify that

n∑
t=1

cos2(g(n, ωj)t) =

n∑
t=1

sin2(g(n, ωj)t) =
n

2

and
n∑

t=1

cos(g(n, ωj)t) sin(g(n, ωj)t) = 0.

As a result, we can write

ϑ2n =

n∑
t=1

var(Un,t)

=
1

2πn

n∑
t=1

[
u2 cos2(g(n, ωj)t) + v2 sin2(g(n, ωj)t)

+ 2uv cos(g(n, ωj)t) sin(g(n, ωj)t)
]

=
(u2 + v2)

4π
= ϑ21.

Hence, by setting c0 = (|u|+ |v|)/2πϑ1 and ϵ′ = ϵ
√
2πϑ1/(|u|+ |v|) , we have

n∑
t=1

1

ϑ2n
E
[
U2
n,tI(|Un,t| ⩾ ϵϑn)

]
≤ c0

n

n∑
t=1

E
[
ε2t I(|εt| ⩾ ϵ′

√
n)
]
= c0E

[
ε2t I(|εt| ⩾ ϵ′

√
n)
]
.

The last term tends to 0 as we have E
[
ε21I(|ε1| ⩾ ϵ′

√
n)
]
≤ E

[
|ε1|3

]
/ϵ′

√
n) and

E
[
|ε1|3

]
<∞ since E

[
|ε1|4

]
<∞.

The proof can be easily extended to a set of frequencies ω1 . . . ωm using the Cramer-
Wold method as we recall the following. Let {Vn}n⩾0 be a sequence of real random
vectors of dimension m. Vn −→d W if and only if, for any sequence {ω1 . . . ωm} ∈
Rm, the random variable Yn = ω1Vn,1 + · · ·+ ωmVn,m −→d ω1W1 + · · ·+ ωmWm.
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2. By definition of In(ωj), we have, at the first order,

E [In(ωj)] =
1

2πn

n∑
s,t=1

E [εsεt] e
iωj(t−s) =

σ2

2π
. (7)

At the second order, we have

E
[
In(ωj)I

Z
n (ωk)

]
=

1

(2πn)2
×

n∑
s,t,u,v=1

E [εsεtεuεv] e
i(ωj(t−s)+ωk(v−u)). (8)

Using the fact that the random variables εt are independent, centered, have the
same variance σ2 and finite fourth moments, and setting E[ε41] = κ4 + 3σ4, we
obtain

E [εsεtεuεv] = κ4δs,t,u,v + σ4(δs,tδu,v + δs,uδt,v + δs,vδt,u). (9)

Plugging this expression into 8, we get

E [In(ωj)In(ωk)] =
κ4

(4π2n)
+

σ4

(4π2n2)
×

n2 + ∣∣∣∣∣
n∑

t=1

ei(ωj+ωk)t

∣∣∣∣∣
2

+

∣∣∣∣∣
n∑

t=1

ei(ωk−ωj)t

∣∣∣∣∣
2


and therefore

cov [In(ωj), In(ωk)] = E [In(ωj)In(ωk)]− E [In(ωj)]E [In(ωk)]

=
κ4

(4π2n)
+

σ4

(4π2n2)
×

∣∣∣∣∣
n∑

t=1

ei(ωj+ωk)t

∣∣∣∣∣
2

+

∣∣∣∣∣
n∑

t=1

ei(ωk−ωj)t

∣∣∣∣∣
2
 .

This allows us to conclude.

3. When {εt} is a centered Gaussian variable, the vector

Qn = [αn(ω1) βn(ω1) . . . αn(ωñ)βn(ωñ)] .

It is sufficient to calculate the mean vector and its covariance matrix. It is easy to
verify that the mean vector is zero, and that for 0 < ωk ̸= ωj < π, we have

E
[
(αn(ωk))

2
]
= E

[
(βn(ωk))

2
]
=

1

4π
, E [αn(ωk)βn(ωk)] = 0,

E [αn(ωk)αn(ωj)] = E
[
βn(ωk)β

Z
n (ωj)

]
= 0, E [αn(ωk)βn(ωj)] = 0.

The covariance matrix is thus σ2Iñ
4π , where Iñ is the identity matrix of size ñ.

Consequently, the components of Qn are independent. Recall that

In(ωj) = (αn(ωj))
2 + (βn(ωj))

2.

From the independence of the components of Qn, we deduce that the random

variables In(ωj) are themselves independent, and that
4πIn(ωj)

σ2 is the sum of the
squares of two independent, centered, identically distributed Gaussian variables,
each with a variance of 1, whose probability distribution is the law of χ2 distribution
with two degrees of freedom. This concludes the proof. 2



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 25 (2) (2025) 128–143 137

The following lemma shows that there is a similar relationship to the previous one that
relates the dynamical periodogram In,X(ω) of the time series process {Xt} and the dy-
namical periodogram In,ε(ω) of the strong white noise {εt}.

Lemma 3.2 Let {Xt} be a strong time series process, Xt =

+∞∑
k=−∞

ψkεt−k. Suppose

+∞∑
j=−∞

|ψj ||j|
1
2 <∞ and E{ε4t} <∞. Then we have

In,X(ωk) = |ψ(e−iωk)|2In,ε(ωk) +Rn(ωk),

where Rn(ωk) satisfies

max
k∈{1,...⌊ (n−1)

2 ⌋}
E{|Rn(ωk)|2} = O(

1

n
) (10)

and ωk = 2πk
n , where k ∈ {1, ...⌊ (n−1)

2 ⌋} are the Fourier frequencies.

Proof. Let us denote dXn (ωk) and dZn (ωk) as the dynamical system of the discrete
Fourier transforms of the sequences {X1, ..., Xn} and {Z1, ..., Zn} at the frequency point
2πk
n with k ∈ {1, ..., [ (n−1)

2 ]}. We can write successively:

dXn (ωk) =
1

2πn

n∑
t=1

Xte
−iωkt

=
1

2πn

+∞∑
j=−∞

ψje
−iωkj

(
n∑

t=1

Zt−je
−iωk(t−j)

)

=
1

2πn

+∞∑
j=−∞

ψje
−iωkj

 n−j∑
t=1−j

Zte
−iωkt


=

1

2πn

+∞∑
j=−∞

ψje
−iωkj

(
n∑

t=1

Zte
−iωkt + Un,j(ωk)

)
= ψ(e−iωk)dZn (ωk) + Yn(ωk).

Here, we have defined

Un,j(ωk) =

n−j∑
t=1−j

Zte
−iωkt −

n∑
t=1

Zte
−iωkt (11)

and

Yn(ωk) =
1√
2πn

+∞∑
j=−∞

ψje
−iωkjUn,j(ωk). (12)

We observe that, for |j| < n, Un,j(ωk) is a sum of 2|j| independent centered variables with
variance σ2, while for |j| ≥ n, Un,j(ωk) is a sum of 2n independent centered variables
with variance σ2. Therefore, using (11), we have

E
[
|Un,j(ωk)|2

]
≤ 2σ2 min(|j|, n) (13)
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and
E
[
|Un,j(ωk)|4

]
≤ CRσ

4(min(|j|, n))2, (14)

where CR < ∞ is a constant. To establish (14), we only need to set E
[
Z4
t

]
= ησ4 and

use the inequality (15) for p = 4:

E

[
|

n∑
k=1

Xk|p
]
≤ C(p)

( n∑
k=1

E[X2
k ]

) p
2

+

n∑
k=1

E[|Xk|p]

 . (15)

Now, use (14) to bound E
[
|Yn(ωk)|4

]
. By adapting the notation ∥X∥p = (E[|X|p])

1
p

(for p > 0), we get, following the triangular inequality (Minkovski inequality) ∥X+Y ∥p ≤
∥X∥p + ∥Y ∥p,

sup
k∈{1,...,[ (n−1)

2 ]}
∥Yn(ωk)∥4 ≤ sup

k∈{1,...,[ (n−1)
2 ]}

1√
2πn

+∞∑
j=−∞

|ψj |∥U(n,j)(ωk)∥4.

From (14), ∥U(n,j)(ωk)∥4 ≤ Cσmin(|j|, n) 1
2 . Therefore

sup
k∈{1,...,[ (n−1)

2 ]}
∥Yn(ωk)∥4 ≤ Cσ(

1√
2πn

)

+∞∑
j=−∞

|ψj |min(|j|, n) 1
2 .

Now we can write
+∞∑

j=−∞
|ψj |min(|j|, n) 1

2 ≤
+∞∑

j=−∞
|ψj ||j|

1
2 .

Therefore, ∥Yn(ωk)∥4 is of the same order as O(n
−1
2 ).

We can now expressRn(ωk) = IXn (ωk)−|ψ(e−iωk)|2IZn (ωk) in terms of Yn(ωk) = dXn (ωk)−
ψ(e−iωk)dZn (ωk). It follows that

Rn(ωk) = |ψ(e−iωk)dZn (ωk) + Yn(ωk)|2 − |ψ(e−iωk)|2IZn (ωk)

= ψ(e−iωk)dZn (ωk)Yn(−ωk) + ψ(e−iωk)dZn (−ωk)Yn(ωk) + |Yn(ωk)|2.

According to Holder’s inequality, ∥XY ∥r ≤ ∥X∥p∥Y ∥q if 1
p + 1

q = 1
r . Taking p = q = 4

and r = 2, we get

(E
[
|Rn(ωk)|2

]
)

1
2 = ∥Rn(ωk)∥2 ≤ 2

∑
j

|ψj |∥dZn (ωk)∥4∥Yn(ωk)∥4 + ∥Yn(ωk)∥4.

According to Lemma 3.1, ∥dZn (ωk)∥4 is of the order of σ√
2π

. Therefore, ∥Rn(ωk)∥2 is of

the order of 1√
n
and E[|Rn(ωk)|2] = ∥Rn(ωk)∥22 is of the order of 1

n .

This completes the proof of Theorem 3.1. 2

4 Applications

4.1 Numerical example

Let Xt be an AR(p) process defined by the equation

Xt + ϕ1Xt−1 + ϕ2Xt−2 + · · ·+ ϕpXt−p = εt. (16)
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This equation can be written in the following form. Let Xt be an AR(p) process defined
by the equation

p∑
k=0

ϕkXt−k = εt with ϕ0 = 1. (17)

By multiplying equation (17) by Xt−1, we get

p∑
k=0

ϕkE {Xt−kXt−l} = E {εtXt−l} , a0 = 1. (18)

We can easily identify the terms of autocorrelation and cross-correlation in the Yule-
Walker equation:

N∑
k=0

ϕkρxx[l − k] = ρεx[l] with ϕ0 = 1. (19)

The next step is to calculate the identified cross-correlation term ρεx(l) and relate it to
the autocorrelation term ρxx(l − k).
The term Xt−l can also be obtained from equation (16):

Xt−l = −
p∑

k=1

ϕkXt−k−l + εt−l. (20)

Note that the data and the noise are uncorrelated, so (Xt−lwt = 0). Also, the auto-
correlation of the noise is zero at all lags, except for lag 0, where its value is equal to
σ2 (recall the flat power spectral density of white noise and its autocorrelation). These
two properties are used in the following steps. We restrict the lags only to non-negative
values and zero,

ρεX(l) = E {εtXt−l}

= E

{
εt

(
−

N∑
k=1

ϕkXt−k−l + εt−l

)}

= E

{
−

N∑
k=1

ϕkXt−k−lεt + εt−lεt

}
= E {0 + εt−lεt}
= E {εt−lεt}

=

{
0 , l > 0

σ2 , l = 0.

(21)

By substituting equation (21) into equation (19), we obtain

N∑
k=0

ϕkρxx[l − k] =

{
0, l > 0,

σ2, l = 0,
a0 = 1. (22)

Here, there are two cases to solve, when (l > 0) and when (l = 0). For the case when
l > 0, equation (22) becomes

N∑
k=1

ϕkρxx[l − k] = −ρxx[l]. (23)
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Equation (23) can be written in the matrix form
ρxx(0) ... ρxx(2− P ) ρxx(1− P )
ρxx(1) ... ρxx(3− P ) ρxx(2− P )

...
. . .

...
...

ρxx(P − 1) . . . ρxx(1) ρxx(0)




ϕ1
ϕ2
...
ϕP

 = −


ρxx(1)
ρxx(2)

...
ρxx(P )

 . (24)

This is the Yule-Walker system, which consists of a set of P equations and P unknown
parameters. Represent equation (24) in a compact format

ϱ̄ϕ̄ = −ρ̄. (25)

The solutions ā can be obtained by

ϕ̄ = −ϱ̄−1ρ̄. (26)

Once we solve for ϕ̄, which corresponds to the model parameters ϕk, the noise variance σ
2

is obtained by applying the estimated ϕk in equation (22) with l = 0. Matlab’s ”aryule”
efficiently solves the Yule-Walker system using the Levinson Algorithm.

4.2 Simulation

We will generate an AR(3) process and assume that we know nothing about the model
parameters (see Figure 1).

Figure 1: Simulated data for an AR(3) process.

We will take this as an input to the Yule-Walker system and check if it can correctly
estimate the model parameters.

Xt = −Xt−1 − 0.8Xt−2 − 0.4Xt−3 + εt.

Generation of data from the AR(3) process is given above.

To execute the simulation and determine which model order fits best, one should
follow the steps below.
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Step 1. Plot the dynamical periodogram (Power Spectral Density - PSD) of the simu-
lated data for reference (see Figure 2).

Step 2. Estimate the PSD for three different model orders (e.g., AR(2), AR(3), AR(4)).

Step 3. Compare the estimated PSD for each model order to the reference dynamical
periodogram to see which model order best fits the data.

Figure 2: Dynamical periodogram (estimator of the Power Spectral Density ”PSD”).

The order (P ) The estimated parameters (ϕk) The prediction error
2 [1 0.83 0.43 ] 1.010
3 [1 0.81 0.39 -0.037] 1.009
4 [1 0.81 0.39 -0.045 -0.009] 1.009

Table 1: The estimated model parameters and the prediction errors.

The estimated model parameters and the noise variances calculated by the Yule-
Walker system are provided in Table 1.

It can be established that the estimated parameters are nearly identical to what is
expected. See how the error decreases as the model order ’p’ increases. The optimal
model order in this case is P = 3 since the error did not change significantly when
increasing the order, and also, the model parameter ϕ4 of the AR(4) process is not
significantly different from zero.

5 Conclusion

In this paper, the estimation of spectral density provides useful insights into the analysis
of time series data. The study emphasizes the importance of understanding the frequency
domain of time series by applying techniques of spectral analysis, providing a unique
point of view that complements traditional descriptive methods. Incorporating weighted
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windows, and addressing bias and variance, highlights the possibility for improvements
in estimation accuracy. Additionally, one of the most notable achievements of spectral
analysis for time series data is its ability to reveal hidden frequencies, allowing for the
detection of underlying patterns and behaviors that may not be readily identifiable in
the time domain.

It is important to add spectral analysis to the tools for studying time series data, the
spectral analysis provides a ”frequency” perspective on time series data, the dynamical
periodogram is a more sophisticated estimator of the spectrum compared to the autocor-
relation function, and the dynamical periodogram is a simple method for estimating the
spectral density. This estimator has drawbacks (bias, variance) that can be problematic
depending on its use. It is possible to improve this estimator by multiplying it by a
weighting window to reduce bias and variance. One of the successes of spectral analysis
for time series data is the detection of hidden frequencies.

Our research of spectral density estimation expands our toolbox for analyzing time
series data and opens the door to fresh perspectives and potential applications in a variety
of disciplines, including signal processing, finance, and economics. The study highlights
the usefulness of spectrum analysis in revealing hidden dynamics in time series, making
it a potent tool for researchers and analysts in the field.
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