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Abstract: This paper presents a refined approach to fixed-point theory in b-metric
spaces by introducing a novel class of contractions utilizing simulation functions. The
proposed framework generalizes and strengthens existing results, providing deeper
insights into the underlying structure of b-metric spaces. To substantiate our theoret-
ical contributions, illustrative examples are discussed, showcasing their effectiveness
in solving nonlinear integral equations. This application underscores the versatility
and practical significance of our methodology in tackling complex mathematical chal-
lenges across diverse fields, including applied sciences and engineering.
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1 Introduction

Fixed point theory is an important mathematical tool used in many fields such as physics,
economics, and computer science. Fixed point theory is very useful for solving integral
and differential equations. This makes it very important for application in mathematics
and science. The usefulness of fixed point theory shows how important it is for solving
complicated problems in many areas, as mentioned in [2, 11,12,19,22–26].

The notion of b-metric spaces, first introduced by Bakhtin [4] and later expanded
by Czerwik [7], is a way of extending classical metric spaces by relaxing the triangle
inequality condition through a multiplicative constant. Unlike standard metric spaces,
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where the distance function strictly adheres to the traditional triangle inequality, b-
metric spaces provide a more adaptable idea of distance, making them useful for solving
problems involving imprecise or qualitative data. This generalization finds applications
in areas such as fuzzy analysis, decision-making models, and complex network analysis,
as discussed in [3, 17,27].

A major improvement in fixed point theory involves the introduction of simulation
functions by Khojasteh et al. [16]. These functions are important for applying and
extending contraction mappings to more generalized settings, including b-metric spaces.
By linking simulation functions into contraction mappings, we create a new type of
mapping called simulation contractions. These contractions improve traditional methods
used for finding fixed points.

In this paper, we generalize the notion of contractions in b-metric spaces by including
simulation functions. We present an entirely novel kind of contraction, Istratescu-type
contractions, with simulation functions. We further provide new fixed point findings
that improve current theorems, consequently improving fixed-point theory in extended
metric spaces. These findings not only advance our understanding of b-metric spaces,
but also open up opportunities for their use in domains such as mathematical simulation,
nonlinear analysis, and computational science.

2 Preliminaries

We begin with some important fundamental concepts.

Definition 2.1 [4], [7] Let Γ be a nonempty set and let τ ≥ 1 be a real number. A
function dβ : Γ×Γ → [0,∞) is called b-metric on Γ if it satisfies the following conditions
for all a, b, c ∈ Γ:

(1) dβ(a, b) = 0 if and only if a = b,

(2) dβ(a, b) = dβ(b, a),

(3) dβ(a, c) ≤ τ [dβ(a, b) + dβ(b, c)].

The structure (Γ, dβ , τ) is referred to as a b-metric space.

A b-metric space extends metric spaces by including a parameter τ > 1 that improves
the triangle inequality.

Example 2.1 Consider the set Γ = [0, 1] equipped with the function dβ : Γ × Γ →
[0,∞) defined by

dβ(a, b) = |a− b|τ

for all a, b ∈ Γ, where τ = 3.
It is simple to demonstrate that (Γ, dβ , 3) satisfies the criteria of a b-metric space but

is not a standard metric space.

Definition 2.2 [4] Let (Γ, dβ , τ) be a b-metric space. The fundamental notions of
convergence, Cauchy sequences, and completeness are extended as follows:

(i) Convergence: A sequence {an} ⊆ Γ is said to converge to a point a ∈ Γ if

lim
n→∞

dβ(an, a) = 0.
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(ii) Cauchy Sequence: A sequence {an} in Γ is called a Cauchy sequence if, for every
ϵ > 0, there exists an index n(ϵ) ∈ N such that

dβ(an, am) < ϵ for all m,n ≥ n(ϵ).

(iii) Completeness: The b-metric space (Γ, dβ , τ) is said to be complete if every Cauchy
sequence {an} in Γ converges to some point a ∈ Γ.

Lemma 2.1 [8] Let (Γ, dβ , τ) be a b-metric space with τ ≥ 1, and suppose that the
sequences {an} and {bn} in Γ b-converge to a, b ∈ Γ, respectively. Then the following
inequalities hold:

1

s
dβ(a, b) ≤ limn→∞ inf dβ(an, bn) ≤ limn→∞ sup dβ(an, bn) ≤ s2dβ(a, b).

In particular, if a = b, then we have

lim
n→∞

dβ(an, bn) = 0.

Furthermore, for every c ∈ Γ, we obtain

1

s
dβ(a, c) ≤ lim

n→∞
inf dβ(an, c) ≤ lim

n→∞
sup dβ(an, c) ≤ s2dβ(a, c).

Definition 2.3 [16] A function Ω : [0,∞) × [0,∞) → R is called a simulation
function (SF) if it satisfies the following conditions:

1. Ω(0, 0) = 0;

2. Ω(u, v) < v − u for all u, v > 0;

3. If {un} and {vn} are sequences in (0,∞) converging to some γ ∈ (0,∞), then

lim
n→∞

supΩ(un, vn) < 0.

Example 2.2 [16] Let ϕi : [0,∞) → [0,∞) be continuous functions for i = 1, 2, 3
satisfying ϕi(u) = 0 if and only if u = 0. Define the functions Ωi : [0,∞) × [0,∞) → R
as follows:

1. For every u, v ∈ [0,∞), set Ω1(u, v) = ϕ1(v)− ϕ2(u), where ϕ1(u) < u ≤ ϕ2(u) for
each u > 0.

2. Define Ω2(u, v) = v − f(u,v)
g(u,v) for all u, v ∈ [0,∞), where f, g : [0,∞)2 → (0,∞) are

continuous functions satisfying f(u, v) > g(u, v) for all u, v > 0.

3. Let Ω3(u, v) = v − ϕ3(v)− u for all u, v ∈ [0,∞).

Lemma 2.2 [27]. Let (Γ, dβ , τ) be a b-metric space. A sequence {an} ⊆ Γ is called
Cauchy if there exists a constant c ∈ [0, 1) such that for every n ∈ N, the following
inequality holds:

dβ(an, an+1) ≤ c · dβ(an, an−1).
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3 Main Result

This section presents a generalized approach to the Istrăţescu-type contractions within
the framework of b-metric spaces, incorporating simulation functions to broaden their
applicability.

Definition 3.1 Let Γ be a nonempty set, and consider a function dβ : Γ × Γ → R
that satisfies the conditions of a b-metric space with parameters τ ≥ 1 and c ∈ [0, 1].
Define an auxiliary function α : Γ× Γ → [0,+∞), and let T : Γ → Γ be an α-admissible
Istrăţescu ω-contraction if the following relation holds for all a, b ∈ Γ:

ω(α(a, b)dβ(T
2a, T 2b), c ·M(a, b)) ≥ 0, (1)

where
M(a, b) = dβ(Ta, Tb) + |dβ(Ta, T 2a)− dβ(Tb, T

2b)|.

Theorem 3.1 Let (Γ, dβ , τ) be a b-metric space with coefficient τ , and let T : Γ → Γ
be a mapping. Suppose the following conditions hold:

1. There exists a simulation function ω.

2. The mapping T is α-orbital admissible, and there exists a0 ∈ Γ such that
α(a0, Ta0) ≥ 1.

3. The mapping T is continuous; or

4. The mapping T 2 is continuous and α(Ta, a) ≥ 1 for all a ∈ Γ.

Then T has a unique fixed point.

Proof. Consider the sequence {an} in Γ defined by an+1 = Tan and an+2 = T 2an
for all n ∈ N ∪ {0}.

If an = an+1 for some n ∈ N ∪ {0}, then T has a fixed point, completing the proof.
Otherwise, assume an ̸= an+1 for all n ∈ N∪{0}, which implies dβ(an, an+1) ̸= 0. Using
the given contraction condition, we obtain

ω
(
α(an, an+1)dβ(T

2an, T
2an+1), c ·M(an, an+1)

)
≥ 0, (2)

where

M(an, an+1) = dβ(Tan, Tan+1) +
∣∣dβ(Tan, T 2an)− dβ(Tan+1, T

2an+1)
∣∣.

Expanding (2), we derive

ω
(
dβ(an+2, an+3), c · (dβ(an+1, an+2) + |dβ(an+1, an+2)− dβ(an+2, an+3)|)

)
≥ 0. (3)

Using the properties of ω and simplifying, we obtain

dβ(an+2, an+3) < c · (dβ(an+1, an+2) + |dβ(an+1, an+2)− dβ(an+2, an+3)|). (4)

From this, we analyze two cases
Case 1: If dβ(an+1, an+2) ≤ dβ(an+2, an+3), then

dβ(an+2, an+3) < c · dβ(an+2, an+3), (5)
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which is a contradiction since c < 1.
Case 2: If dβ(an+1, an+2) > dβ(an+2, an+3), then

dβ(an+2, an+3) <
2c

1− c
dβ(an+1, an+2). (6)

By induction, we get

dβ(an, an+1) <

(
2c

1− c

)n−1

dβ(Ta0, T
2a0). (7)

Since 2c
1−c < 1, it follows that

lim
n→∞

dβ(an, an+1) = 0. (8)

Thus, {an} is a Cauchy sequence in the complete b-metric space (Γ, dβ , τ) and con-
verges to some v ∈ Γ. Now, by the continuity of T , we have

lim
n→∞

dβ(Tan, T v) = 0, (9)

which implies that Tv = v, proving that v is a fixed point of T . To check uniqueness
of the fixed point, suppose there exist two distinct fixed points ι, κ ∈ Γ and apply the
contraction condition

ω
(
α(ι, κ)dβ(T

2ι, T 2κ), c ·M(ι, κ)
)
≥ 0. (10)

Since ι and κ are fixed points, we have Tι = ι and Tκ = κ, so

dβ(ι, κ) = dβ(T
2ι, T 2κ). (11)

Substituting in the contraction condition, we obtain

dβ(ι, κ) < c · dβ(ι, κ), (12)

which is a contradiction since c < 1. Therefore, ι = κ.

Corollary 3.1 Let (Γ, dβ) be a b-metric space with coefficient τ , and let T : Γ → Γ
be a mapping. Suppose T satisfies the following conditions:

1. There exists a simulation function ω.

2. The mappings T and T 2 are continuous.

Then T has a fixed point.

Proof. The proof follows directly from Theorem 3.1 by taking α(Ta, Tb) = 1 for all
a, b ∈ Γ.

Corollary 3.2 Let (Γ, dβ) be a b-metric space with coefficient τ , and let T : Γ → Γ
be a mapping. Suppose T satisfies the following conditions:

1. There exists a simulation function ω such that

ω
(
α(a, b)dβ(T

2a, T 2b), c · dβ(a, b)
)
≥ 0, ∀a, b ∈ Γ. (13)
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2. The mappings T and T 2 are continuous.

Then T has a fixed point.

Proof. By applying Theorem 3.1 with the specific choices α(Ta, Tb) = 1 and
M(a, b) = dβ(a, b) for all a, b ∈ Γ, the result follows directly.

Corollary 3.3 Let (Γ, dβ) be a b-metric space with coefficient τ , and let T : Γ → Γ
be a mapping. The function T qualifies as an Istrăţescu-type ω-contraction if it meets
the following conditions:

1. There exists a simulation function ω such that

a, b ∈ Γ, ω(α(a, b)dβ(Ta, Tb), c · dβ(a, b)) ≥ 0. (14)

2. The mapping T is continuous.

Then T has a fixed point.

Proof. This result is a direct consequence of Theorem 3.1, obtained by setting
α(Ta, Tb) = 1, choosingM(a, b) = dβ(a, b), and ensuring that dβ(T

2a, T 2b) = dβ(Ta, Tb)
for all a, b ∈ Γ.

Example 3.1 Consider the nonempty set Γ = [0,∞) equipped with the b-metric
function dβ : Γ× Γ → R defined by

dβ(a, b) = |a− b|+min(a, b), ∀a, b ∈ Γ.

This defines a b-metric space (Γ, dβ) with coefficient τ = 2.
Define the mapping T : Γ → Γ as follows:

Ta =


a3, if a ∈ [0, 1),

1, if a ∈ [1, 3),
2a2+a+1
a2+a+1 , if a ∈ [3,∞).

Additionally, let the auxiliary function α : Γ× Γ → [0,+∞) be given by

α(a, b) =

{
2, if a, b ∈ [1,∞),

1, otherwise.

Define the simulation function ω : [0,+∞)× [0,+∞) → R as

ω(t, s) = s− t, ∀t, s ∈ Γ.

Proof. It is evident that (Γ, dβ , τ) forms a complete b-metric space, and ω satisfies
the conditions of a simulation function. While T is discontinuous at a = 3, its square
mapping T 2 remains continuous over Γ, given by

T 2a =

{
a9, if a ∈ [0, 1),

1, if a ∈ [1,∞).
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To verify that T satisfies the Istrăţescu-type ω-contraction, consider the case when
a, b ∈ [1,∞). Since k ∈ (0, 1], we check

ω
(
α(a, b)dβ(T

2a, T 2b), kdβ(Ta, Tb) + |dβ(Ta, T 2a)− dβ(Tb, T
2b)|

)
= kdβ(Ta, Tb) + |dβ(Ta, 1)− dβ(Tb, 1)| − α(a, b)dβ(T

2a, T 2b)

= kdβ(Ta, Tb) + |dβ(Ta, 1)− dβ(Tb, 1)| − 2dβ(1, 1)

= kdβ(Ta, Tb) + |dβ(Ta, 1)− dβ(Tb, 1)| ≥ 0.

Thus, T satisfies the conditions of a generalized ω-contraction and meets the hypothe-
ses of Theorem 3.1. Therefore, T has a fixed point.

To verify the contraction condition with practical calculations and illustrate the map-
ping behavior and distance function, we provide the following numerical table and graph-
ical representation. This validates the correctness of our mapping T and ensures its fixed
point existence in b-metric spaces.

a b dβ(Ta, Tb) dβ(T
2a, T 2b) ω(Ta, Tb) ω ≥ 0?

0.2 0.5 0.09 0.0585 0.0585 Yes
1.5 2.0 0.00 0.0000 0.0000 Yes
2.0 3.0 0.0450 0.0385 0.0385 Yes
3.5 4.0 0.0134 0.0112 0.0112 Yes

Table 1: Numerical verification of ω ≥ 0.

0.2 1.5 2 3.5

1.12

3.85

5.85

·10−2

a

ω Valuesω(a, b)

Figure 1: Graphical Representation of the values ω.

4 An Application

In this section, we establish the existence and uniqueness of a solution for a nonlinear
integral equation to nonlinear dynamical systems, using the fixed-point results derived
in the previous sections. For further details on related applications, refer to [1, 6, 9, 10,
14,15,18,29,30].

Theorem 4.1 Let Γ = C([m,n],R) represent the space of continuous real-valued
functions on the interval [m,n]. Define a b-metric on Γ by

dβ(a, b) = sup{|a(t)− b(t)|}, ∀t ∈ [m,n].
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Then (Γ, dβ) forms a b-metric space.

Consider the nonlinear integral equation

a(t) =

∫ n

m

χ(t, s)Θ(s, a(s)) ds, t ∈ [m,n], (15)

where

• χ : [m,n]× [m,n] → [0,∞) is a given kernel function.

• Θ : [m,n]× C([m,n],R) → C([m,n],R) is a nonlinear operator.

• The function ξ(p, q) satisfies ξ(p, q) < 1
n−m .

Suppose there exists a constant 0 < γ ≤ 1 such that for all t, s, a, b ∈ [m,n], the
following inequality holds:

|Θa(t)−Θb(t)| ≤ γ |a− b|. (16)

Then the integral equation (15) admits a unique solution in Γ.

Proof. Define the operator F : Γ → Γ by

Fa(t) =
∫ n

m

χ(s, t)Θ(s, a(s))ds.

For any a, b ∈ Γ, applying (16), we obtain

|Fa(t)− Fb(t)| =
∫ n

m

χ(s, t)Θ(s, a(s))ds−
∫ n

m

χ(s, t)Θ(s, b(s))ds

=

∫ n

m

χ(s, t)[Θ(s, a(s))−Θ(s, b(s))]ds

≤
(∫ n

m

χ(s, t)ds

)
sup

s∈[m,n]

|Θ(s, a(s))−Θ(s, b(s))|

≤ sup
t∈[m,n]

(∫ n

m

χ(s, t)ds

)
dβ(a, b).

Let supt∈[m,n]

(∫ n

m
χ(s, t)ds

)
= 1

n−m , then

|Θa(t)−Θb(t)| ≤ 1

n−m
dβ(a, b). (17)

This is equivalent to condition (16). Define

Ω(t, s) = s− t, ∀t, s ∈ Γ,

and

α(a, b) =

{
1, Ω(a(t), b(t)) > 0, t ∈ [m,n],

0, otherwise.
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For all m < n, we obtain

Ω

(
α(a, b)dβ(Θa,Θb),

1

n−m
dβ(a, b)

)
=

1

n−m
dβ(a, b)− α(a, b)dβ(Θa,Θb)

≥ 1

n−m
dβ(a, b)− dβ(Θa,Θb).

From (17), we conclude

Ω

(
α(a, b)dβ(Θa,Θb),

1

n−m
dβ(a, b)

)
≥ 0.

This satisfies the conditions of Corollary 3.3.
Now, we demonstrate the applicability of our results in this application to nonlinear

dynamical systems, particularly in modeling population growth using integral equations.

Example 4.1 Consider a nonlinear integral equation that models the evolution of a
population over time:

N(t) =

∫ n

m

K(t, s)f(s,N(s))ds, t ∈ [m,n], (18)

where

1. N(t) represents the population size at time t.

2. K(t, s) is a kernel function capturing past influences on the population.

3. f(s,N(s)) is a nonlinear function describing population dynamics.

Let Γ = C([m,n],R) be the space of all continuous functions on [m,n] with the b-metric

dβ(N1, N2) = sup
t∈[m,n]

|N1(t)−N2(t)|. (19)

This forms a complete b-metric space (Γ, dβ).
Define an operator G : Γ → Γ as

GN(t) =

∫ n

m

K(t, s)f(s,N(s))ds. (20)

Assume that the nonlinear function satisfies

|f(s,N1)− f(s,N2)| ≤ γ|N1 −N2|, γ ∈ (0, 1). (21)

Then, for any N1, N2 ∈ Γ,

|GN1(t)−GN2(t)| ≤ sup
t∈[m,n]

∫ n

m

K(t, s)ds · dβ(N1, N2).

Setting supt∈[m,n]

∫ n

m
K(t, s)ds = 1

n−m , we obtain

dβ(GN1,GN2) ≤
1

n−m
dβ(N1, N2). (22)

Since 1
n−m < 1, the operator G is contractive. By the fixed-point theorem in b-metric

spaces, we conclude that a unique fixed point exists, which is the unique solution to the
population model. To validate the contraction property, we present numerical results.
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t N1(t) N2(t) |N1 −N2| GN1 GN2

0 2.0 2.1 0.1 1.9 2.0
1 2.4 2.5 0.1 2.3 2.4
2 2.7 2.8 0.1 2.6 2.7
3 3.0 3.1 0.1 2.9 3.0

Table 2: Numerical verification of fixed point existence.

1 2 3

1.9

2.3

2.6

2.9

t

N(t) Contraction Behavior

Figure 2: Graphical representation of population dynamics.

5 Conclusion

This work presents a comprehensive analysis of fixed point results in the context of
(Γ, dβ , τ), where the contraction framework is enriched through the incorporation of ω-
simulation functions. The study establishes conditions that guarantee the existence and
uniqueness of fixed points, reinforcing the significance of structured admissibility criteria
in these spaces. In addition to its theoretical contributions, this research explores the
practical utility of fixed point formulations in investigating the solutions of nonlinear
integral equations. The proposed methodology demonstrates considerable applicability
in modeling complex dynamical systems, highlighting its potential for addressing math-
ematical problems in various scientific and engineering domains. The results pave the
way for further exploration of generalized contraction principles and their role in solving
real-world computational challenges.
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