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introduce an intracellular delay to take into account the incubation period of the
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show that the intracellular delay has no effect on the quiescent cells but reduces the
viral load.
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1 Introduction

In 1984, researchers discovered the primary causative viral agent of AIDS, called the
human immunodeficiency virus type 1 (HIV-1). HIV-1 belongs to the family of retro-
viruses, whose genetic material is RNA. HIV-1 is transmitted by direct inoculation during
unsafe sexual contact, transfusion of contaminated blood or blood products, sharing of
contaminated needles [2–4].

There are two ways in which viruses move between cells, which are known as cell-free
and cell-to-cell infections. In order to eradicate the virus, antiretroviral drug therapy
(ART) involves the simultaneous administration of two or more antiviral drugs [5–8].

Recently, some clinical studies conducted in vivo showed that infections originating
from cell-to-free virus decrease strongly in the presence of certain antiretrovirals, whereas
infections involving cell-to-cell spread are markedly less sensitive to the drugs. Different
mathematical models have been used to study the dynamics of HIV infection including
these two transmission pathways [8].

In a previous paper, Kouche et al. [1] proposed the following model:

dQ(t)

dt
= λ+ ρT (t)− αQ(t)− µQQ(t),

dT (t)

dt
= αQ(t)− (1− η)γT (t)VI(t)− ρT (t)− µTT (t),

dT ∗(t)

dt
= (1− η)γT (t)VI(t)− µT∗T ∗(t),

dVI(t)

dt
= ωµT∗πT ∗(t)− µV VI(t),

(1)

which incorporated a class called quiescent cells Q, which are a class of CD4+ cells of
the immune system that cannot be infected by the virus. In this model, it was assumed
that the immune system maintains activated the quiescent cells at a rate α and returns
to the quiescent state at a rate ρ.

In this paper, our aim is to highlight the combined transmission effect of both cell-
free and cell-to-cell virus spreadings through a new model derived from model (1) and
including reverse transcriptase inhibitors (RTI) for both transmission pathways. We
assume that the transmission spreads from infected cells and free virus to only activated
cells through direct contact. Denote by Q the compartment of quiescent cells, T are the
healthy activated cells, T ∗ are the infected cells, VI is the free infectious virus and VNI

is the non infectious virus. Then the model we propose is

dQ(t)

dt
= λ+ ρT (t)− αQ(t)− µQQ(t),

dT (t)

dt
= αQ(t)− (1− η1)γT (t)VI(t)− (1− η2)βT (t)T

∗(t)− ρT (t)− µTT (t),

dT ∗(t)

dt
= (1− η1)γT (t)VI(t) + (1− η2)βT (t)T

∗(t)− µT∗T ∗(t),

dVI(t)

dt
= ωµT∗πT ∗(t)− µV VI(t),

dVNI(t)

dt
= (1− ω)µT∗πT

∗(t)− µV VNI(t),

(2)

where t > 0 is the time. λ is the rate at which new quiescent cells are produced.
The death rates of quiescent cells, healthy cells, infected cells and virus are denoted
by µQ, µT , µT∗ , µV , respectively. As in model (1), we denote by α the activation rate
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of Q cells and by ρ the rate of reversion to the quiescent state. β denotes the rate of
transmission of the infection by cell-to-cell mode. π is the number of virions produced
per one infected cell.

From a mathematical point of view, the use of RTIs will reduce the force of trans-
mission of infection via cell-free and cell-to-cell channels through the parameters η1 and
η2 which represent the drug effectiveness for both cell-free and cell-to-cell infections,
respectively.

In Section 2, we compute the basic reproduction number R0 of model (2) and we
find that R0 is the sum of the basic reproduction number R01 determined by cell-free
virus infection and that determined by cell-to-cell infection R02. Further, the local and
global stability analysis of both free and endemic steady states is given in terms of R0.
In Section 3, we introduce a delay τ in model (2), which represents the incubation period
of the infection. We give the local and global stability analysis of the delay model for
both free and endemic steady states. In Section 4, we give some numerical simulations
and determine the region of eradication of the infection with respect to the effectiveness
of the RTIs drugs. Our simulation results demonstrate that the delay has no effect on
the quiescent cells Q but reduces the peak of the viral load and expands the eradication
region of the infection. Further, we find that the cell-to-cell infection is less sensitive
to RTI drugs than the cell-free one, which allows us to think that cell-to-cell spread
is probably an important factor which leads to therapy failure and contributes to the
persistence of the viral load. Finally, we end the paper by a conclusion.

2 The ODE Model

2.1 Local stability of equilibria

Since the four first equations in system (2) do not depend on the last equation, the system
can be reduced to the following one:

dQ(t)

dt
= λ+ ρT (t)− αQ(t)− µQQ(t),

dT (t)

dt
= αQ(t)− (1− η1)γT (t)VI(t)− β(1− η2)T (t)T

∗(t)− ρT (t)− µTT (t),

dT ∗(t)

dt
= (1− η1)γT (t)VI(t) + β(1− η2)T (t)T

∗(t)− µT∗T ∗(t),

dVI(t)

dt
= ωµT∗πT ∗(t)− µV VI(t).

(3)

We can see that system (3) has one free steady state E0 = (Q0, T0, 0, 0) given by

Q0 =
λ (ρ+ µT )

αµT + ρµQ + µQµT
, T0 =

αλ

αµT + ρµQ + µQµT
.

First, we compute the basic reproduction number R0 of model (3) by using the method
of the next-generation matrix [9]. Therefore

R0 = R01 +R02,

where R01 = ωπ(1−η1)γT0

µV
and R02 = β(1−η2)T0

µT∗ are the basic reproduction numbers
corresponding to virus-to-cell infection and cell-to-cell transmission, respectively.



190 MERIEM LAMRAOUI, BILAL BOULFOUL AND MAHIÉDDINE KOUCHE

Clearly, if R0 > 1, then system (3) has one positive endemic equilibrium
E =

(
Q,T , T ∗, VI

)
with

Q =
λ ((1− η1) γωπµT∗ + β(1− η2)µV ) + ρµV µT∗

(α+ µQ) ((1− η1) γωπµT∗ + β(1− η2)µV )
,

T =
µV µT∗

((1− η1) γωπµT∗ + β(1− η2)µV )
,

T ∗ =
αλ

µT∗ (α+ µQ)

(
1− 1

R0

)
, VI =

αλωπ

µV (α+ µQ)

(
1− 1

R0

)
.

The characteristic equation of system (3) around (Q,T, T ∗, VI) is given by

P (ζ) = (ζ + α+ µQ) [(ζ + (1− η1) γVI + β(1− η2)T
∗ + ρ+ µT )

×{(ζ − β(1− η2)T + µT∗) (ζ + µV )− ωπµT∗ (1− η1) γT}
+β(1− η2)T (ζ + µV ) ((1− η1) γVI + β(1− η2)T

∗)
+ωπµT∗ (1− η1) γT ((1− η1) γVI + β(1− η2)T

∗)]
−αρ {(ζ − β(1− η2)T + µT∗) (ζ + µV )− ωπµT∗ (1− η1) γT} .

(4)

Theorem 2.1

(i) If R0 < 1, then the free equilibrium E0 is locally asymptotically stable.

(ii) If R0 > 1, then E0 is unstable.

Proof. The characteristic polynomial P (ζ) at E0 = (Q0, T0, 0, 0) takes the form

P (ζ) ={ζ2 + (α+ µQ + ρ+ µT ) ζ + αµT + ρµQ + µQµT }

×
{
ζ2 + µT∗

(
µV

µT∗
+ 1− β(1− η2)T0

µT∗

)
ζ + µV µT∗ (1−R0)

}
.

(5)

If R0 < 1, we have

(
1− β(1− η2)T0

µT∗

)
≥ (1−R0) > 0. Then all the coefficients of the

two polynomials are positive, and by the Routh-Hurwitz theorem, we conclude that all
roots of (5) have negative real parts. Hence E0 is locally asymptotically stable.
If R0 > 1, since

P (0) = µV µT∗ ((α+ µQ)µT + ρµQ) (1−R0) < 0,

further P (ζ) → +∞ as ζ → +∞, by continuity, we conclude that P has at least one
positive real root. Thus E0 is unstable. We now turn to prove the local stability of the
endemic equilibrium E.

Theorem 2.2 Assume that

(1− η1)γωπµT∗ + β(1− η2)µV > βµT∗ .

Then if R0 > 1, the endemic equilibrium E =
(
Q,T,T ∗, VI

)
is locally asymptotically

stable.

Proof. The characteristic polynomial P (ζ) at E =
(
Q,T , T

∗
, VI

)
has the form

P (ζ) = ζ4 + a1ζ
3 + a2ζ

2 + a3ζ + a4,
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where

a1 =

[
α+ µQ + ρ+ µT +

(
αλωπ (1− η1) γµT∗ + αλβ(1− η2)µV

µT∗µV (α+ µQ)

)
×(

1− 1

R0

)]
+

[(
µT∗ + µV − β

µT∗µV

(1− η1) γωπµT∗ + β(1− η2)µV

)]
,

a2 =

[(
αλωπ (1− η1) γµT∗ + αλβ(1− η2)µV

µV µT∗

)(
1− 1

R0

)
+ µT (α+ µQ) + ρµQ

]
+

[
µT∗ + µV − β(1− η2)

µT∗µV

(1− η1) γωπµT∗ + β(1− η2)µV

]
×
[
α+ µQ + ρ+ µT +

(
αλωπ (1− η1) γµT∗ + αλβ(1− η2)µV

µT∗µV (α+ µQ)

)
×
(
1− 1

R0

)
+
αλβ(1− η2)

(α+ µQ)

(
1− 1

R0

)]
,

a3 =

[
µT∗ + µV − β(1− η2)

µT∗µV

(1− η1) γωπµT∗ + β(1− η2)µV

]
×
[(

αλωπ (1− η1) γµT∗ + αλβ(1− η2)µV

µT∗µV

)(
1− 1

R0

)
+ µT (α+ µQ) + ρµQ

]
+

[(
αλωπ (1− η1) γµT∗ + αλβ(1− η2)µV + α2λβ(1− η2) + αλβ(1− η2)µQ

(α+ µQ)

)
×(

1− 1

R0

)]
,

a4 = (αλωπ (1− η1) γµT∗ + αλβ(1− η2)µV )

(
1− 1

R0

)
.

We prove that

∆i > 0, i = 1, 2, 3, 4,

where

∆1 = a1,∆2 = a1a2 − a3,∆3 = a3∆2 − a21a4,∆4 = a4∆3.

Thus, by the Routh-Hurwicz theorem, E is locally asymptotically stable.

2.2 Global dynamics of the model

In this section, we focus our attention on the global stability of both free and endemic
steady states of system (3). We first prove the existence of a compact absorbing set for
system (3). Define the set

G =

{
(Q,T, T ∗, VI) ∈ R4

+ : Q+ T + T ∗ ≤ λ

µ
andVI ≤ λωπµT∗

µµV

}
,

where µ = min (µQ, µT , µT∗) .

Proposition 2.1 For any positive solution (Q (t) , T (t) , T ∗ (t) , VI (t)) of system (3),
we have

(i) lim sup
t→+∞

F (t) ≤ λ

µ
, lim sup

t→+∞
VI (t) ≤

λωπµT∗

µµV
, where F (t) = Q (t) + T (t) + T ∗ (t).
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(ii) lim inf
t→+∞

Q (t) ≥ m1, lim inf
t→+∞

T (t) ≥ m2, where

m1 =
λ

α+ µQ
, m2 =

αλ

(α+ µQ)

(
(1− η1) γ

λωπµT∗

µµV
+
λ

µ
+ ρ+ µT

) .
We now turn to prove the global stability of the free steady state E0.

Theorem 2.3 If R0 < 1, then the free steady state E0 is globally asymptotically
stable.

Proof. We first prove that the set

B =
{
(ϕ, ψ, θ, ξ) ∈ R4

+ : ϕ ≤ Q0, ψ ≤ T0
}

is positively invariant for the system (3). Let (Q(t), T (t), T ∗(t), VI(t)) be a positive
solution of system (3). As we have

dQ

dt
= λ+ ρT − αQ− µQQ,

dT

dt
≤ αQ− ρT − µTT.

Define the linear cooperative system

dQ̃

dt
= λ+ ρT̃ − αQ̃− µQQ̃,

dT̃

dt
= αQ̃− ρT̃ − µT T̃ .

(6)

By the comparison principle, we have

Q (t) ≤ Q̃ (t) , T (t) ≤ T̃ (t) (7)

for all t > 0. Further, since (6) is cooperative, it follows that Q̃ (t) ≤ Q0 and T̃ (t) ≤ T0
for all solution (Q̃, T̃ ) of system (6) such that Q̃(0) ≤ Q0 and T̃ (0) ≤ T0. By inequality
(7), we conclude that

Q (t) ≤ Q0, T (t) ≤ T0

for all t > 0 such that Q(0) ≤ Q0 and T (0) ≤ T0. Define now the function

ϖ (t) = T ∗ +
(1− η1) γ

µV
T0VI .

Since R0 < 1, the derivative of ϖ along the trajectories of (3) gives

dϖ

dt
= (1− η1) γTVI + β(1− η2)TT

∗ − µT∗T ∗ (t) +
ωπ (1− η1) γµT∗

µV
T0T

∗

− (1− η1) γT0VI

≤ β(1− η2)T0T
∗ − µT∗T ∗ (t) +

ωπ (1− η1) γµT∗

µV
T0T

∗

= µT∗ (R0 − 1)T ∗ < 0,

(8)
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ϖ is then a Lyapunov function on B. Define now the following set:

E =

{
(ϕ, ψ, θ, ξ) ∈ B :

dϖ

dt
(ϕ, ψ, θ, ξ) = 0

}
,

and denote by M the largest set in E which is invariant with respect to system (3).
It is clear that (Q0, T0, 0, 0) ∈ M, and thus M is not empty. Let (ϕ, ψ, θ, ξ) ∈ M and
denote by (Q (t) , T (t) , T ∗ (t) , VI (t)) the corresponding solution. By the invariance of

M ,
dϖ

dt
= 0, and by (8), T ∗ (t) = 0 for all t > 0. The fourth equation of (3) implies then

that VI (t) → 0 as t → +∞ and hence Q (t) → Q0, T (t) → T0 as t → +∞. Now, by
the invariance of M, Q (t) = Q0, T (t) = T0. Therefore, M = {E0} . Finally, since E0

is locally asymptotically stable, the LaSalle invariance principle [10] implies that E0 is
globally asymptotically stable. To prove the global stability of the endemic steady state
E, we use the method of the Lyapunov function. To this end, we define

A = αQ0 > 0,

B = ρT
Q

m1
− ρm2

Q

Q0
− αm1 − µTm2 + β(1− η2)M1T + µTT +

αλ

(α+ µQ)
+

+
αλωπ (1− η1) γT

2

m2µV (α+ µQ)
,

C = − αλ

(α+ µQ)
− αλωπ (1− η1) γT

2

m2µV (α+ µQ)
< 0.

Theorem 2.4 Assume that R0 > 1. Then E =
(
Q,T,T ∗, VI

)
is globally asymptoti-

cally stable if
−B −

√
B2 − 4AC

2A
≤ R0 ≤ −B +

√
B2 − 4AC

2A
.

Proof. Define the Lyapunov function as

L =

(
Q−Q−Q ln

Q

Q

)
+

(
T − T − T ln

T

T

)
+

(
T ∗ − T ∗ − T

∗
ln
T ∗

T ∗

)
+

(1− η1) γ

µV
T

(
VI − V I − V I ln

VI

V I

)
.

It follows from system (3) that

·
L =

·
Q

(
1− Q

Q

)
+

·
T

(
1− T

T

)
+

·
T ∗

(
1− T

∗

T ∗

)
+

(1− η1) γ

µV
T

·
VI

(
1− VI

VI

)
= (λ+ ρT − αQ− µQQ)

(
1− Q

Q

)
+ (αQ− (1− η1) γTVI − β(1− η2)TT

∗

−ρT − µTT )

(
1− T

T

)
+ ((1− η1) γTVI + β(1− η2)TT

∗ − µT∗T ∗)(
1− T ∗

T ∗

)
+

(1− η1) γ

µV
T (ωµT∗πT ∗ − µV VI)

(
1− VI

VI

)
,

(9)
as

λ = (α+ µQ)Q− ρT ,
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since E is a steady state of system (3) and µT∗T ∗ =
µV

ωπ
VI , and T =

µV µT∗

(1− η) γωπµT∗ + µV β
, we obtain from the precedent equation that

·
L = − (α+ µQ)Q

(
1− Q

Q

)2

+ αQ

(
2− T

T
− T

T

)
+

(
(1− η1) γωπµT∗

(1− η1) γωπµT∗ + µV β(1− η2)
− 1

)
µT∗T ∗ + (1− η1) γTVI(

3− TVIT ∗

TVIT ∗
− T ∗VI

T ∗VI
− T

T

)
+ ρT

Q

Q
− ρT

Q

Q

−αQ+ αQ
T

T
− µTT + β(1− η2)TT

∗ + µTT − β(1− η2)TT ∗ + µT∗T ∗

−2 (1− η1) γTVI + (1− η1) γTVI
T
T .

(10)

As

2− T

T
− T

T
≤ 0, 3− TVIT ∗

TVIT ∗
− T ∗VI

T ∗VI
− T

T
≤ 0,

we obtain

·
L ≤ ρT

Q

Q
− ρT

Q

Q
− αQ+ αQ

T

T
− µTT + β(1− η2)TT

∗ + µTT

−β(1− η2)TT ∗ + µT∗T ∗ − 2 (1− η1) γTVI + (1− η1) γTVI
T

T
.

(11)

Let ϵ > 0 be chosen later. Proposition 2.1 implies that there is Tϵ > 0 such that

mϵ
1 = m1 − ϵ ≤ Q (t) ≤ Q0 + ϵ = Qϵ

0,
mϵ

2 = m2 − ϵ ≤ T (t) ≤ T0 + ϵ = T ϵ
0 ,

T ∗ (t) ≤M1 + ϵ =M ϵ
1 , t ≥ Tϵ.

(12)

By (11) and (12), we obtain

·
L ≤ ρT

Q

mϵ
1

− ρmϵ
2

Q

Qϵ
0

− αmϵ
1 + αQϵ

0

T ϵ
0

T
− µTm

ϵ
2

+β(1− η2)M
ϵ
1T + µTT + µT∗T ∗ +

1

mϵ
2

(1− η1) γT
2
VI .

(13)

Since
T0

T
= R0 and (1− η1) γTVI =

(1− η)αλωπγ

µV (α+ µQ)
T

(
1− 1

R0

)
, we can derive from

(13) that

·
L ≤ ρT

Q

mϵ
1

− ρmϵ
2
Q

Qϵ
0

− αmϵ
1 + αQϵ

0

(
R0 +

ϵ

T

)
− µTm

ϵ
2 + (1− η2)βM

ϵ
1T

+µTT +
αλ

(α+ µQ)

(
1− 1

R0

)
+

αλωπ (1− η1) γT 2

mϵ
2µV (α+ µQ)

(
1− 1

R0

)
≤ 1

R0

[
αQϵ

0R0

(
R0 +

ϵ

T

)
+

(
ρT

Q

mϵ
1

− ρmϵ
2
Q

Qϵ
0

− αmϵ
1 − µTm

ϵ
2 + (1− η2)βM

ϵ
1T

+µTT +
αλ

(α+ µQ)
+

αλωπ (1− η1) γT 2

mϵ
2µV (α+ µQ)

)
R0 −

αλ

(α+ µQ)
− αλωπ (1− η1) γT 2

mϵ
2µV (α+ µQ)

]
.
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By the hypothesis of Theorem 2.4, we have AR2
0 + BR0 + C < 0. Then we can choose

ϵ > 0 small enough so that
·
L ≤ 0

for t ≥ Tϵ. Further, by (10),
·
L = 0 if and only if Q = Q, T = T , T ∗ = T ∗, VI = VI , the

LaSalle invariance principle [10] implies that E is globally asymptotically stable.

3 The Delay Model

To take into account the incubation period of the infection, we modify, in this section,
the model (3) by introducing a discrete delay τ by assuming that cells become infected
τ times after initial infection. To this end, we propose the following system:

dQ (t)

dt
= λ+ ρT (t)− αQ (t)− µQQ (t) ,

dT (t)

dt
= αQ (t)− (1− η1) γT (t)VI (t)− β(1− η2)T (t)T ∗ (t)− ρT (t)− µTT (t) ,

dT ∗ (t)

dt
= e−τm (1− η1) γT (t− τ)VI (t− τ) + e−τmβ(1− η2)T (t− τ)T ∗ (t− τ)

−µT∗T ∗ (t) ,
dVI (t)

dt
= ωµT∗πT ∗ (t)− µV VI (t)

(14)
with the initial conditions

Q (θ) = ϕ1 (θ) , T (θ) = ϕ2 (θ) , T ∗ (θ) = ϕ3 (θ) ,

VI (θ) = ϕ4 (θ) , θ ∈ [−τ, 0] ,
(15)

where ϕi ∈ C ([−τ, 0] ,R+) with ϕi (0) > 0, i = 1, 2, 3, 4. It is well known by the theory of
functional differential equations [11] that system (14)-(15) has a unique positive solution
(Q(t), T (t), T ∗(t), VI(t)) defined for all t > 0. As in the ODE model, it is easy to see that
system (14) has one free steady state E0 = (Q0, T0, 0, 0),

Q0 =
λ(ρ+ µT )

αµT + ρµQ + µQµT
, T0 =

αλ

αµT + ρµQ + µQµT
.

The basic reproduction number is then given by (see [12])

R0 =
β(1− η2)µV e

−τm + ωπµT∗ (1− η1) γe
−mτ

µT∗µV
T0. (16)

If R0 > 1, system (14) has the endemic steady state E =
(
Q,T , T ∗, VI

)
given by

Q =
λ (ωπµT∗ (1− η1) γe

−τm + β(1− η2)µV e
−τm) + ρµT∗µV

(α+ µQ) (ωπµT∗ (1− η1) γe−τm + β(1− η2)µV e−τm)
,

T =
µT∗µV

ωπµT∗ (1− η1) γe−τm + β(1− η2)µV e−τm
,

T ∗ =
αλe−τm

µT∗ (α+ µQ)

(
1− 1

R0

)
, VI =

αλωπe−τm

µV (α+ µQ)

(
1− 1

R0

)
.

(17)
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3.1 Local stability of equilibria

3.1.1 Local stability of the free equilibrium

The characteristic equation of system (14) around E = (Q,T, T ∗, VI) is

P (ζ) = [(ζ + α+ µQ)(ζ + (1− η1) γVI + β(1− η2)T
∗ + ρ+ µT )− αρ]

×
[(
ζ − β(1− η2)Te

−τme−ζτ + µT∗
)
(ζ + µV )− ωπµT∗(1− η1)γTe

−τme−ζτ
]

+(ζ + α+ µQ)
{
β(1− η2)T

(
(1− η1)γVIe

−mτe−ζτ + β(1− η2)T
∗e−τme−ζτ

)
(ζ + µV ) +ωπµT∗(1− η1)γT

(
(1− η1)γVIe

−mτe−ζτ + β(1− η2)T
∗e−τme−ζτ

)}
.

(18)

Theorem 3.1 1. If R0 < 1, the free steady state E0 is locally asymptotically stable
for all τ ≥ 0.

2. If R0 > 1, E0 is unstable for all τ ≥ 0.

Proof. At E0 = (Q0, T0, 0, 0), the characteristic equation (18) takes the form

P (ζ) =
[
ζ2 + (α+ µQ + ρ+ µT ) ζ + αµT + ρµQ + µQµT

]
×[(

ζ − β(1− η2)T0e
−τme−ζτ + µT∗

)
(ζ + µV )− ωπµT∗(1− η1)γT0e

−τme−ζτ
]

= 0.

All the coefficients of the polynomial

ζ2 + (α+ µQ + ρ+ µT ) ζ + αµT + ρµQ + µQµT = 0 (19)

are positive, then by the Routh-Hurwitz theorem, we conclude that the equation (19)
has two roots with negative real parts. The other roots are determined by the solutions
of the quadratic polynomial

ζ2 + µT∗

(
µV

µT∗
+ 1− β(1− η2)µV T0e

−τm

µT∗µV
e−ζτ

)
ζ + µT∗µV

(
1−R0e

−ζτ
)
= 0. (20)

Substituting τ = 0 into equation (20), we obtain

ζ2 + µT∗

(
µV

µT∗
+ 1− β(1− η2)µV T0

µT∗µV

)
ζ + µT∗µV (1−R0) = 0. (21)

If R0 < 1, all the coefficients of equation (21) are positive. Then equation (21) has two
roots with negative real parts.

In the case τ > 0, assume that the equation (20) has two purely imaginary roots
ζ = ix (τ) (x > 0) . Separating real and imaginary parts yields

xβ(1− η2)T0e
−τm sin (x (τ) τ) + µT∗µVR0 cos (x (τ) τ) = µV µT∗ − x2,

xβ(1− η2)T0e
−τm cos (x (τ) τ)− µT∗µVR0 sin (x (τ) τ) = (µV + µT∗)x.

Squaring and adding the two equations give

x4 + µ2
T∗

(
µ2
V

µ2
T∗

+ 1−
(
β(1− η2)µV T0e

−τm

µV µT∗

)2
)
x2 + (µV µT∗)

2 (
1−R2

0

)
= 0. (22)
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If R0 < 1, then 1 −
(

β(1−η2)µV T0e
−τm

µV µT∗

)2
>
(
1−R2

0

)
> 0, so equation (22) cannot have

positive roots and equation (20) cannot have a purely imaginary root. By the general
theory of delay differential equations, all roots of (20) have negative real parts provided
that R0 < 1 and E0 is locally asymptotically stable for τ > 0.

If R0 > 1, let f (ζ) = ζ2 +
(
µV + µT∗ − β(1− η2)T0e

−τme−ζτ
)
ζ +

µT∗µV

(
1−R0e

−ζτ
)
. Since f (0) = µT∗µV (1−R0) < 0 and f(ζ) → +∞ as ζ → +∞,

by continuity, we conclude that f (ζ) = 0 has at least one positive real root. Thus E0 is
unstable.

3.1.2 Local stability of the endemic equilibrium

We now turn to prove the local stability of the endemic steady state E. At E, the
characteristic equation (18) of system (14) is reduced to the following form:

P (ζ) +Q (ζ) e−ζτ = 0, (23)

where

P (ζ) = ζ4 + a3ζ
3 + a2ζ

2 + a1ζ + a0, Q (ζ) = b3ζ
3 + b2ζ

2 + b1ζ + b0 (24)

with

a3 = α+ µQ + ρ+ µT + µT∗ + µV + αλ(ωπ(1−η1)γµT∗+β(1−η2)µV )e−τm

µT∗µV (α+µQ)

(
1− 1

R0

)
,

a2 = αλ(ωπ(1−η1)γµT∗+β(1−η2)µV )e−τm

µT∗µV

(
1− 1

R0

)
+ (α+ µQ)µT + ρµQ + µT∗µV

+
(
α+ µQ + ρ+ µT + αλ(ωπ(1−η1)γµT∗+β(1−η2)µV )e−τm

µT∗µV (α+µQ)

(
1− 1

R0

))
(µT∗ + µV ) ,

a1 =
(

αλ(ωπ(1−η1)γµT∗+β(1−η2)µV )e−τm

µT∗µV

(
1− 1

R0

)
+ (α+ µQ)µT + ρµQ

)
(µT∗ + µV )

+ (α+ µQ + ρ+ µT )µT∗µV + αλ(ωπ(1−η1)γµT∗+β(1−η2)µV )e−τm

(α+µQ)

(
1− 1

R0

)
,

a0 = αλ (ωπ (1− η1) γµT∗ + β(1− η2)µV ) e
−τm

(
1− 1

R0

)
+((α+ µQ)µT + ρµQ)µT∗µV ,

b3 = − β(1−η2)µT∗µV

ωπ(1−η1)γµT∗+β(1−η2)µV
,

b2 = −µT∗µV − (α+µQ+ρ+µT )β(1−η2)µT∗µV

ωπ(1−η1)γµT∗+β(1−η2)µV
,

(25)

b1 = − (α+ µQ + ρ+ µT )µT∗µV − ((α+µQ)µT+ρµQ)β(1−η2)µT∗µV

ωπ(1−η1)γµT∗+β(1−η2)µV
,

b0 = − ((α+ µQ)µT + ρµQ)µT∗µV .
(26)

From Theorem 2.2, we know that if R0 > 1 and τ = 0, E is locally asymptotically stable.
To investigate the stability of equation (23), we will apply the following version of the
main theorem of Cooke and Van den Driessche [13].

Proposition 3.1 Assume that P and Q are analytic functions in the right half-plane
Re(ζ) > 0 and satisfy the following conditions:

1. P (ζ) and Q (ζ) have no common imaginary roots;

2. P (−iy) = P (iy) , Q (−iy) = Q (iy) for all y ∈ R;
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3. P (0) +Q (0) ̸= 0;

4. lim sup
|ζ|−→∞, Re(ζ)≥0

(|Q(ζ)/P (ζ)|) < 1;

5. F (y) ≡ |P (iy)|2 − |Q (iy)|2 for the real y has at most a finite number of real roots.

Then the following statements are true:

1. If the equation F (ζ) = 0 has no positive roots, then if (23) is stable at τ = 0, it
remains stable for all τ ≥ 0, whereas if it is unstable at τ = 0, it remains unstable
for all τ ≥ 0.

2. If the equation F (ζ) = 0 has at least one positive root and each root is simple,
in this case, as τ increases, stability switches may occur. There exists a positive
number τ∗ such that (23) is unstable for all τ > τ∗. As τ varies from 0 to τ∗, at
most a finite number of stability switches may occur.

Theorem 3.2 Under the hypothesis of Theorem 2.2, if R0 > 1, the endemic steady
state E is locally asymptotically stable for all τ ≥ 0.

Proof. From Theorem 2.2, we know that if R0 > 1, the infected equilibrium E is
locally asymptotically stable for τ = 0. To show the stability of the equilibrium E, we
need to analyze the existence of positive roots of the following equation:

F (ζ) = y8 +A1y
6 +A2y

4 +A3y
2 +A4, (27)

where

A1 = a23 − 2a2 − b23, A2 = a22 + 2a0 − 2a3a1 − b22 + 2b3b1,

A3 = a21 − 2a2a0 + 2b2b0 − b21, A4 = a20 − b20.

Clearly, equation (27) has no positive real roots if A1, A2, A3 and A4 are all positive. The
coefficients of F (ζ) are non-negative. Thus equation (27) has no positive real roots. By
Theorem 2.2 and Proposition 3.1, the endemic steady state E is locally asymptotically
stable for all τ ≥ 0.

3.2 Global stability

3.2.1 Global stability of the free equilibrium

In this section, we focus our attention on the global stability of both free and endemic
steady states of system (14). Define the set

G =

{
(Q,T, T ∗, VI) ∈ R4

+ : Q+ T + T ∗ ≤ λe−τm

µ
and VI ≤ λωπµT∗e−τm

µµV

}
,

where µ = min(µQ, µT , µT∗). Arguing as in Proposition (2.1), we can prove the following
result.

Proposition 3.2 For any positive solution (Q(t), T (t), T ∗(t), VI(t)) of system (14),
we have the following two assertions:

1. lim supt→+∞ F (t) ≤M1, lim supt→+∞ VI(t) ≤M2,
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2. lim inf
t→+∞

Q(t) ≥ m1, lim inf
t→+∞

T (t) ≥ m2, where

F (t) = Q(t) + T (t) + emτT ∗(t+ τ),M1 = λe−mτ

µ ,

M2 = λωπµT∗e−mτ

µµV
,m1 = λ

α+µQ
,m2 = αm1

βM1+(1−η)γM2+ρ+µT
.

(28)

We have the following stability result about E0.

Theorem 3.3 If R0 < 1, then the free steady state E0 of system (14) is globally
asymptotically stable for all τ ≥ 0.

Proof. Define the set

S =
{
(ϕ1, ϕ2, ϕ3, ϕ4) ∈ C

(
[−τ, 0] ,R4

+

)
: ϕ1 ≤ Q0, ϕ2 ≤ T0

}
,

and let (Q(t), T (t), T ∗(t), VI(t)) be a positive solution of system (14). By the comparison
principle,

Q(t) ≤ Q0, T (t) ≤ T0

for all t ≥ 0 such that Q(0) ≤ Q0 and T (0) ≤ T0. Thus S is a positively invariant set for
system (14). Define the following Lyapunov function:

U (t) = T ∗(t) + (1−η1)γe
−mτ

µV
T0VI(t)

+(1− η1)γe
−mτ

∫ t

t−τ
T (s)VI(s)ds+ β(1− η2)e

−mτ
∫ t

t−τ
T (s)T ∗(s)ds.

The derivatives of U(t) along the trajectories of (14) give, since R0 < 1,

dU
dt (t) = −µT∗T ∗ (t) + ωπ(1−η1)γµT∗e−mτ

µV
T0T

∗ (t)− (1− η1) γe
−mτT0VI (t)

+(1− η1)γe
−mτT (t)VI(t) + β(1− η2)e

−mτT (t)T ∗(t)

≤ β(1− η2)e
−mτT0T

∗(t) + ωπ(1−η1)γµT∗e−mτ

µV
T0T

∗ (t)− µT∗T ∗ (t)

= µT∗ (R0 − 1)T ∗ (t) < 0.

(29)

U is then a Lyapunov function. Define now the set

E =

{
(ϕ, ψ, θ, ξ) ∈ S :

dU

dt
(ϕ, ψ, θ, ξ) = 0

}
,

and denote by M the largest set in E, which is invariant with respect to system (14).
It is clear that (Q0, T0, 0, 0) ∈ M, M is not empty. Let (ϕ, ψ, θ, ξ) ∈ M and de-
note by (Q(t), T (t), T ∗(t), VI(t)) the corresponding solution. By the invariance of M,
(Q(t), T (t), T ∗(t), VI(t) ∈ M for all t > 0, thus dU

dt = 0 and, by (29), T ∗(t) = 0 for all
t > 0. The last equation of (14) implies then that VI(t) → 0 as t → +∞ and hence
Q(t) → Q0 and T (t) → T0 as t → +∞. Now, by the invariance of M, Q(t) = Q0,
T (t) = T0 for all t > 0. Therefore

M = {E0 = (Q0, T0, 0, 0)}.

Finally, since E0 is locally asymptotically stable, by the LaSalle invariance principle, E0

is globally asymptotically stable.



200 MERIEM LAMRAOUI, BILAL BOULFOUL AND MAHIÉDDINE KOUCHE

3.2.2 Global stability of the endemic equilibrium

The following theorem assures the global stability of the endemic steady state E.

Theorem 3.4 Assume that R0 > 1 and let

A = αQ0 > 0,

B = ρT Q
mϵ

1
− ρmϵ

2
Q
Qϵ

0
− αmϵ

1 − µTm
ϵ
2 + β(1− η2)M

ϵ
1T

+µTT + αλ
α+µQ

+ αλωπ(1−η1)γe
−τmT

2

mϵ
2µV (α+µQ) + αλβ(1−η2)e

−τmT
2

mϵ
2µT∗ (α+µQ) ,

C = − αλ
α+µQ

− αλωπ(1−η1)γe
−τmT

2

mϵ
2µV (α+µQ) − αλβ(1−η2)e

−τmT
2

mϵ
2µT∗ (α+µQ) < 0.

Then if

−B +
√
B2 − 4AC

2A
≤ R0 ≤ −B +

√
B2 − 4AC

2A
,

the endemic steady state E of system (14) is globally asymptotically stable for all τ ≥ 0.

Proof. Define the Lyapunov function L as follows:

L(t) =e−mτ

(
Q(t)−Q−Q ln

Q(t)

Q

)
+ e−mτ

(
T (t)− T − T ln

T (t)

T

)
+

(
T ∗(t)− T ∗ − T ∗ ln

T ∗(t)

T ∗

)
+
e−mτ (1− η1) γ

µV
T

(
VI(t)− VI − VI ln

VI(t)

VI

)
+ (1− η1)γe

−mτ

∫ t

t−τ

[
T (s)VI(s)− TVI − TVI ln

T (s)VI(s)

TVI

]
ds

+ β(1− η2)e
−τm

∫ t

t−τ

[
T (s)T ∗ (s)− TT ∗ − TT ∗ ln

T (s)T ∗ (s)

TT ∗

]
.

Then

dL(t)

dt
=e−mτ (λ+ ρT − αQ− µQQ)

(
1− Q

Q

)
+ e−mτ (αQ− (1− η1)γTVI − β(1− η2)TT

∗ − ρT − µTT )

(
1− T

T

)
+
(
(1− η1)γe

−mτT (t− τ)VI(t− τ) + β(1− η2)e
−τmT (t− τ)T ∗ (t− τ)− µT∗T ∗)

×
(
1− T ∗

T ∗

)
+
e−mτ (1− η1) γ

µV
T (ωµT∗πT ∗ − µV VI)

(
1− VI

VI

)
+(1− η1)γe

−mτ

[
TVI−T (t−τ)VI(t−τ)+TVI ln

T (t−τ)VI(t−τ)
TVI

]
+ β(1− η2)e

−τm

[
TT ∗ − T (t− τ)T ∗ (t− τ) + TT ∗ ln

T (t− τ)T ∗ (t− τ)

TT ∗

]
.

Now λ = (α+ µQ)Q− ρT and 2− T
T − T

T
≤ 0.

Let ϵ > 0 be chosen later. By Proposition 3.2, there is Tϵ > 0 such that for all t > Tϵ
and from the hypotheses of the theorem, AR2

0 +BR0+C < 0. We can then choose ϵ > 0



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 25 (2) (2025) 187–205 201

small enough so that

e−mτ

R0

[
αQϵ

0R0

(
R0 +

ϵ

T

)
+

(
ρT

Q

mϵ
1

− ρmϵ
2

Q

Qϵ
0

− αmϵ
1 − µTm

ϵ
2 + β(1− η2)M

ϵ
1T

+µTT +
αλ

α+ µQ
+
αλωπ(1− η1)γe

−τmT
2

mϵ
2µV (α+ µQ)

+
αλβ(1− η2)e

−τmT
2

mϵ
2µT∗ (α+ µQ)

)
R0

− αλ

α+ µQ
− αλωπ(1− η1)γe

−τmT
2

mϵ
2µV (α+ µQ)

− αλβ(1− η2)e
−τmT

2

mϵ
2µT∗ (α+ µQ)

]
≤ 0

for t > Tϵ. Further,
dL(t)
dt = 0 if and only if Q = Q, T = T , T ∗ = T ∗, VI = VI , then by

the LaSalle invariance principle, E is globally asymptotically stable.

4 Numerical Simulations

In this section, we perform some numerical simulations to illustrate our stability results
and to examine the effect of time delay and the efficacy of RTI treatments on the viral
load. The parameters of the model are given in Table 1 [1, 14, 15]. We begin first with

Parameters Meaning Values

α Activation rate of Q cells (day−1) 0.042
λ Rate of Q cells production (ml−1) 104

µT∗ Death rate of T ∗ cells (day−1) 0.67
π Number of virions per T ∗ cell 104
µT Death rate of T cells (day−1) 0.12
η1,2 Efficiency of treatment [0, 1]

γ Infection rate of cells per virion (mm3day−1) 0.05× 10−3

β Infection rate by cell-to-cell transmission 2× 10−5 (cell day)−1

µQ Death rate of Q cells (day−1) 0.00014
µV Clearance of free virion (day−1) 30
ρ Rate of reversion to the quiescent state (day−1) 0.017
ω Proportion of non-infectious virions 0.2
τ Incubation period of the infection 0.2− 2 days
m Fractional of cells surviving incubation period 0.05 days

Table 1: Parameters and values of model (19)

the non delay case τ = 0. In Figure 1, we have plotted the solutions of system (3) in the
case of absence of the treatment, i.e., η1 = η2 = 0, which corresponds to the value of the
basic reproduction number R0 = 5.39 > 1. Since µV > µT∗ , the condition of Theorem
2.2 is satisfied and the endemic equilibrium E∗ is locally asymptotically stable. Under
RTI treatment if we increase both the efficacy of the RTI inhibiting the virus-to-cell and
cell-to-cell infections to the values η1 = 0.8, η2 = 0.84 which correspond to the value of
the basic reproduction number R0 = 0.97 < 1, then by Theorem 2.1, the free steady
state E0 is locally asymptotically stable and the infection is cleared (see Figure 2). In
Figure 3, we have plotted the region (in red) for which R0 < 1, which corresponds to
the eradication of the infection. We can observe that the infection is cleared when the
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efficacy of the RTI corresponding to the virus-to-cell and cell-to-cell channels is greater
than 0.66 and 0.6, respectively.

In the delay case, we consider a different level of therapy intervention with different
values of the delay. Since the incubation time of the infection is between 0.5 to 2 days [15],
we run our simulations with the following values: τ = 0.4, 0.8, 1.3, 1.8.
Case 1: In the first case, we assume that the effect of drugs efficiency is η1 = η2 = 0.45.
In Figure 4, we have plotted solutions of system (14) with the following values of the
delay: τ = 0.2, τ = 0.8, τ = 1.3, τ = 1.8.
Case 2: In this case, we keep the value of η1 = 0.45 fixed and we increase the value of
η2 = 0.8. The corresponding solutions with different values of the delay are plotted in
Figure 5.
Case 3: Here we fix the value of η2 = 0.45 and we increase η1 = 0.8. The corresponding
solutions are plotted in Figure 6.
Case 4: In the last case, we increase the efficiency of RTI treatment for both virus-to-cell
and cell-to-cell infections to the values η1 = η2 = 0.8. The solutions are plotted in Figure
7.

Numerical simulations show that the increase of the delay time will decrease the peak
of viral load and increase the number of activated T-cells. Further, the delay seems to
have no effect on the number of quiescent cells. Since the basic reproduction number of
the delay model is multiplied by a factor equal to e−mτ with respect to that of the non
delayed model, we conclude that the region of eradication of the infection is more large
than that without delay. Figures 5 and 6 show that the increase of efficiency of the RTI
treatments for either virus-to-cell or cell-to-cell transmission mode will reduce the viral
load and the number of infected cells T ∗ but is not sufficient to eradicate the infection.
In Figure 7, where we have increased the efficiency of treatments for both virus-to-cell
and cell-to-cell routes, we observe that the infection is cleared.

In order to quantify infection sensitivity to drugs, we use the transmission index Tx
which is defined as the fraction of cells infected in the presence of drugs T ∗

η (t) divided

by the fraction of cells infected in the absence of drugs T ∗(t). Thus Tx =
T ∗
η (t)

T ∗(t)
.

Tx has two important limiting regimes: Tx ≃ 0, which means that few viruses infect
each cell, the infection is sensitive to the effect of the drugs, whereas in the case Tx ≃ 1,
many viruses infect each cell and the infection is insensitive. At the quasi-steady-state

assumption (as t→ +∞), we can simplify Tx as Tx ≃
T ∗
η

T ∗
,

where T ∗
η and T ∗ are, respectively, the steady states of infection cells in the presence

and in the absence of drugs. By (17), we have

Tx ≃

(
1− 1

R0(η)

)
(
1− 1

R0

)
with

R0(η) =
(1− η2)βµV e

−τm + ωπµT∗ (1− η1) γe
−mτ

µT∗µV
T0,

R0 =
β(1− η2)µV e

−τm + ωπµT∗γe−mτ

µT∗µV
T0.

(30)
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In Figure 8, we have plotted on the right the transmission index Tx with respect to η2 for
different values of η1 and on the left, we have plotted Tx with respect to η1 for different
values of η2. We observe that infections originating from cell-free virus decrease strongly
in the presence of drugs, whereas the other plot shows that infections involving cell-to-cell
spread are markedly less sensitive to the drugs. The simulations in Figure 8 suggested
that cell-to-cell infection permits viral replication even under the anti-retroviral therapy.
As pointed out in other clinical studies [14], cell-to-cell spread leads to therapy failure
and potentially contributes to viral persistence and hence is a barrier to curing HIV
infection.

Figure 1: Simulation of solutions of model
(3) in the absence of drugs η1 = η2 = 0:
in this case, R0 = 5.36 > 1, by Theorem
2.2 the endemic steady state E∗ is globally
stable.

Figure 2: Simulation of solutions of model
(3) without delay, where we have taken
η1 = 0.8 and η2 = 0.84: in this case,
R0 = 0.97 < 1, by Theorem 2.1, the free
steady state E0 is globally stable and the
infection is cleared.

Figure 3: The case without delay: in red
is the region of eradication of the infection.

Figure 4: Solutions of system 14 for η1 =
0.45, η2 = 0.45, τ = 0.4 in solid line (-);
τ = 0.8 in dashed line (–); τ = 1.3 in dash-
dotted line (-.); τ = 1.8 in dotted line (:).
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Figure 5: η1 = 0.45, η2 = 0.8,
τ = 0.4 in solid line (-); τ = 0.8 in
dashed line (–); τ = 1.3 in dash-
dotted line (-.); τ = 1.8 in dotted
line (:).

Figure 6: η1 = 0.8, η2 = 0.45, τ = 0.4 in
solid line (-); τ = 0.8 in dashed line (–);
τ = 1.3 in dash-dotted line (-.); τ = 1.8 in
dotted line (:).

Figure 7: η1 = 0.8, η2 = 0.8, τ = 0.4 in
solid line (-); τ = 0.8 in dashed line (–);
τ = 1.3 in dash-dotted line (-.); τ = 1.8 in
dotted line (:).

Figure 8: Plot of the transmission index
Tx: on the right with respect to η2 and on
the left with respect to η1, here we have
taken τ = 2.

5 Conclusion

This study presents a model incorporating quiescent cells to describe HIV-1 transmission,
with an intracellular time delay to account for the role of the non-activated immune
system. It demonstrates that the basic reproduction number R0 is the sum of virus-to-
cell and cell-to-cell transmission contributions. The analysis shows that when R0 < 1, the
infection is cleared, while for R0 > 1, the endemic steady state is globally asymptotically
stable [16].

Numerical simulations indicate that increasing intracellular delay reduces viral load
and enhances activated T cells without significantly affecting quiescent cells. Antiretrovi-
ral drugs (RTIs) effectively decrease cell-free virus infections but are less effective against
cell-to-cell transmission, which can transfer multiple virions simultaneously.

The simulations reveal that improving RTI efficiency to block cell-free infections has
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only a limited impact on overall HIV infection. Thus, targeting both transmission path-
ways, virus-to-cell and cell-to-cell, is crucial. The study suggests that cell-to-cell trans-
mission plays a key role in viral spread and should be a primary focus in future vaccination
strategies for better effectiveness.
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