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Abstract: This paper presents the modeling, electronic circuit implementation, and
complete synchronization of a new chaotic 3-D jerk system with two quadratic nonlin-
earities. The proposed jerk system, characterized by the third derivative of its output
being a function of lower-order derivatives, exhibits chaotic behavior under specific
parameter conditions. The system’s dynamics are analyzed, revealing the presence of
chaotic attractors through numerical simulations and Lyapunov exponents. An elec-
tronic circuit realizing the jerk system is designed using operational amplifiers, resis-
tors, and capacitors, demonstrating chaos through Multisim and MATLAB simula-
tions. Additionally, a backstepping control technique is employed to achieve complete
synchronization between the master and slave jerk systems, with potential applica-
tions in secure communications and cryptosystems. Theoretical proofs and simulation
results validate the effectiveness of the proposed synchronization method.
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1 Introduction

Chaos theory has become a fundamental area of study in nonlinear dynamics, with
applications spanning across various fields such as physics, engineering, biology, and
secure communications [1–3]. A chaotic system is highly sensitive to initial conditions,
leading to behavior that appears random and unpredictable despite being deterministic
[4, 5]. Among the numerous chaotic systems studied, jerk systems are of particular
interest due to their simplicity and ability to exhibit complex dynamical behavior [6]. A
jerk system is defined by its output’s third derivative (jerk) being a function of lower-
order derivatives [8].

The study of chaotic systems has its roots in the pioneering work of Lorenz, who
discovered the Lorenz attractor [9], a set of chaotic solutions of the Lorenz system, which
has become a classic example of chaos. Since then, numerous chaotic systems have been
explored, including the Rossler system, Chua’s circuit, and jerk systems [10, 11]. Jerk
systems, in particular, are intriguing due to their relatively simple mathematical form
and the rich dynamical behavior they exhibit [12].

In a jerk system, the third derivative of a variable with respect to time is expressed
as a function of the variable and its first and second derivatives [13]. This form allows for
the construction of chaotic systems using basic electronic components such as resistors,
capacitors, and operational amplifiers [14]. The electronic realization of chaotic systems
not only provides a tangible means of studying chaos but also facilitates practical ap-
plications in areas like secure communications, where chaotic signals can be used for
encryption.

The introduction of a novel 3-D jerk system with quadratic nonlinearities, as explored
in this study, contributes to the ongoing exploration of complex dynamical behaviors
such as chaotic attractors and multistability, which are prevalent in both natural and
engineered systems. Moreover, the practical implementation of these systems through
electronic circuit designs bridges the gap between theoretical models and real-world appli-
cations, further enhancing their relevance. The synchronization of such systems, demon-
strated here using backstepping control, has significant implications for creating stable,
secure systems in various technological domains, thereby underscoring the importance of
this research in advancing the understanding and application of chaotic dynamics.

The synchronization of chaotic systems, where two or more chaotic systems are made
to exhibit identical behavior over time, has significant implications for practical appli-
cations [15]. Techniques such as backstepping control have been developed to achieve
synchronization, offering robust methods for controlling chaotic systems.

This paper presents a novel chaotic 3-D jerk system characterized by two quadratic
nonlinearities. We explore its dynamic properties through numerical simulations, re-
vealing chaotic behavior under specific parameter settings. The system is then realized
electronically, and its chaotic nature is validated through both Multisim and MATLAB
simulations. Finally, we employ an active backstepping control technique to achieve
complete synchronization between a pair of chaotic jerk systems and demonstrating the
method’s effectiveness.

The rest of the paper is organized as follows. In Section 2, we present the modeling
of the new chaotic 3-D jerk system with two quadratic nonlinearities and analyze its
dynamic behavior through numerical simulations. Section 3 describes the electronic
circuit implementation of the proposed chaotic system and validates its chaotic behavior
using simulations in Multisim and MATLAB. In Section 4, we introduce the backstepping
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control technique and demonstrate the complete synchronization of master and slave
chaotic jerk systems, providing theoretical proofs and simulation results. In Section 5,
we conclude the paper by summarizing the contributions of the research and discussing
potential applications of the proposed system.

2 Modelling of the New Jerk System

This section presents and examines a new chaotic jerk system with two quadratic non-
linearities. The new jerk system is described as follows: ẋ = y,

ẏ = z,
ż = −ax+ by − z − xy + cy2.

(1)

In the jerk system (1), X = (x, y, z) is the 3-D state and a, b, c are positive parameters.
In this paper, we show that the jerk system (1) is chaotic when the parameters are

a = 1, b = 0.1 and c = 1.
For numerical simulations in MATLAB, we pick the parameters as (a, b, c) = (1, 0.1, 1)

and the initial state as X(0) = (0.2, 0.2, 0.2). Then the Lyapunov exponents (LE) of the
jerk system (1) are numerically determined for T = 1E4 seconds as

l1 = 0.1252, l2 = 0, l3 = −1.1252. (2)

The LE results in Eq.(2) show that the new 3-D jerk system (1) is chaotic and
dissipative with the maximal Lyapunov exponent (MLE) found as l1 = 0.1252 > 0. The
Kaplan dimension of the new 3-D jerk system can be also determined as

DK = 2 +
1

|l3|
(l1 + l2) = 2.1113. (3)

Figures 1-3 show the phase plots of the jerk system (1) generated in MATLAB using
the classical fourth-order Runge-Kutta method for the initial state (0.2, 0.2, 0.2) and the
parameter vector (a, b, c) = (1, 0.1, 1).

The equilibrium points of the system described by Equation (1) can be determined
by setting in Equation (1) as follows: 0 = y,

0 = z,
0 = −ax+ by − z − xy + cy2.

(4)

Thus, the equilibrium points of the system (4) are E0 = (0, 0, 0). The Jacobian
matrix of the system (1) can be written as

J =

 0 1 0
0 0 1

−1− y 0.1− x+ 2y −1

 . (5)

The Jacobian matrix at the equilibrium point E0 is expressed as

J =

 0 1 0
0 0 1
−1 0.1 −1

 . (6)
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Figure 1: (x, y) plot of the chaotic jerk system (1).

Figure 2: (y, z) plot of the chaotic jerk system (1).

The polynomial characteristic equation of Eq.(6) is given by

λ3 + λ2 − 0.1λ+ 1 = 0. (7)

The Jacobian matrix JE0 has the eigenvalues −1.5068, 0.2534± 0.7742i. This shows
that the system (1) exhibits the index-2 spiral saddle point, which is unstable.
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Figure 3: (x, z) plot of the chaotic jerk system (1).

3 Electronic Circuit

The provided circuit diagram represents a jerk system (see Figure 4), which is a type of
nonlinear dynamical system known for exhibiting chaotic behavior under certain condi-
tions. A jerk system is characterized by the third derivative of its output (jerk) being
a function of lower-order derivatives. The circuit comprises operational amplifiers (op-
amps), resistors, and capacitors to realize the jerk function.

In this specific circuit, each section with an op-amp configuration represents different
components of the jerk system. The resistors and capacitors determine the time constants
and feedback paths, which are crucial for defining the system’s dynamic behavior. The
input signals (X, Y, and Z ) are processed through the network of op-amps to produce
a chaotic output. The chaotic nature arises from the nonlinear interactions between the
components, causing the system to exhibit sensitive dependence on initial conditions—a
hallmark of chaos. The op-amps (TL082CD) are used for their high input impedance
and low offset voltage, making them suitable for precise analog computations required in
the jerk system.

By using Kirchhoffs circuit laws in Eq.(8), the circuital equations of the designed
circuit in Figure 4 are derived as follows:

ẋ = 1
C1R1

y,

ẏ = 1
C2R2

z,

ż = − 1
C3R3

x+ 1
C3R4

y − 1
C3R5

z − 1
10C3R6

xy + 1
10C3R7

y2.
(8)

Here, x, y, z are the voltages across the capacitors C1, C2, and C3, respectively. We choose
the values of the circuital elements as R6 = R7 = 10 kΩ, R4 = 1000 kΩ, R1 = R2 =
R3 = R5 = R8 = R9 = R10 = R10 = 100 kΩ, C1 = C2 = C3 = 1 nF. The corresponding
phase portraits on the oscilloscope are shown in Fig.5. Multisim simulation has been
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performed in order to validate the numerical simulation results. A good agreement has
been revealed between the results obtained from Multisim software and Matlab software.

Figure 4: Circuit design of the system (1).

4 Complete Synchronization of the New Chaotic Jerk Systems

In this section, we give a new control application for the chaotic jerk system proposed in
Section 2. We consider a pair of the new chaotic jerk systems taken as the master and
slave systems, and we invoke the active backstepping control technique to synchronize
the respective states of the master and slave jerk systems. We note that the synchro-
nization of chaotic systems has important applications in engineering, namely in secure
communications, cryptosystems, etc.
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(a) (b)

(c)

Figure 5: 2-D oscilloscope outputs of the new chaotic jerk system: (a) x− y plane, (b)
y − z plane, and (c) x− z plane.

As the master system for the synchronization process, we take the new jerk system
with the dynamics given by ẋ1 = y1,

ẏ1 = z1,
ż1 = −ax1 + by1 − z1 − x1y1 + cy21 .

(9)

As the slave system for the synchronization process, we take the new jerk system with
the dynamics given by ẋ2 = y2,

ẏ2 = z2,
ż2 = −ax2 + by2 − z2 − x2y2 + cy22 +W (t).

(10)

In this research work, we use backstepping control to devise a feedback control W (t)
to asymptotically synchronize the states of the two jerk systems given by the equations
(9) and (10).
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We define the synchronization error between the master and slave jerk systems as
follows:  ex = x2 − x1,

ey = y2 − y1,
ez = z2 − z1.

(11)

The error dynamics can be calculated as ėx = ey,
ėy = ez,
ėz = −aex + bey − ez − x2y2 + x1y1 + c

(
y22 − y21

)
+W (t).

(12)

Next, we state and prove the main control result for the complete synchronization of
the new jerk systems given by the Eqs. (9) and (10).

Theorem 4.1 The backstepping feedback control law defined by

W = −(3− a)ex − (5 + b)ey − 2ez + x2y2 − x1y1 − c(y22 − y21)− kq3 (13)

with the feedback gain k > 0 and q3 = 2ex +2ey + ez achieves complete synchronization
between the chaotic jerk systems (9) and (10) for all initial states in R3.

Proof. We set q1 = ex.
We define the quadratic Lyapunov function as

V1(q1) =
1

2
e2x. (14)

Then we get
V̇1 = q1q̇1 = exey = −q21 + q1(ex + ey). (15)

Next, we define q2 = ex + ey so that we can simplify Eq.(15) as follows:

V̇1 = −q21 + q1q2. (16)

Based on the Eq.(16), we define the quadratic Lyapunov function as

V2(q1, q2) = V1(q1) +
1

2
q22 =

1

2
q21 +

1

2
q22 . (17)

A simplification results in

V̇2 = −q21 − q22 + q2(2ex + 2ey + ez). (18)

To simplify the notations in Eq.(19), we set

q3 = 2ex + 2ey + ez. (19)

Then Eq.(18) reduces to
V̇2 = −q21 − q22 + q2q3. (20)

As a final step, we take the quadratic Lyapunov function given by

V (q1, q2, q3) = V2(q1, q2) +
1

2
q23 . (21)
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It is easy to see that V is a positive definite function on R3. It is also very clear that

V (q1, q2, q3) =
1

2
q21 +

1

2
q22 +

1

2
q23 . (22)

Based on the Eq.(22), when we calculate the derivative of V , we get

V̇ = −q21 − q22 − q23 + q3Z, (23)

where we define Z as
Z = q2 + q3 + q̇3. (24)

A simple calculation yields

Z = (3− a)ex + (5 + b)ey + 2ez − x2y2 + x1y1 + c(y22 − y21) +W. (25)

Substituting the formula given in Eq.(13) for v into Eq.(25), we get

Z = −kq3. (26)

From the Eqs.(23) and (26), we get

V̇ = −q21 − q22 − q23(1 + k). (27)

Since k > 0, we see that V̇ is a quadratic and negative definite function defined on
R3.

By Lyapunov Stability Theory, we deduce that the error dynamics (12) is globally
exponentially stable. This completes the proof.

Figure 6: MATLAB plot depicting the exponential convergence of the complete syn-
chronization error between the chaotic jerk systems (9) and (10).

For computer simulations, we consider the chaotic case for the master and slave jerk
systems, viz. a = 1, b = 0.1 and c = 1. Also, we take k = 30.
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For simulations, the initial conditions of the master system (9) are taken as x1(0) =
1.8, y1(0) = 1.4 and z1(0) = 2.1.

Also, the initial conditions of the slave system (10) are taken as x2(0) = 7.2, y2(0) =
0.5 and z3(0) = 5.4.

Figure 6 shows the convergence of the synchronization errors ϵx, ϵy and ϵz between
the chaotic jerk systems (9) and (10).

5 Conclusion

This study introduces a novel chaotic 3-D jerk system characterized by two quadratic
nonlinearities, which sets it apart from previously studied chaotic systems. The spe-
cific configuration of the system, including the interplay of its nonlinearities, represents
a new contribution to the field of nonlinear dynamics and chaos theory. Additionally,
the practical realization of this chaotic system through a custom-designed electronic cir-
cuit demonstrates a unique approach to linking theoretical chaos models with physical
implementations. The circuit design, validated through Multisim and MATLAB simu-
lations, offers a tangible and reliable method to replicate chaotic behavior in real-world
applications.
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