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Abstract: In this paper, we consider a primal-dual Interior Point Method (IPM) for
the linear optimization(LO) problem, based on a new kernel function with a logarith-
mic barrier term, which plays an important role for developing a new design of primal-
dual IPM algorithms. New search directions and proximity functions are proposed

based on this kernel function. We proved that our algorithm hasO
(
qSn

Sq+1
2Sq log

(
n
ϵ

))
iteration bound for large-update methods.
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1 Introduction

In this paper we deal with primal-dual IPMs for solving the standard linear optimization
(LO) problem

(P ) min
{
cTx : Ax = b, x ≥ 0

}
,

and the dual problem of (P ) is given by

(D) max
{
bT y + s = c, s ≥ 0

}
,

where A ∈ Rm×n, x, s, c ∈ Rn, and y, b ∈ Rm.
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In 1984, Karmarkar [8] proposed a new polynomial-time method for solving linear
programs. This method and its variants that were developed subsequently are now called
IPMs, and they have become the most effective methods for solving LO problems. The
new efficient algorithms of the interior-point methods (IPMs) have generated increased
interest both in the application and the research of LO. In this paper, we deal with
the so-called primal-dual IPMs. It is generally agreed that these IPMs are most efficient
from a computational point of view [7]. Many researchers have designed different types of
primal-dual interior-point methods. Among them, IPMs based on kernel functions have
been designed. Several kernel functions have been introduced, including the so-called self-
regular kernel functions [2,4] and the non-self-regular kernel functions [2,11]. In principle,
a kernel function offers a search direction and hence the development of a primal-dual
interior point method. Until now, all primal-dual IPMs have used the Newton direction
as the search direction [6]; this direction is closely related to the well-known primal-dual
logarithmic barrier function. In this paper, we consider the new kernel function with a
logarithmic Barrier Term (1.1) from [11] as follows:

ψS(t) =

(
t2 − 1

)
2

− log(t)

2
− 1

2S

S∑
j=1

t1−jq − 1

1− jq
, q > 1, S ∈ N\{0}. (1)

We will formulate an interior-point algorithm for LO by using a new proximity func-
tion and give its complexity analysis, and then we will show that the iteration bounds

are O
(
qSn

Sq+1
2Sq log

(
n
ϵ

))
and O

(
q2S2

√
n log

(
n
ϵ

))
for large and small-update methods,

respectively.
The remainder of this paper is organized as follows. First, in Section (2), we define

the central path and the new search direction determined by Kernel Functions for LO,
then we present the generic primal-dual IPM algorithm. The new kernel function and
its properties are presented in Section (3). In Section (4), we analyse the algorithm and
derive the complexity bound for LO. Finally, some concluding remarks follow in Section
(5).

Some notations used throughout the paper are as follows. Let Rn be the n-dimensional
Euclidean space with the inner product ⟨., .⟩, and ∥.∥ denote the 2-norm. Rn

+ and Rn
++

denote the set of n-dimensional nonnegative vectors and positive vectors, respectively.
For x, s ∈ Rn, xmin and xs denote the smallest component of the vector x, and the
componentwise product of the vector x and s, respectively. We denote by X = diag(x)
the n × n diagonal matrix with the components of vector x ∈ Rn being the diagonal
entries, e denotes the n-dimensional vector, where each coordinate takes the value 1. For
two real-valued functions f(x), g(x) : R++ −→ R++, f (x) = O (g (x)) if f(x) ≤ cg(x)
for some positive c, and f (x) = Θ (g (x)) if c1g(x) ≤ f(x) ≤ c2g(x) for some positive
constants c1 and c2.

2 Preliminaries

It is well known that the optimality condition for (P ) and (D) is equivalent to solving
the following nonlinear system: Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,
xs = 0.

(2)
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The basic idea of primal-dual IPMs for LO problems is to replace the third equation in
(2), which is known as a complementarity condition for (P ) and (D), by the parameterized
equation xs = µe, with µ > 0. Thus, the system (2) becomes Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,
xs = µe.

(3)

Due to the last equation, any solution (x, y, s) of (3) will satisfy x > 0 and s > 0. So,
a solution exists only if (P ) and (D) satisfy the interior-point condition (IPC) [5], i.e.,
there exists (x0, y0, s0) such that{

Ax0 = b, x0 > 0,
AT y0 + s0 = c, s0 > 0.

So, if the IPC is satisfied, the system (3) has only one solution (x(µ), y (µ) , s(µ)) for
every µ > 0 (see Lemma 4.3 in [13]), x(µ) is called the µ-center of (P ) , and (y (µ) , s(µ))
is the µ-center of (D). The set of µ-centers is called the central path of (P ) and (D) . If
µ −→ 0, then the limit of the central path exists, and since the limit points satisfy the
complementarity condition, the limit yields optimal solutions for (P ) and (D) [5].

Let µ > 0 be fixed. A direct application of the Newton method to (3) provides the
following system for ∆x,∆y and ∆s: A∆x = 0,

AT∆y +∆s = 0,
x∆s+ s∆x = µe− sx.

(4)

Since A has full row rank, the system (4) has a unique solution (∆x,∆y,∆s) which
is called the search direction (see [5, 9]). By taking a step along the search direction
(∆x,∆y,∆s), one constructs a new positive iterate (x+, y+, s+) with

x+ := x+ α∆x, y+ := y + α∆y, s+ := s+ α∆s,

where α satisfies 0 < α ≤ 1.
Now, we introduce the scaled vector v and the scaled search directions dx and ds as

follows:

v :=

√
xs

µ
, dx :=

v∆x

x
, ds :=

v∆s

s
. (5)

The system (4) can be rewritten as follows:
Adx = 0,

A
T
∆y + ds = 0,

dx + ds = v−1 − v,

(6)

where A :=
1

µ
AV −1X,V := diag (v) and X := diag (x) .

Note that

dx = ds = 0 ⇔ v−1 − v = 0 ⇔ v = e⇐⇒ x = x(µ), s = s(µ).
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A useful observation is that the right-hand side of the third equation in (6) equals to
the minus gradient of the following proximity function:

Φ(v) = Φ(x, s;µ) =

n∑
i=1

ψ(vi) =

n∑
i=1

(
v2i − 1

2
− log vi

)
, vi > 0.

Here, ψ is the so-called kernel function of Φ. And therefore, dx + ds = −∇Φ(v). We
can rewrite the system (6) as


Adx = 0,

A
T
∆y + ds = 0,

dx + ds = −∇Φ(v).

(7)

It is easy to notice that ∇Φ(v) = 0, therefore Φ(v) reaches its minimum value at
v = e, with Φ(v) = 0.

In order to measure the distance between the µ-center and the current iterate, we
resort to using Φ(v), and this is for a given τ > 0.

Now, we introduce a norm-based proximity measure δ(v) : Rn
++ → R+ in accordance

with

δ(v) =
1

2
||∇Φ(v)|| = 1

2
||dx + ds||, (8)

in terms of ψ(vi). Then we have ψ(vi) = 0 ⇔ δ(v) = 0 ⇔ v = e.

Using (5) and (8), we can write the system (4) in the form of a modified Newton
system. We get the following:

 A∆x = 0,
AT∆y +∆s = 0,
x∆s+ s∆x = −µv∇Φ(v).

(9)

In this paper, we replace ψ(t) by a new kernel function ψS(t), and Φ(v) by a new
barrier function ΦS(v), which will be defined in Section (3).

The new interior-point algorithm works as follows. Assume that we are given a
strictly feasible point (x; y; s) which is in a τ -neighbourhood of the given µ-centre. Then
we decrease µ to µ+ = (1 − θ)µ for some fixed θ ∈ (0, 1), and then solve the Newton
system (4) to obtain the unique search direction. The positivity of a new iterate is
ensured by an appropriate choice of the step size α which is defined by some line search
rule. This procedure is repeated until we find a new iterate (x+, y+, s+) that is in a
τ -neighbourhood of the µ+-centre, and then we let µ := µ+ and (x; y; s) := (x+, y+, s+) .
Then µ is again reduced by the factor (1− θ) and we solve the Newton system targeting
at the new µ+-centre, and so on. This process is repeated until µ is small enough, say
until nµ < ϵ. The generic form of the algorithm is shown in Fig.1.
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Generic Primal-Dual Algorithm for LO
Input:
a proximity function Φs(v); a threshold parameter τ > 0;
an accuracy parameter ϵ > 0; a fixed barrier update parameter θ, 0 < θ < 1;
(x0, s0) and µ0 := 1 such that Φs(x

0, s0, µ0) ≤ τ .
begin
x := x0; s := s0;µ := µ0;
while nµ ≥ ϵ do
begin (outer iteration)

µ := (1− θ)µ; v :=

√
xs

µ
;

while Φs(v) > τ do
begin (inner iteration)
Solve the system (9) for (∆x,∆y,∆s) ;
Determine a step size α;

x := x+ α∆x; y := y + α∆y; s := s+ α∆s; v :=

√
xs

µ
;

end (inner iteration)
end (outer iteration)

end

Fig. 1 Generic algorithm.

We want to ”optimize” the algorithm by minimizing the number of iterates in the
algorithm. To do this, we must carefully choose the parameters τ , θ, and the step size
α. Choosing the barrier update parameter θ is very important in application and theory.
If θ is a constant number which is independent of the dimension n of the problem, i.e.,
θ = Θ(1), then the algorithm is called a large update method. If θ depends on the
dimension n of the problem, then we call the algorithm a small update method. In this

case, θ is usually chosen as follows: θ = Θ
(

1√
n

)
.

Choosing the step size, α > 0, is another key step in obtaining good convergence
properties of the algorithm. It must be set in such a way that the closeness of the
iterates to the current µ-center improves by a sufficient amount.

In this paper, we define a new kernel function and propose primal-dual in-
terior point methods which improve all the results of the complexity bound for
large-update methods based on a logarithmic kernel function for LO. More pre-
cisely, based on the proposed kernel function, we prove that the corresponding al-

gorithm has O
(
qSn

Sq+1
2Sq log

(
n
ϵ

))
complexity bound for the large-update method, and

O
(
q2S2

√
n log

(
n
ϵ

))
for the small-update method. Another interesting choice is q depen-

dences with n and S, which minimizes the iteration complexity bound. In fact, if we
take q = logn

2S , we obtain the best known complexity bound for large-update methods,
namely, O

(√
n log n log n

ε

)
. This bound improves the so far obtained complexity results

for large-update methods based on a logarithmic kernel function given by El Ghami et
al. [10].
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3 The Properties of the New Kernel Function

We will now address a new kernel function with its properties being provided. Let the
new univariate function be defined in [11].

ψS(t) =

(
t2 − 1

)
2

− log(t)

2
− 1

2S

S∑
j=1

t1−jq − 1

1− jq
, q > 1, S ∈ N\{0}.

It is easy to observe that as t→ 0 or t→ ∞, then ψ(t) → ∞. So, ψS(t) is without a
doubt a kernel function.

We will need the first three derivatives of ψS(t), we provide them as follows:

ψ
′

S(t) = t− 1

2t
− 1

2S

S∑
j=1

t−jq, (10)

ψ
′′

S(t) = 1 +
1

2t2
+

1

2S

S∑
j=1

qjt−jq−1, (11)

ψ
′′′

S (t) = − 1

t3
− 1

2S

S∑
j=1

jq(jq + 1)t−jq−2. (12)

If S = 1, we obtain the kernel function (12) given by Bouaafia et al. [10].
The following lemma establishes the efficiency of the new kernel function (1).

Lemma 3.1 Let ψS(t) be as defined in (1) and t > 0. Then

ψ
′′

S(t) > 1, (13)

ψ
′′′

S (t) < 0, (14)

tψ
′′

S(t)− ψ
′

S(t) > 0, (15)

tψ
′′

S(t) + ψ
′

S(t) > 0. (16)

The last property (16) in Lemma 3.1 is equivalent to the convexity of composed
functions t → ψS(e

t) and this holds if and only if ψS(
√
t1t2) ≤ 1

2 (ψS(t1) + ψS(t2)) for
any t1, t2 ≥ 0. This property is well-known in the literature, and numerous researchers
have demonstrated it (see [3, 12]).

We provide some technical findings of the new kernel function in preparation for
further.

Lemma 3.2 For ψS(t), we get

1

2
(t− 1)2 ≤ ψS(t) ≤

1

2

[
ψ

′

S(t)
]2

, t > 0. (17)

ψS(t) ≤
[
6 + q(S + 1)

8

]
(t− 1)2, t > 1. (18)

Proof. For (17), use (13). For (18), use Taylor’s Theorem.
Let σ : [0,∞[ → [1,+∞[ be the inverse function of ψS(t) for t ≥ 1 and ρ : [0,∞[ →

]0, 1] be the inverse function of − 1
2ψ

′

S(t) for all t ∈ ]0, 1]. Then we have the following
lemma.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 25 (3) (2025) 231–242 237

Lemma 3.3 [Lemma 3.3 from [11]] For ψS(t), we have

1 +

√
8s

6 + q(S + 1)
≤ σ(s) ≤ 1 +

√
2s, s ≥ 0. (19)

ρ(z) >

[
1

4z + 2

] 1
Sq

, z > 0. (20)

Lemma 3.4 Let σ : [0,∞[ → [1,+∞[ be the inverse of ψS(t). We have

ΦS(βv) ≤ nψS

(
βσ

(
ΦS(v)

n

))
, v ∈ R∗, β ≥ 1.

Proof. Using (14) and (15), and Lemma 2.4 from [1], we can obtain the result. This
completes the proof.

Lemma 3.5 [Lemma 3.5 from [11]] Let 0 ≤ θ < 1, v+ = v√
1−θ

. If ΦS(v) ≤ τ , then

we have

ΦS(v+) ≤
θn+ 2τ + 2

√
2τn

2(1− θ)
.

Denote

(ΦS)0 =
θn+ 2τ + 2

√
2τn

2(1− θ)
= L (n, θ, τ) .

So, during the algorithm’s execution, (ΦS)0 is the upper bound of ΦS(v+).

4 Complexity Analysis

In the next subsection, we compute a default step size α and the resulting decrease
in the barrier function.

4.1 An estimation of the step size

We devoted this section to calculating a default step size α and the consequent decrease
in the barrier function. And after the damping step, we obtain

x+ = x+ α∆x, y+ = y + α∆y, s+ = s+ α∆s.

By using (5), we get that

x+ = x

(
e+ α

∆x

x

)
= x

(
e+ α

dx
v

)
=
x

v
(v + αdx) ,

s+ = s

(
e+ α

∆s

s

)
= s

(
e+ α

ds
v

)
=
s

v
(v + αds) .

Hence, v+ =

√
x+s+
µ

=
√
(v + αdx) (v + αds). Define for α > 0,

f(α) = ΦS(v+)− ΦS(v). (21)
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Therefore, f(α) represents the difference in proximities between a new iterate and a
current iterate for a given value of µ . By (5), we can get

ΦS(v+) = ΦS

(√
(v + αdx) (v + αds)

)
≤ 1

2
(ΦS((v + αdx)) + ΦS((v + αds))) .

Thus, we have f(α) ≤ f1(α) such that

f1(α) =
1

2
(ΦS((v + αdx)) + ΦS((v + αds)))− ΦS(v). (22)

Clearly, f(0) = f1(0) = 0. We calculate f
′

1(α) and f
′′

1 (α), we find

f
′

1(α) =
1

2

n∑
i=1

(
ψ

′

S(vi + αdxi
)dxi

+ ψ
′

S(vi + αdsi)dsi

)
,

f
′′

1 (α) =
1

2

n∑
i=1

(
ψ

′′

S(vi + αdxi)d
2
xi

+ ψ
′′

S(vi + αdsi)d
2
si

)
.

By using (5) and (8), we conclude that

f
′

1(0) =
1

2
< ∇ΦS(v), (dx + ds) >= −1

2
< ∇ΦS(v),∇ΦS(v) >= −2δ(v)2.

We denote v1 = min(v), δ = δ(v), ΦS = ΦS(v).

Lemma 4.1 Let δ(v) be defined in (8). Then

δ(v) ≥
√

ΦS(v)

2
. (23)

Proof. Using (17), we have

ΦS(v) =

n∑
i=1

ψS(vi) ≤
n∑

i=1

1

2

[
ψ

′

S(vi)
]2

=
1

2
||∇ΦS(v)||2 = 2δ(v)2.

Hence, δ(v) ≥
√

1
2ΦS(v). This completes the proof.

Remark 4.1 Throughout the paper, we assume that ΦS(v) ≥ τ ≥ 1, and we have
δ(v) ≥ 1

2 .

According to Lemmas 4.1-4.4 in [1], we get the following Lemmas 4.2 and 4.5 since
ψS(t) is a kernel function, and ψ

′′

S(t) decreases monotonically.

Lemma 4.2 [Bai et al. [1]] Let f1(α) be as defined in (21) and δ(v) be as defined in
(8). Then we have f

′′

1 (α) ≤ 2δ2ψ
′′

S(vmin − 2αδ). Because of the convexity of f1(α), we

will have f
′

1(α) ≤ 0 for any α less than or equal to the minimum value of f1(α), and vice
versa.

The following three Lemmas result from the preceding Lemma.
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Lemma 4.3 [Bai et al. [1]] f
′

1(α) ≤ 0 certainly holds if α satisfies the inequality

ψ
′

S(vmin)− ψ
′

S(vmin − 2αδ) ≤ 2δ. (24)

Lemma 4.4 [Bai et al. [1]] The largest step size α satisfying (24) is given by

α =
ρ(δ)− ρ(2δ)

2δ
.

Lemma 4.5 [Bai et al. [1]] Let α be as defined in Lemma 4.4. Then

α ≥ 1

ψ
′′
S (ρ(2δ))

.

We are able to demonstrate the following Lemma.

Lemma 4.6 [Lemma 4.6 from [11]] Let ρ and α be as determined in Lemma 4.5. If
ΦS(v) ≥ τ ≥ 1, then we have

α ≥ 2S

2S + S (4δ + 2)
2
Sq + q

∑S
j=1 j (4δ + 2)

jq+1
Sq

.

Denoting

α̃ =
2S

2S + S (4δ + 2)
2
Sq + q

∑S
j=1 j (4δ + 2)

jq+1
Sq

, (25)

we have α̃ is the default step size, and α̃ ≤ α.

Lemma 4.7 [Lemma 3.12 from [3]] Let h be a convex and twice differentiable func-
tion with h(0) = 0, h

′
(0) < 0, which reaches its minimum at t∗ > 0. If h

′′
is increasing

for t ∈ [0, t∗], then

h(t) ≤ th
′
(0)

2
, 0 ≤ t ≤ t∗.

The following result is of great importance.

Lemma 4.8 [Lemma 4.5 from [1]] If the step size α satisfies α ≤ α, then

f(α) ≤ −αδ2.

Lemma 4.9 Let ΦS(v) ≥ 1 and let α̃ be the default step size as defined in (25). Then
we have

f(α̃) ≤ − 2S

8
√
2(S + 8) (1 + 4qS)

[ΦS(v)]
Sq−1
2Sq . (26)

Proof. Since ΦS(v) ≥ 1, from (23), we have

δ ≥
√

1

2
ΦS(v) ≥

√
1

2
.

Due to Lemma 4.8, with α = α̃ and (25), this completes the proof.
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4.2 Iteration bound

Following the updating of µ to (1− θ)µ, we obtain

ΦS(v+) ≤ (ΦS)0 =
θn+ 2τ + 2

√
2τn

2(1− θ)
= L (n, θ, τ) .

After µ-update to (1 − θ)µ, it is necessary to count how many inner iterations are
required to come back to the situation where ΦS(v+) ≤ τ . We declare the value of
ΦS(v) after the updating of µ as (ΦS)0 and we denote by (ΦS)k , k = 1, 2, ...,K, the
subsequent values in the same outer iteration such that K represents the total number
of inner iterations per the outer iteration.

Lemma 4.10 [Lemma 14 from [3]] Let t0, t1, ..., tk be a sequence of positive numbers
such that

tk+1 ≤ tk − βt1−γ
k , k = 0, 1, ...,K − 1,

where β > 0 and 0 < γ ≤ 1, then K ≤
[
tγ0
βγ

]
.

Thus, it follows that

(ΦS)k+1 ≤ (ΦS)k − k (ΦS)
1−γ

, k = 0, 1, ...,K − 1,

with

κ =
2S

8
√
2(S + 8) (1 + 4qS)

, γ = 1− Sq − 1

2Sq
=
Sq + 1

2Sq
.

Lemma 4.11 Let K be the total number of inner iterations in the outer iteration.
Then we have

K ≤ 8
√
2q(S + 8) (1 + 4qS)

1 + Sq
[(ΦS)0]

Sq+1
2Sq .

Proof. By Lemma 1.3.2 from [3], we have

K ≤ [(ΦS)0]
γ

κγ = 8
√
2q(S+8)(1+4qS)

Sq+1 [(ΦS)0]
Sq+1
2Sq . This completes the proof.

Now, we estimate the total number of iterations of our algorithm.

We recall that the number of outer iterations is limited from above by
log
(
n
ϵ

)
θ

(see

Lemma II.17, page 116 in [5]). We can establish an upper bound on the total number of
iterations by multiplying the number of outer iterations by the number of inner iterations
such as

8
√
2q(S + 8) (1 + 4qS)

Sq + 1
[(ΦS)0]

Sq+1
2Sq

log
(
n
ϵ

)
θ

. (27)

In the methods of large-update with τ = O(n) and θ = Θ(1), we have

O
(
qSn

Sq+1
2Sq log

(n
ϵ

))
iterations complexity.

This is the best well-known complexity result for large-update methods.
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In the methods of small-update, the replacement of τ = O(1) and θ = Θ
(

1√
n

)
in

(27) does not provide the best possible bound. The best bound is obtained as follows.

By (18), with ψS(t) ≤
[
6+q(S+1)

8

]
(t− 1)2, t > 1, we have

ΦS(V+) ≤ nψS

(
1√
1− θ

σ

(
ΦS(V )

n

))
≤ n

[
6 + q(S + 1)

8

](
1√
1− θ

σ

(
ΦS(V )

n

)
− 1

)2

=
n (6 + q(S + 1))

8(1− θ)

(
σ

(
ΦS(V )

n

)
−
√
1− θ

)2

.

Using (19), we have

n (6+q(S+1))

8(1−θ)

(
σ

(
ΦS(V )

n

)
−
√
1−θ

)2

≤ n (6+q(S+1))

8(1−θ)

((
1+

√
2
ΦS(V )

n

)
−
√
1−θ

)2

=
n (6+q(S+1))

8(1−θ)

((
1−

√
1− θ

)
+

√
2
ΦS(V )

n

)2

≤ n (6 + q(S + 1))

8(1− θ)

(
θ+

√
2
τ

n

)2

=
(6+q(S+1))

8(1−θ)

(
θ
√
n+

√
2τ
)2

= (ΦS)0 ,

where we also use 1−
√
1− θ = θ

1+θ ≤ θ and ΦS(v) ≤ τ , utilizing this upper bound for
(ΦS)0, we obtain the following iteration bound:

8
√
2q(S + 8) (1 + 4qS)

Sq + 1
[(ΦS)0]

Sq+1
2Sq

log
(
n
ϵ

)
θ

.

Note now that (ΦS)0 = O(qS), and the iteration bound is given as follows:

O
(
q2S2

√
n log

(n
ϵ

))
iterations complexity.

5 Conclusion

In this work, we have improved the algorithmic complexity of IPM methods for LO
problems by a new kernel function. More specifically, we have proved the large-update
and small-update versions of the primal-dual algorithm based on a new kernel function
with a logarithmic barrier term defined by (1). This new kernel function has never been
mentioned before, and the resulting analysis is also different from others. Moreover, we
intend to extend this work in the future to semi-definite linear complementarity problems
(SDLCPs) based on this kernel function.
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