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Abstract: In this research paper, a new chaotic jerk system is presented. The
specialty of the new system is that it can produce coexisting multiple attractors for
different initial conditions. This special behavior of the new system can be used to
increase the security of the communication system. The bifurcation diagram, Lya-
punov exponents, attractor diagrams, and basin of attraction are the important tools
used to validate the multistability of the proposed system. The simulation results
indicate that there are multiple coexisting attractors in the new system. Finally, an
electronic circuit is designed for the proposed system to realize the coexisting attrac-
tors in practice.
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1 Introduction

In recent years, chaotic jerk systems have been introduced with hidden attractors [1],
multi-scroll attractors [2], multi-stability [3], mega-stability [4], hypogenetic system [5],
memristor [6], and coexisting attractors [7]. The invention of the chaotic jerk system
with coexisting multiple attractors is very important in recent days because of its many
engineering applications such as secure communication systems [8], image processing [9],
random number generation [10], etc. The coexisting attractors, which means multiple
attractors, can be observed in any nonlinear dynamical system for different initial condi-
tions and system parameters. This special behavior of the system increases its complexity
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Figure 1: (a-d) The attractors of the new system in 2D and 3D planes.

and can be used to improve the security of the communication system. Recently, many
researchers [11–14] introduced chaotic jerk systems with coexisting multiple attractors
and analyzed their dynamical properties employing a bifurcation diagram and Lyapunov
exponents. It was understood through dynamic analysis that the chaotic system can
have coexisting chaotic attractors, stable node attractors, and limit cycle attractors for
a certain range of system parameters. When the system produces an infinite number
of coexisting attractors for the variation of initial conditions, the phenomenon is called
extreme multistability.

The proposed chaotic jerk system has only one cubic nonlinearity and exhibits coex-
isting attractors in both periodic and chaotic states when initial conditions are changed.
The chaotic and coexisting attractor behavior in the new system is verified through the
bifurcation diagram, Lyapunov exponents spectrum, and attractor diagram. The dis-
sipativity, equilibrium points, and stability analysis were also conducted to verify the
chaotic nature of the proposed system. Furthermore, an electronic circuit is designed for
the proposed system using basic electronic components such as resistors, capacitors, and
OPAMP and simulated in Multisim software. As a result of the simulation, the chaotic
attractors are obtained for the practical implementation of the proposed system.
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Figure 2: (a) Bifurcation diagram with X1(0) (Blue) and X2(0) (Red); (b) Lyapunov
exponent plots of the system (1) under the parameter a; (c-d) Coexisting attractors in
the xz-plane at a = 125 and a = 133, respectively.

2 Theoretical Model of Novel Chaotic Jerk System

In this section, a new jerk system is introduced and its dynamical behaviors, including
dissipativity, equilibrium points, stability, Lyapunov exponents, and Lyapunov dimen-
sion, are analyzed in detail. The new system is of the form

ẋ = y,
ẏ = z,
ż = ax− x3 − by − cz.

(1)

Here, x,y,z are the state variables and a = 133, b = 51, c = 1.6 are the parameters of the
system (1).

2.1 Lyapunov exponents and Lyapunov dimension

The numerical values of Lyapunov exponents for the new system (1) can be calculated
as LE1 = 0.404527, LE2 = 0, LE3 = −2.028421. The Lyapunov dimension (DL) can be
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Figure 3: (a) Bifurcation diagram with X1(0) (Blue) and X2(0) (Red); (b) Lyapunov
exponent plots of the system (1) under the parameter b; (c-d) Coexisting attractors in
the xy-plane at b = 51 and b = 54, respectively.

obtained as DL = 2 + LE1+LE2

|LE3| = 2.199, which indicates the fractional dimension of the

proposed system (1).

2.2 Equilibrium points and stability

The equilibrium points can be calculated by letting ẋ = 0, ẏ = 0 and ż = 0 in (1) as
given by

y = 0,
z = 0,
ax− x3 − by − cz = 0.

(2)

The solution of (2) can be obtained as x = ±
√
a and thus the equilibrium points are

E1 =
[
0, 0, 0

]
, E2,3 =

[
±
√
a, 0, 0

]
.

Now, the Jacobian matrix (J) of the new system (1) can be written as
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Figure 4: (a) Bifurcation diagram with X1(0) (Blue) and X2(0) (Red); (b) Lyapunov
exponent plots of the system (1) under the parameter c; (c-d) Coexisting attractors in
the yz-plane at c = 16 and c = 18, respectively.

J =

 0 1 0
0 0 1

a− 3x2 −b −c

 . (3)

The Jacobian matrix at the equilibrium point E1 can be written as

J(E1) =

0 1 0
0 0 1
a −b −c

 . (4)

The corresponding eigenvalues are

λ1 = 2.233, λ2 = −1.917− j7.476, λ3 = −1.917 + j7.476.

Since λ1 is positive, the new system (1) is unstable at the equilibrium point E1. The
Jacobian matrix at the equilibrium points E2 and E3 can be written as

J(E2) = J(E3) =

 0 1 0
0 0 1

−2a −b −c

 (5)
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Figure 5: Basin of attraction in the x0 − y0 plane.

(a) (b)

Figure 6: (a-b) Chaotic attractors of the scaled system (6).

The corresponding eigen values are

λ1 = 1.333 + j7.784, λ2 = 1.333− j7.784, λ3 = −4.265.

Since the real parts of eigenvalues λ1 and λ2 are positive, the new system (1) is unstable
at the equilibrium points E2 and E3. Hence, we can conclude that the proposed system
(1) is unstable at all the equilibrium points. The attractors of the system (1) are given
in Figure 1 with the initial conditions X1(0) = (0, 1,−1).

3 Dynamic Analysis

In this section, the multistability in the proposed system (1) is shown with the help of
bifurcation diagrams, Lyapunov exponents spectrum, and attractor diagrams. When the
initial conditions are changed, the system (1) presents multistability with the same pa-
rameter values. The bifurcation diagram and Lyapunov exponents spectrum diagram can
be obtained by varying the particular parameter by keeping other parameters constant.
All the simulation results of the attractor diagram for the multistability are obtained
with the initial conditions X1(0) = (0, 1,−1) (blue color) and X2(0) = (0,−1, 1) (red
color). The new system (1) presents periodic and chaotic states when we vary the pa-
rameter values and coexisting attractors are evolved in both chaotic and periodic states
in the new system (1). The simulation results indicate that there is a wealth of chaotic
dynamics and the existence of coexisting attractors in the proposed system (1).
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Figure 7: (a-c) Electronic system design for the scaled system (6).

The dynamical behavior of the system (1)) is analysed under the parameters aϵ[110−
135]. Figure 2a shows the bifurcation diagram for the parameter a with the initial
conditions (0, 1,−1) (Blue) and (0,−1, 1) (Red). It is found that the system (1) has a
periodic state in aϵ[110− 130] and a chaotic state beyond a = 130. The non-overlapping
regions in Figure 2a indicate that there is the presence of coexisting multiple attractors
in the system (1). Figure 2b represents the variation of Lyapunov exponent values under
the parameter a and has at least one positive value beyond a = 130. Figures 2c and 2d
show the coexisting attractors of the system (1) under chaotic and periodic regions.

Next, the dynamic property of the system (1) is analyzed under the parameter
bϵ[49 − 57]. The corresponding bifurcation diagram and Lyapunov exponents spectrum
are shown in Figures 3a and 3b, which demonstrate that there is an inverse periodic dou-
bling nature in the system, i.e., the system (1) is in the chaotic state within bϵ[50.4−51.5]
and then it enters into the periodic state.

It is also observed from Figure 3a that the states of the system are not modified
by the different initial conditions but the bifurcation values are changed. Thus, we can
conclude that the system (1) produces coexisting multiple attractors for the different
values of initial conditions. The coexisting attractors of the system (1) under b = 51 and
b = 54 are given in Figures 3c and 3d, respectively.

The dynamic property of the system (1) is analyzed under the parameter c ∈ [1− 2].
The corresponding bifurcation diagram and Lyapunov exponents spectrum are shown in
Figures 4a and 4b, which demonstrate that the system (1) is in the chaotic state within
cϵ[1− 1.7] and then it produces period - 4, period - 2 and limit cycle attractors.

It is also observed from Figure 4a that the states of the system are not modified
by the different initial conditions but the bifurcation values are changed. Thus, we can
conclude that the system (1) produces coexisting multiple attractors for the different
values of initial conditions. The coexisting attractors of the system (1) under c = 16 and
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Figure 8: (a-d) Electronic simulation results with a = 133, b = 51, c = 1.6.

c = 18 are given in Figures 4c and 4d, respectively.
Finally, the presence of coexisting attractors in the proposed system is verified by

plotting the riddled basin of attraction relative to the x0 - y0 plane as shown in Figure
5, which indicates two types of attractors in the proposed system.

4 Electronic Circuit Implementation

In this section, an electronic circuit is designed for the proposed coexisting attractor jerk
system (1) to obtain its attractors for practical applications [15–17]. It is observed from
Figure(1) that the range of state signals x,y and z is (−4, 17), (−50, 70) and (−500, 400),
respectively. Since the practical circuit realization uses the voltage range (−15, 15)V olt,
the range of state signals also must be (−15, 15)V olt. This can be achieved by scaling
the proposed system (1). Now, assume that p = x

2 , q = y
5 and r = z

36 , where p, q and r
are the scaled state variables of the system (1). Thus, the scaled system can be written
as in (6), and its attractors are given in Figure 6 with a = 133, b = 51, c = 1.6. Note
that the phase diagrams of the scaled system are identical to those in Figure 1 but the
range of state variables is reduced within (−15,+15).

ṗ = 2.5q,
q̇ = 7.2r,
ṙ = 2a

36p−
8
36p

3 − 5b
36q − cr.

(6)

The equations for the proposed system in terms of electrical parameters are given by

ṗ = −1
R1C1

(−q),

q̇ = −1
R2C2

(−r),

ṙ = −1
R3C3

(−p) + −1
R4C3

(p3) + −1
R5C3

(q) + −1
R6C3

(r).
(7)

By comparing (6) and (7), the electrical equations for the parameter values can be
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obtained as follows:
a = 18

R3C3
,

b = 36
5R5C3

,

c = 1
R6C3

.

(8)

The electronic circuit design for (7) is displayed in Figure 7, it uses basic components
such as resistors, capacitors, and opamps. The resistance values can be obtained with
the parameters a = 133, b = 51, c = 1.6 and the capacitance C = C1 = C2 = C3 = 1nF
as

R1 = 4000KΩ, R2 = 1400KΩ, R3 = 1200KΩ, R4 = 45MΩ, R5 = 1400KΩ, R6 = 6250KΩ.

The Multisim simulation results for chaotic attractors are given in Figure 8, which is
almost identical to Figure 6.

5 Conclusions

In this paper, a new 3-dimensional coexisting multiple attractors chaotic jerk system is
presented and its dynamical properties are analyzed in detail. The parameters of the
proposed system are analyzed under chaotic and periodic states using a bifurcation di-
agram with different initial conditions. The dynamic analysis shows that the proposed
system can have multiple coexisting attractors under the variation of initial conditions.
The riddle basin of attraction is plotted, which confirms the presence of different attrac-
tors in the proposed system. The proposed electronic system design for the new system
is verified using Multisim software and can be used to solve many issues in practice.
The attractors obtained by the Multisim simulation are identical to those obtained by
numerical simulation. The complex dynamics and circuit implementation of the pro-
posed nonlinear dynamical system can be used in many practical applications such as
communication system. It can be concluded that the proposed system has chaotic and
unpredictable behavior.
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