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1 Introduction

Mathematics has always been the beating heart of the science, and the interaction be-
tween them has been crucial for centuries. Mathematical theories and fundamental con-
cepts have enabled the description of aspects of the natural world, including motion in
mechanics, electricity, gravity, and general relativity.

The connection between mathematics and mechanics is profound as mechanics elu-
cidates the motion of objects influenced by specific forces within the realm of physics.
The mathematical exploration of mechanics commences with the definition of physical
quantities and geometric representations, often leading to the formulation of graphs and
diagrams. Contact mechanics, a subfield of mechanics, delves into the deformation of
materials in contact with one another. Mathematical modeling and analysis play pivotal
roles in comprehension [11], with nonlinear partial differential equations and variational
inequalities being among the primary mathematical tools employed, along with hemi-
variational inequalities.

Thermal phenomena are closely linked to the mechanics of contact. For example,
certain crystals such as quartz, tourmaline, and Rochelle salt exhibit mechanical stresses
due to thermal expansion when exposed to heat [5]. Research has extensively explored
the laws that govern these thermo-mechanical interactions. The models of thermo-elastic
bodies are elaborated in [1]. Additionally, studies examining changes in piezoelectric
materials in relation to thermal effects are presented in [4] and [12]. Frictional contact
between bodies has taken a considerable place in research, see [7], dealing with a contact
problem between materials and physical phenomena (friction, damage and wear), while
for a dynamic problem of frictional contact in mechanics in other studies on mathematical
numerical solutions of variational inequalities, one can refer to [9].

Furthermore, there are results and research focusing on abstract hemivariational in-
equalities and numerical simulation outcomes providing numerical evidence regarding the
theoretically predicted optimal convergence order, as referenced in [6, 8, 10]. Addition-
ally, in [1], the study delves into the hemivariational inequality and the frictional contact
problem with damage, furthermore, there are other studies focusing on numerical aspects,
which can be found in [2]. The paper is structured as follows. Notations and prelimi-
naries are detailed in Section 2, while the model, a list of assumptions, and a variational
formulation of the problem will be discussed in Section 3. Subsequently, in Section 4, we
will cite the results concerning existence and uniqueness as presented in Theorem 4.1.
The proof of this theorem relies on variational and hemivariational inequalities as well as
results related to the existence and uniqueness of Banach fixed points. Finally, in Section
5, we will present the numerical study, employing the finite element method and finite
differences to achieve a precise numerical approach to the solution.

2 Notations and Preliminaries

We present the notations and recall some preliminary concepts.
Let us consider Ωl ⊂ Rd as a bounded domain with an outer Lipschitz boundary

denoted by Γl, and let ν represent the unit outer normal on ∂Ωl = Γl. We define the
spaces

H l = L2(Ωl)d =
{
vl =

(
vli
)
: vli ∈ L2(Ωl)

}
, Hl =

{
τ l =

(
τ lij

)
τ lij = τ lji ∈ L2(Ωl)

}
,

H l
1(Ω

l)d = {vl =
(
vli
)
∈ H1 : ε(vl) ∈ Hl}, Hl

1 = {τ l ∈ Hl : Divτ l ∈ H1},
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H l, Hl, H l
1(Ω

l)d and Hl
1 are real Hilbert spaces equiped with the usual inner products

and the associated norms, we also introduce the closed subspaces of H l
1(Ω

l) defined by

V l =
{
vl ∈H l

1(Ω
l)d : v =0 on Γl

1

}
,

Ql =
{
θl ∈ H l

1(Ω
l) : θl = 0 in Γl

1

}
.

Given that µ(Γl
a) > 0 and µ(Γl

1) > 0, the Korn and Friedrichs-Poincaré inequalities
are satisfied,

∃C 0 > 0 ∥ε(vl)∥Hl ≥ C0∥vl∥Hl
1(Ω

l)d , ∀vl ∈ V l, (1)

∃C 2 > 0 ∥∇wl∥Hl ≥ C 2∥wl∥Hl
1(Ω

l),∀wl ∈ Ql. (2)

Moreover, by the Sobolev trace theorem the positive constants C0 and C 2 exist so that

∥vl∥L2(Γl
3)

d ≤ C0∥vl∥V l ,∀vl ∈ V l, (3)

∥zl∥L2(Γl
3)

≤ C2∥zl∥Ql ,∀zl ∈ Ql. (4)

We denote vν and vl
τ as the normal and tangential components of vl on Γl, where vν is

the perpendicular component and vl
τ is the parallel component, as described in Green’s

formulas in [4].
For a simpler notation, we use the following spaces:

V = V1 × V2, H = H1 ×H2, H1 = H1
1 ×H2

1 , Q = Q1 ×Q2.

2.1 Subdifferential boundary conditions

In the mechanical problem (P), we will use contact laws expressed in terms of the subd-
ifferential κν ∈ ∂j(uν), in which κν represents an interface force, uν signifies the normal
displacement and ∂j(uν) represents the subdifferential in the sense of Clarke such that
j : R −→ R is a locally Lipschitz function. The generalized (Clarke) directional derivative
of j at x ∈ R in the direction v ∈ R is defined by

j0(x; v) = lim sup
y→x,λ↓0

j(y + λv)− j(y)

λ
.

The generalized subdifferential of j at x is a subset of R expressed as

∂j(x) = {ζ ∈ R | j0(x; v) ≥ ζv ∀v ∈ R}.

Some properties of the subdifferential for locally Lipschitz functions can be found in [11].

3 The Model and Assumptions on the Data

Let Ωl, l = 1, 2, be a bounded domain in Rd (d = 2, 3) with the outer Lipschitz surface
Γl, we define two thermo-viscoelastic bodies occupying Ωl, their boundary is divided
into three open disjoint parts Γl

1, Γ
l
2 and Γl

3 on one hand, and a partition of Γl
1 ∪ Γl

2

into two open parts Γl
aand Γl

b on the other hand. We assume that µ(Γl
1) > 0. Let

T > 0 and [0, T ] be the time interval of interest. The two bodies are subjected to the
effect of body forces with specific density f0, a heat source of constant strength qlth.
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The two bodies are clamped on Γl
1 × (0, T ), so the displacement field vanishes there. A

surface traction of density f l2 acts on Γl
2 × (0, T ). Also, we suppose that the temperature

vanishes on
(
Γl
1 ∪ Γl

2

)
× (0, T ). Moreover, we suppose that the body forces and tractions

vary slowly in time, and therefore, the accelerations in the system may be neglected.
Neglecting the inertial terms in the equation of motion leads to a quasistatic approach to
the process. In the reference configuration, the two bodies can enter in contact along the
common part Γ1

3 = Γ2
3 = Γ3. The contact model is characterized by the sub-differential of

locally Lipschitz functions and the non linear boundary condition of thermal conductivity
modeling electric potential exchange between the bodies.

Problem 3.1 For l = 1, 2, find the displacement field ul : Ωl × [0, T ] → Rd

and the temperature θl : Ωl × [0, T ] → R such that

σl(t) = Al(ε(u̇l(t))) + Blε(ul(t)) +

∫ T

0

Gl(t− s)ul(s)ds− Clθl(t) in Ωl × (0, T ) (5)

θ̇l(t)− divKl
(
∇θl(t)

)
= Ml(ε(u̇l(t))) + hl

0 in Ωl × (0, T ) (6)

Divσl(t) + f l
0(t) = 0 in Ωl × (0, T ), (7)

ul(t) = 0 on Γl
1 × (0, T ), (8)

σlνl = f l
2 on Γl

2 × (0, T ), (9) σ1
υ(t) = σ2

υ(t) = συ(t) − συ(t) ∈ ∂jυ(u̇υ(t)) on Γ3 × (0, T ),

σ1
τ (t) = σ2

τ (t) = στ (t) − στ (t) ∈ ∂jτ (u̇τ (t)) on Γ3 × (0, T ),
(10)

u1
υ(t) + u2

τ (t) = 0 on Γ3 × (0, T ) (11)

−K (∇θ(t)) υ ∈ ∂jθ(θ(t)) on Γ3 × (0, T ), (12)

θl = 0 on (Γ1 ∪ Γ2)× (0, T ), (13)

q(t)l · νl = hn on Γl
2 × (0, T ), (14)

ul(0) = ul
0, θl(0) = θl0 in Ωl. (15)

Now, progress to the mechanical presentation of (5)-(15) and provide explanation of the
equations and the boundary conditions.

Equations (5) and (6) represent the thermo-viscoelastic with long-term memory con-
stitutive laws between two bodies, where Al is a given nonlinear operator, Gl is the
relaxation operator, Bl represents the elasticity operator and Cl is the thermal operator,
the thermo-viscoelastic constitutive law includes temperature effects described by the
parabolic equation given by (6), where Ml is the thermal expansion tensor and Kl is
the thermal conductivity tensor, equation (7) is the equilibrium equation for the stress,
where Div denotes the divergence operator for tensors, then (8), (9), (13) and (14) are the
mechanical and thermal boundary conditions and (11) indicates that there is no space be-
tween the two bodies, the equations (10) represent the normal stres and normal velocity
satisfying the non-monotone damped response condition and the friction law, in which
jν , jτ are locally Lipschitz functions and ∂jν , ∂jτ denotes the generilized Clarke gradient
of the functions jν and jτ , the relation (12) represents the heat exchange between two
body, finally, (15) denotes the initial displacement and the temperature conditions.
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3.1 Assumptions on the data

We will now enumerate the assumptions regarding the problem’s data.
The viscosity operator Al : Ωl × Sd → Sd satisfies

(a) Al(., ε) is Lebesgue measurable on Ωl for any ε ∈ Sd,
(b) There exists LAl > 0 such that
∥Al(x, ε1)−Al(x, ε2)∥ ≤ LAl∥ε1 − ε2∥ for all ε1, ε2 ∈ Sd,
(c) There exists mAl > 0 such that for all ε1, ε2 ∈ Sd,
(Al(x, ε1)−Al(x, ε2)) · (ε1 − ε2) ≥ mAl∥ε1 − ε2∥2 (a.e)x ∈ Ωl,
(d) Al(x, 0) = 0 for all x ∈ Ωl.

(16)

The elasticity operator Bl : Ωl × Sd → Sd satisfies
(a) Bl(x, ε) is Lebesgue measurable on ω for all ε ∈ Sd,
(b) There exists LBl > 0 such that for all ε1, ε2 ∈ Sd,
∥Bl(x, ε1)− Bl(x, ε2)∥ ≤ LBl∥ε1 − ε2∥ (a.e)x ∈ Ωl,
(c) Bl(x, 0) = 0 for all x ∈ Ωl.

(17)

The relaxation function Gl : Ωl → Rd satisfies (a) Gl(x) is Lebesgue measurable on Ωl for any x ∈ Rd,
(b) There exists LGl > 0 such that

∥Gl(x1)− Gl(x2)∥ ≤ LGl∥x1 − x2∥ for all x1,x2 ∈ Rd.
(18)

The function jν : Γl
3 × R → R satisfies

(a) jν(.,r) is Lebesgue measurable on Γl
3 for all x ∈ R,

(b) jν(x,.) is locally Lipschitz on R for all x ∈ Γl
3,

(c) there exist c0ν , c1ν ⩾ 0 such that for all r ∈ R and x ∈ Γl
3 we have

|∂jν(x, r)| ≤ c0ν + c1ν |r|,
(d) there exists αjν ≥ 0 such that for all r1, r2 ∈ R and x ∈ Γl

3, we have
j0ν(x, r1; r2 − r1) + j0ν(x, r2; r1 − r2) ≤ αjν |r1 − r2|2.

(19)

The function jτ : Γl
3 × Rd → R satisfies



(a) jτ (., ξ) is measurable on Γl
3 for all x ∈ R,

(b) jτ (x, .) is locally Lipschitz on Rd for all x ∈ Γl
3,

(c) there exist c0τ , c1τ ≥ 0 such that for all r ∈ Rand x ∈ Γl
3, we have

∥ ∂jτ (x, r) ∥≤ c0τ + c1τ ∥ ξ ∥R,
(d) there exists αjτ ≥ 0 such that for all ξ1, ξ2 ∈ R and x ∈ Γl

3, we have
j0τ (x, ξ1; ξ2 − ξ1) + j0τ (x, ξ2; ξ1 − ξ2) ≤ αjτ ∥ ξ1 − ξ2 ∥2 .

(20)

The function jθ : Γ3 × R → R satisfies

(a) jθ(., r) is Lebesgue measurable on Γl
3 for all x ∈ R,

(b) jθ(x, .) is locally Lipschitz on Rd for all x ∈ Γl
3,

(c) there exist c0θ, c1θ ≥ 0 such that for all r ∈ R and x ∈ Γl
3, we have

|∂jθ(x, r)| ≤ c0θ + c1θ|r|,
(d) there exists αjθ ≥ 0 such that for all r1, r2 ∈ R and x ∈ Γ3, we have

j0θ (x, r1; r2 − r1) + j0θ (x, r2; r1 − r2) ≤ αjθ|r1 − r2|2.
(21)
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On the other hand, we need conditions for the thermal operator Cl, the function Ml and
the thermal conductivity operatorKl, see [6].

Now, we define the forces, tractions, volume and surface charges, as well as the initial
functions as follows:

f l
0 ∈ L2(Ωl)d f l

2 ∈ L2(Γl
2)

d hl
0 ∈ L2(Ωl)d.

hl
n ∈ L2(Γl

b)
d k ≥ 0 u0 ∈ V θ0 ∈ Q.

By utilizing Riesz’s representation theorem, we examine the elements f l ∈ V l and h ∈ Ql

defined by

⟨F, v⟩V =

2∑
l=1

∫
Ωl

f l
0(t)v

ldx+

2∑
l=1

∫
Γl
2

f l
2(t)v

ldx for all v ∈ V

⟨h, ξ⟩Q =

2∑
l=1

∫
Ωl

hl
0(t)ξ

ldx+

2∑
l=1

∫
Γl
b

hl
n(t)ξ

ldx for all ξ ∈ Q.

With the notations mentioned earlier and Green’s formulas, we can derive the variational
formulation of the mechanical problem (P) for all functions vl ∈ V l, wl ∈ Ql and a.e
t ∈ (0, T ) given as follows.

3.2 Problem PV

Find the displacement field u = (u1,u2) : [0, T ] → V and the temperature θ = (θ1, θ2) :
[0, T ] → Q such that

2∑
l=1

(
σl(t), ε(vl − u̇l(t))

)
Hl +

∫
Γ3

(
j0ν(u̇ν(t); vν − u̇ν(t)) + j0τ (u̇τ (t); vτ − u̇τ (t))

)
da,

≥ ⟨F (t), v − u̇(t)⟩V. (22)

2∑
l=1

(
θ̇l(t), λl − θl(t)

)
Hl

+
(
Kl∇θl(t),∇(λl − θl(t))

)
Hl −

(
Mlε(ul(t)), λl − θl(t)

)
Hl ,

+

∫
Γ3

j0θ (θ(t);λ
l − θl(t)) da ≥ ⟨h(t), λ− θ(t)⟩Q, (23)

u(0) = u0, θ(0) = θ0.

4 Existence and Uniqueness of a Solution

Let us consider that the following smallness conditions are satisfied:

αl
A ≥ c20(αjν + αjτ )

√
µ(Γ3),

αl
K ≥ c20αjθ

√
µ(Γ3),

αl
K − c20αjθ

√
µ(Γ3) ≥ Ll

MT/2.

(24)

Now, we present our result on existence and uniqueness.
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Theorem 4.1 Assume hypotheses (3.16)-(3.29) and (24) are satisfied, then Problem
(PV ) has a unique solution (u, θ) such that

u ∈ L2(0, T,V), θ ∈ L2(0, T,Q).

In the proof of Theorem (4.1), we follow several steps, based on the results of hemi-
variational inequalities and fixed point arguments.

To prove the theorem, we consider the following the auxiliary problems for given
η ∈ L2(0, T,H), z ∈ L2(0, T,Q).

4.1 Problem PVη

Find a displacement field uη = (u1
η, u

2
η) : [0, T ] → V such that for all t ∈ [0, T ], we have

2∑
l=1

(Alε(u̇l
η(t)), ε(v

l − u̇l
η(t)))Hl +

∫
Γ3

(j0ν(u̇ην(t); vν − u̇ην(t))

+(j0τ (u̇ητ (t); vτ − u̇ητ (t))da+ (η(t), ε(v − u̇(t)))V ≥ ⟨F (t), v − u̇η(t)⟩V (25)

uη (0) = u0.

4.2 Problem PVθ

Find the temperature θηz = (θ1ηz, θ
2
ηz) : [0, T ] → Q such that for all t ∈ [0, T ] and all

λ ∈ Q, we have

2∑
l=1

(θ̇lηz(t), λ
l − θlηz(t))H + (Kl∇θlηz(t),∇(λl − θlηz(t)))H − (Mlε(ul

η(t)), λ− θlηz(t))

+

∫
Γ3

j0θ (θηz(t);λ
l − θηz(t))da ≥ ⟨h(t), λ− θηz(t)⟩Q (26)

θηz (0) = θ0.

Lemma 4.1 Problem (25) has a unique solution. Moreover, there exists a constant
c > 0 such that

∥ uη1
− uη2

∥2V≤ c

∫ T

0

∥ η1(s)− η2(s) ∥2V∗ ds. (27)

In this context, (uηi
) refers to the solution of problem (25) associated with ηi,i = 1 : 2.

Proof. [Proof (of Lemma 4.1)] To start the demonstration, let us begin with the
aspect of existence of solution of problem (25) corresponding to ηi with i = 1, 2 for the
estimate (27). Let uηi be the solution of problem (25) corresponding to
ηi ∈ L2(0, T ;H) with i = 1, 2, then, ∀t ∈ (0, T ) and ∀v ∈ V, we write

2∑
l=1

(Alε(u̇l
η1
(t)), ε(vl − u̇l

η1
(t)))Hl +

∫
Γ3

(j0ν(u̇η1ν(t)); vν − u̇η1ν(t))da (28)

+

∫
Γ3

(j0τ (u̇η1τ (t)); vτ − u̇η1τ (t))da+ (η1(t), ε(v − u̇η1
(t)))V

≥ (F (t), v − u̇η1
(t))V
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2∑
l=1

(Alε(u̇l
η2
(t)), ε(vl − u̇l

η2
(t)))Hl +

∫
Γ3

(j0ν(u̇η2ν(t)); vν − u̇η2ν(t))da (29)

+

∫
Γ3

(j0τ (u̇η2τ (t)); vτ − u̇η2τ (t))da+ (η2(t), ε(v − u̇η2
(t))⟩V

≥ (F (t), v − u̇η2
(t)⟩V.

Taking v = u̇η2
in (28) and v = u̇η1

in (29), we sum up the obtained inequalities to derive

2∑
l=1

(Alε(u̇l
η1
(t))−Alε(u̇l

η2
(t)), ε(ul

η1
(t)− u̇l

η2
(t)))Hl (30)

≤ (η1(t)− η2(t), ε(u̇η2(t)− u̇η1(t)))V +

∫
Γ3

j0ν(u̇η1ν(t), u̇η2ν(t)− u̇η1ν(t))da

+

∫
Γ3

j0ν(u̇η2ν(t), u̇η1ν(t)− u̇η2ν(t))da+

∫
Γ3

j0τ (u̇η1τ (t), u̇η2τ (t)− u̇η1τ (t))da

+

∫
Γ3

j0τ (u̇η2τ (t), u̇η1τ (t)− u̇η2τ (t))da.

Then we combine the inequalities (16)-c, (19)-d and (20)-d to deduce

(αAl − c20(αjν + αjτ )
√

µ(Γl
3)) ∥ u̇l

η1
(t)− u̇η2

(t) ∥2V≤ (η1(t)− η2(t), ε(u̇η1
)− ε(u̇η2

))H.

Remembering uη1(0) = uη2(0) = u0, we perform integration by parts on the preceding
inequality over (0, T) to discover

(αAl − c20(αjν + αjτ ))
√
µ(Γl

3)

∫ T

0

∥ u̇l
η1
(s)− u̇l

η2
(s) ∥2V ds

≤ c

∫ T

0

∥ u̇l
ν1
(s)− u̇ν2

(s) ∥2V ds+
1

4c

∫ T

0

∥ η1(s)− η2(s) ∥ ds. (31)

Thus, from the previous inequality, we conclude

(αAl−c2(αjν+αjτ )
√
µ(Γl

3)−c)

∫ T

0

∥ u̇l
η1
(s)−u̇l

η2
(s) ∥2V ds ≤ 1

4c

∫ T

0

∥ η1(s)−η2(s) ∥V∗ ds.

Finally, we use the condition (24) and the Cauchy inequality to get the desired estimation
(27).

Lemma 4.2 Problem (26) has a unique solution. Moreover, there exists a constant
c > 0 such that

∥ θη1,z1(t)− θη2,z2(t) ∥2Q≤ c

∫ T

0

∥ η1(s)− η2(s) ∥2V∗ + ∥ z1(s)− z2(s) ∥2Q∗ ds. (32)

Here, θη1,z1 and θη2,z2 are the solutions of problem (26) for (ηi, zi), i = 1, 2.

Proof. [Proof (of Lemma 4.2)] For the estimation (32), let θηi,zi(t) represent the
solution to problem (26) associated with ηi, zi ∈ L2(0, T ;H×Q) with i = 1, 2, hence, for
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all t ∈ (0, t) and all λ ∈ Q, we find that

2∑
l=1

(θ̇lη1z1(t), λ
l − θlη1z1(t))H + ⟨Kl∇θlη1z1(t),∇(λl − θlη1z1(t))⟩H,

+⟨Mlε(ul
η1
(t)), λ− θlη1z1(t)⟩+

∫
Γ3

j0θ (θ
l
η1z1(t);λ

l − θlη1z1(t))da, (33)

≥ (h(t), λ− θη1z1(t))Q.

2∑
l=1

(θ̇lη2z2(t), λ
l − θlη2z2(t))H + ⟨Kl∇θlη2z2(t),∇(λl − θlη2z2(t))⟩H,

−⟨Mlε(ul
η2
(t)), λl − θlη2z2(t)⟩ −

∫
Γ3

j0θ (θ
l
η2z2(t);λ

l − θlη2z2(t))da, (34)

≥ ⟨h(t), λ− θη2z2(t)⟩Q.

By setting λ = θη2z2(t) in (33) and λ = θη1z1(t) in (34), we combine the two derived
inequalities

1

2
∥ θη1,z1 − θη2,z2 ∥2Q +

(
αKl − c20αjθ

√
µ(Γ3)−

LM + 1

4c

)∫ T

0

∥ θη1z1(s)− θη2z2(s) ∥2Q ds,

≤ c

∫ T

0

(
∥ uη1

(s)− uη2
(s) ∥2V∗

)
ds.

Finally, we conclude that the estimation (32) is verified.
To complete the proof of Theorem (4.1), we consider the following operator:

Λ : L2(0, T ;H×Q∗) → L2(0, T ;H×Q∗)

Λ(η, z) = (Λ1(η, z), (35)

where Λ1 are given for all η, z ∈ L2(0, T ;H×Q∗) and t ∈ (0, T ) by

⟨Λ1(η, z), ε
l(v)⟩ = ⟨Blε(ul

η(t)) +

∫ T

0

Gl(t− s)ul
η(s)ds− Clθlη,z(t), ε

l(v)⟩, (36)

where uη and θη,z are, respectively, the solutions of problems (25) and (26).
We have the following result.

Lemma 4.3 (1) The operator Λ defined by (36) has a unique fixed point.
(2) If u1and u2 are two solutions of (25) and (26) corresponding to (η1, z1) and (η2, z2),
then there exists c > 0 such that, for t ∈ (0, T ),

∥u̇1(t)− u̇2(t)∥V ≤ c(∥η1(t)− η2(t)∥V + ∥u1(t)− u2(t)∥). (37)

Proof. [Proof [ of Lemma 4.3]] Consider (η1, z1) and (η2, z2) ∈ L2(0, T ;H × Q∗),
from the definition of Λ, we get

∥Λ(η1, z1)(t)− Λ(η2, z2)(t)∥2H×Q∗

= ∥Λ1(η1, z1)(t)− Λ1(η2, z2)(t)∥2H×Q∗ + ∥Λ2(η1, z1)(t)− Λ2(η2, z2)(t)∥2H×Q∗ .
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Using the relations (17)-b and the condition in [6], also ui(t) =
∫ T

0
u̇i(s)ds+ u0(t),∀t ∈

(0, T ), we have

∥u1(t)− u2(t)∥V ≤
∫ T

0

∥u̇1(s)− u̇2(s)∥V

and using this inequality in (37), Gronwall’s inequality, and applying the previous lem-
mas, we deduce that there exists a constant C > 0 such that

∥Λ(η1, z1)(t)− Λ(η2, z2)(t)∥2H×Q∗ ≤ c

∫ T

0

∥(η1, η2)− (z1, z2)∥2V∗×Q∗ds.

Finally, the operator Λ has a unique fixed point.
Now, let (η∗, z∗) ∈ L2((0, T ),Hl×Q∗) be the unique solution of the operator Λ (fixed

point for the operator), to demonstrate the solution of theorem (4.1), we considered u =
uη∗ and θ = θη∗,z∗ as the solutions to problems (25) and (26), respectively. Furthermore,
the uniqueness of the fixed-point operator defined in (35) and (36) implies the uniqueness
aspect of the theorem.

5 Numerical Analysis of Problem (P)

Numerical approaches are essential for approximating solutions in practical applications
due to the complexity of the challenges at hand. In this work, we primarily examine
fully discrete approximation systems, in which the temporal and spatial variables are
discretized. The spatial domain is discretized using the finite element method, and the
time derivatives are discretized using finite differences. We establish the existence and
uniqueness of each numerical scheme’s solution and derive optimal order error estimates
for the continuous problem’s solution under specific regularity assumptions.

In this section, we present a fully discrete approach for Problem (PV ), we use the
finite-difference method to approximate the derivative of function. We consider the
uniform partition :0 < t0 < t1 < · · · < tN = T of (0, T ) with a time step-size k = T/N+1
and for each continuous function v, we denote

v(tn) = vn δvn =
vn − vn−1

k
.

Moreover, we apply the finite element method for the spatial discretization. Let Ω be the
polygonal domain, then we consider a regular family of partitions (T h) of Ω̄ into triangles
that are compatible with the partition of the boundary ∂Ω into Γ = Γ1 ∪ Γ2 ∪ Γ3 and
Γ1 ∪ Γ2=Γa ∪ Γb. Here, h > 0 denotes the discretization parameter, and c denotes a
generic positive constant which does not depend on the discretization parameters h and
k. To approximate the spaces V,W and Q, respectively, we introduce the following linear
finite element spaces corresponding to T h:

V h = {vh ∈ C(Ω̄)|vh|T for T ∈ P1(T ), v
h = 0 on Γ1}

Qh = {θh ∈ C(Ω̄)|θh|T for T ∈ P1(T ), θ
h = 0 on Γ1}.

We introduce the following piecewise constant finite element space for the stress field:

Hh = {τh ∈ H|τh|T for T ∈ Rd×d, for T ∈ T h}.

Let uhk
0 = uh

0 ∈ V h and θhk0 = θh0 ∈ Qh be appropriate approximations of the initial
conditions u0, θ0, respectively, such that ∥u0 − uh

0∥ < ch and ∥θ0 − θh0∥ < ch. Hence, the
discrete scheme for Problem (PV ) is given as follows.
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5.1 Problem Phk
V

Find a displacement {uhk
n }Nn=0 ⊂ V h, a temperature {θhkn }Nn=0 ⊂ Qh such that for n =

0, 1, · · · , N , we have

2∑
l=1

⟨Alε(whk
n ), ε(vhn − whk

n )⟩H +
〈
Blε(uhk

n )− Clθhkn , ε(vhn − whk
n )

〉
+〈∫ T

0

Gl(t− s)uhk
n ds, ε(vhn − whk

n )

〉
+

∫
Γ1

(
j0ν(w

hk
νn; v

h
νn − whk

νn) + j0τ (w
hk
τn; v

h
τn − whk

τn)
)
ds

+

∫
Γ1

(
j0ν(w

hk
νn; v

hk
νn − whk

νn) + j0τ (w
hk
τn; v

hk
τn − whk

τn)
)
ds ≥

〈
Fn, v

h
n − whk

n

〉
∀vhn ∈ V h

(38)
2∑

l=1

〈
δθhkn , λh

n − θhkn )
〉
H +

〈
K∇θhkn ,∇(λh

n − θhkn )
〉
H − (Mlε((uhk

n )l(t)), (λh
n)

l − (θhkn )l(t))H

+

∫
Γ3

j0θ (θ
hk
n (t); (λh

n)
l − (θhkn )l(t))da ≥

〈
hn, λ

h
n − θhkn (t)

〉
∀wh

n ∈ Wh.

(39)

Here, the sequences {uhk
n }Nn=0 and {whk

n }Nn=0 are related by the following equalities:

whk
n = δuhk

n and uh
0 + k

n∑
j=0

whk
j n = 1, ...N.

From assumptions (16)−(21), using the same arguments as for Problem (Pv), we conclude
that Problem Phk

V has a unique solution (uhk
n , θhkn ) ⊂ V h.×Qh. It will be derived using

the Céa inequalities for error estimations.

Theorem 5.1 Assume that the conditions in Theorem 4.1 still hold. Consider
(ul, θl) as the approximate solution to Problem PV and (uhk

n , θhkn ) as the solution to
Problem Phk

V . Then for n = 1, . . . , N , the following error estimate holds:

max
1≤n≤N

(
∥wl

n − whk
n ∥2V + ∥ul

n − uhk
n ∥2V

)
≤ C max

1≤n≤N

(
∥wl

n − vhn∥2V + ∥wl
n − vhn∥2L2(Γ3)

)
+ C

N∑
n=1

∥θln − λh
n∥2Q + ∥θln − λh

n∥L2(Γ3)

+C

N−1∑
n=1

∥(θln − λh
n) + (θln+1 − λh

n+1∥+ C
(
∥θ0 − θh0∥2Q + ∥θ1 − λh

1∥2Q + c(h2 + k2)
)
.

Proof. [Proof (of Theorem 5.1)] First, the following equality holds:

2∑
l=1

⟨Alε(wn)−Alε(whk
n ), ε(wn − whk

n )⟩H

=

2∑
l=1

⟨Alε(wn)−Alε(whk
n ), ε(wn − vhn)⟩H + ⟨Alε(wn), ε(v

h
n − wn)⟩H

⟨Alε(wn), ε(wn − whk
n )⟩H + ⟨Alε(whk

n ), ε(whk
n )− ε(vhn)⟩H. (40)
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Furthermore, by taking t = tn and v = whk
n in the inequality (22), we combine the

equality (40) with hypothesis (16) to derive

αAl∥wn − whk
n ∥2V ≤

2∑
l=1

⟨Aε(wn)−Alε(whk
n ), ε(wn − vhn)⟩H + ⟨Alε(wn), ε(v

h
n − wn)⟩H

+⟨Fn, wn − vhn⟩V + ⟨Bl(ε(un)), ε(w
hk
n − wn)⟩H + ⟨Bl(ε(uhk

n )), ε(vhn − whk
n )⟩H

+⟨
∫ T

0

Gl(t− s)unds, ε(w
hk
n − wn)⟩H + ⟨

∫ T

0

Gl(t− s)uhk
n ds, ε(vhn − whk

n )⟩H

−⟨Clθn, ε(w
hk
n − wn)⟩H − ⟨Clθhkn , ε(vhn − whk

n )⟩H

+

∫
Γ3

j0ν(wnν ;w
hk
nν − wnν) + j0ν(w

hk
nν ; v

h
nν − whk

nν)da

+

∫
Γ3

j0τ (wnτ ;w
hk
nν − wnν) + j0τ (w

hk
nτ ; v

h
nν − whk

nν)ds.

We start with the integration factor for all n = 1, ..., N, using the results in [3], we have

⟨
∫ tn

0

Gl(tn − s)uhk
n ds, ε(vhn − wn)⟩H

+⟨
∫ T

0

Gl(t− s)unds−
∫ tn

0

Gl(tn − s)uhk
n ds, ε(whk

n − wn)⟩H

≤ ck2 + ck

N∑
n=0

∥uhk
n − un∥2H.

(41)

Next, we use the hypotheses (16)− b, (17)− b, (19)− d, (20)− d,(41) and [6] to find

αAl∥wl
n − whk

n ∥2V ≤ LAl∥wl
n − whk

n ∥V∥wn − vhn∥V
+LBl(∥un − uhk

n ∥V)(∥wn − whk
n ∥V + ∥wl

n − vhn∥V)
+S1(un, θn) + I1(w

hk
n , wn, v

h
n) + LMl∥θln − θhkn ∥Q(∥wl

n − whk
n ∥V

+∥wl
n − vhn∥V) + c20

√
µ(Γ3)(αjν + αjτ )∥wl

n − whk
n ∥2V,

where S1 and I1 are given by

S1(un, θn) = ⟨Aε(wn), ε(v
h
n − wn)⟩H + ⟨B(ε(un), ε(v

h
n − wn)⟩H

−⟨Cθn, ε(vhn − wn)⟩H + ⟨Fn, wn − vhn⟩V

I1(w
hk
n , wn, v

h
n) =

∫
Γ3

j0ν(w
hk
nν ; v

h
n − wn)da+

∫
Γ3

j0τ (w
hk
nτ ; v

h
n − wnν)da.

We further assume that jν(x, .) and jτ (x, .) are c-locally Lipschtiz on R and Rn, respec-
tively for (a.e.) x ∈ Γ3, where the Lipschitiz constant c > 0 is independent of x. Hence,
we have

j0ν(w
hk
nν ; v

h
nν − wnν) ≤ c∥wn − vhn∥L2(Γ3) and j0τ (w

hk
nτ ; v

h
n − wnν) ≤ ∥wn − vhn∥L2(Γ3).

Then it should be concluded that

I1(w
hk
n , wn, v

h
n) ≤ c∥wn − vhn∥L2(Γ3).



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 25 (2) (2025) 171–186 183

Next, we multiply (7) by an arbitrary element v ∈ V , and then we conclude

S1(un, θn) =

∫
Γ3

σν.(vhn − wn)da ≤ c∥σ∥∥wn − vhn∥L2(Γ3) ≤ c∥wn − vhn∥L2(Γ3). (42)

Additionally, use the Cauchy inequality so that for ϵ > 0, we deduce

(αAl − c20
√
µ(Γ3)(αjν + αjτ )− 5ϵ)∥wl

n − whk
n ∥2V (43)

≤ c(∥wl
n − vhn∥2V + ∥ul

n − uhk
n ∥2V + ∥θln − θhkn ∥2Q + ∥wl

n − vhn∥L2(Γ3)).

Moreover, using results in [10], we have

∥un − uhk
n ∥2V ≤ c(h2 + k2) + ck

n∑
i=1

∥wi − whk
i ∥2V. (44)

We combine (43), (44) so that

∥wn − whk
n ∥2V (45)

≤ C
(
∥wn − vhn∥2V + ∥θn − θhkn ∥2Q + ∥wn − vhn∥L2(Γ3)

)
+c(h2 + k2) + ck

n∑
i=1

∥wi − whk
i ∥2V.

Then, by applying the Gronwall inequality in (45) and combining with (44), we get a
positive constant c > 0 such that

∥wn − whk
n ∥2V + ∥un − uhk

n ∥2V ≤ c(∥wn − vhn∥2V

+∥θn − θhkn ∥2Q + ∥wn − vhn∥L2(Γ3)) + c(h2 + k2) + ck

n∑
i=1

∥wi − whk
i ∥2V.

For simplification, let us consider

en = ∥wl
n − whk

n ∥2V + ∥ul
n − uhk

n ∥2V
gn = ∥wl

n − vhn∥2V + ∥θln − θhkn ∥2Q∥wn − vhn∥L2(Γ3) + h2 + k2.

There exists a positive constant c > 0 such that (en ≤ cgn + c
∑n

j=0 ej) with c > 0.

Therefore, we use the assumption for Kl in [6] to get

2∑
l=1

αKl∥θln − θhkn ∥2Q

≤
2∑

l=1

⟨Kl∇θn −K∇θhkn ,∇(θn − λh
n)⟩Hl + ⟨Kl∇θn,∇(λh

n − θn)⟩Hl

+ ⟨Kl∇θn,∇(θn − θhkn )⟩H + ⟨Kl∇θhkn ,∇(θhkn − λh
n)⟩Hl .

Taking t = tn and λ = θhkn in the inequality (3.32) , we use (39) to get

2∑
l=1

⟨Kl∇θhkn ,∇(θhkn − λh
n)⟩Hl ≤

2∑
l=1

⟨δθhkn , λh
n − θhkn ⟩Hl − ⟨Mlε(uhk

n ), λh
n − θhkn ⟩Hl

+⟨ξ∇φhk
n , λh

n − θhkn ⟩Hl +

∫
Γ3

j0θ (θ
hk
n ;λh

n − θhkn )da+ ⟨hn, θ
hk
n − λh

n⟩Q.
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Now, we deduce the following estimation:

2∑
l=1

αKl∥θln − θhkn ∥2Q + ⟨δθln − δθhkn , θln − θhkn ⟩ ≤
2∑

l=1

c(∥θln − λh
n∥2Q

+∥ul
n − uhk

n ∥2V) + ⟨δθhkn − δθln, λ
h
n − θln⟩Hl + S2(u

l
n, θ

l
n) + I2(θ

hk
n , θln, λ

h
n), (46)

where the quantities S2 and I2 are given by the expressions below:

S2(u
l
n, θ

l
n) = ⟨θ̇ln, λh

n − θln⟩Hl + ⟨Kl∇θln,∇(λh
n − θln)⟩Hl − ⟨Mlε(ul

n), λ
h
n − θln⟩Hl

+⟨hn, θ
l
n − λh

n⟩Hl

and

I2(θ
hk
n , θln, λ

h
n) =

∫
Γ3

j0θ (θ
hk
n ;λh

n − θn)da.

Then, by the same method as for (42), we can deduce that

S2(un, θn) ≤ c∥θn − λh
n∥L2(Γ3). (47)

We have that jθ(x, ) is locally Lipschitz on R for (a.e) x ∈ Γ3 for the positive Lipschitz
constant c > 0 independent of x. Then we have

I2(θ
hk
n , θn, λ

h
n) ≤ c∥θn − λh

n∥L2(Γ3), (48)

we use the inequalities (46),(47) and (48) and the formula

2⟨a− b, a⟩ = ∥a− b∥2 + ∥a∥2 − ∥b∥2

such that a = θn − θhkn and b = θn−1 − θhkn−1, we get

1

2k
(∥θn − θhkn ∥2Q − ∥θn−1 − θhkn−1∥2Q) ≤ ⟨δθn − δθhkn , θn − θhkn ⟩H. (49)

Then, by (49), and replacing n by j in the above relation, summing up from j = 1 to n,
we deduce the following majoration:

2k

n∑
j=0

⟨δθhkj − δθj , λ
h
n − θj⟩H ≤ c∥θn − θhkn ∥2Q + ∥θn − λhk

n ∥2Q + ∥θ0 − θh0∥

+c∥θ1 − λh
1∥2Q +

k

2

n−1∑
j=1

∥θj − θhkj ∥2Q +
2

k

n−1∑
j=1

∥(θj − λj)− (θj+1 − λj+1)∥L2(Ω).

For simplification, we note en = ∥θln − θhkn ∥2Q + 2kαKl

∑n
j=1 ∥θj − θhkj ∥2Q and

gn = k

n∑
j=1

{∥θj − λj∥2Q + ∥uj − uhk
j ∥2V + ∥φj − φhk

j ∥2Q + ∥θj − λh
j ∥L2(Γ3)}

+
1

k

n−1∑
j=1

∥(θj − λh
j )− (θj+1 − λh

j+1)∥L2(Ω) + ∥θ0 − θh0∥2Q + ∥θ1 − λh
1∥2Q + ∥θn − λh

n∥2Q.
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Then there exists a positive constant c > 0 such that en ≤ cgn + c
∑n

j=1 ej . We use the
Gronwall inequality and the estimations (44) to deduce

∥wn − whk
n ∥2V + ∥un − uhk

n ∥2V + ∥θn − θhkn ∥2Q

≤ C
(
∥wn − vhn∥2V + ∥wn − vhn∥L2(Γ3)

)
+

n∑
j=1

(
∥θj − λh

j ∥2Q + ∥θj − λh
j ∥L2(Γ3)

)
+

n−1∑
j=1

∥(θj − λh
j )− (θj+1 − λh

j+1)∥2L2(Ω) +

n∑
j=1

(
∥wj − whk

j ∥2V + ∥uj − uhk
j ∥2V + ∥θj − θhkj ∥2Q

)
+ ∥θ0 − θh0∥2Q + ∥θ1 − θh1∥2Q + c(h2 + k2).

(50)
Now let us consider the following quantities:

en = ∥wn − whk
n ∥2V + ∥un − uhk

n ∥2V + ∥θn − θhkn ∥2Q

gn = ∥wn − vhn∥2V + ∥wn − vhn∥L2(Γ3) +

n∑
j=1

(∥θj − λh
j ∥2Q + ∥θj − λh

j ∥L2(Γ3))

+

n−1∑
j=1

∥(θj − λh
j )− (θj+1 − λh

j+1)∥2L2(Ω) + ∥θ0 − θh0∥2Q + ∥θ1 − θh1∥2Q + h2 + k2.

Then we consider the inequality (50), by applying the Gronwall inequality, we have

∥w2
n − whk

n ∥2V + ∥u2
n − uhk

n ∥2V + ∥θn − θhkn ∥2Q

≤ c(∥wl
n − vhn∥2V + ∥wn − vhn∥L2(Γ3) +

n∑
j=1

(∥θj − λh
j ∥|2Q + ∥θj − λh

j ∥L2(Γ3))

+

n−1∑
j=1

∥(θj − λh
j )− (θj+1 − λh

j+1)∥2L2(Ωl) + ∥θ0 − θh0∥2Q + ∥θ1 − θh1∥2Q) + c(h2 + k2).

(51)

Finally, we use (51) to derive the estimation of Theorem 5.1.

6 Concluding Remarks

This paper has explored a contact problem concerning thermo-viscoelastic materials with
memory effects over time. We developed a variational formulation for the model and es-
tablished the existence and uniqueness of a weak solution. Furthermore, an error analysis
was conducted, highlighting the discrepancy between the weak solution and its numerical
approximation, which underpins the reliability of the numerical methods employed. The
validity of the theoretical results was confirmed through numerical simulation, showcas-
ing the practicality of the proposed approach. Future research will focus on refining the
model to accommodate more complex boundary conditions and on investigating further
applications in industrial contexts. In conclusion, the presented model provides a ro-
bust framework for analyzing contact problems in thermo-viscoelastic materials, offering
potential benefits in various engineering domains.
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