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1 Introduction

Conjugate gradient (CG) methods have been widely used for solving nonlinear uncon-
strained optimization problems due to their low memory requirements for implementa-
tion. Moreover, CG methods have been used in many applications such as regression
analysis, image restoration, electrical circuits, and many others.

The CG method is used to determine optimal solutions for the following optimization
problem:

min f(x), x ∈ Rn,

where f : Rn → R is a continuously differentiable function, and its gradient ∇f(xk) =
gk = g(xk) should exist. From the starting point (arbitrary or standard) x1 ∈ Rn, the
CG method generates a sequence of vectors xk by the iterative rule

xk+1 = xk + αkdk, k = 1, 2, . . . , (1)

in which xk represents the present iteration and αk > 0 represents a step size obtained
from the exact line search or an inexact line search. The search direction dk of the CG
method is defined by

dk =

{
−gk if k = 1,

−gk + βkdk−1 if k ≥ 2,
(2)

where βk is the update parameter. The following exact line search can be utilized to
obtain the step size αk:

f(xk + αkdk) = min
α

f (xk + αdk). (3)

However, Eq.(3) is computationally expensive because it requires unidimensional opti-
mization to achieve the step size and many iterations to reach convergence. To avoid
this problem, the inexact line search is a dominant approach in computing the step size.
The most popular inexact line search is the strong Wolfe–Powell (SWP) line search [1,2],
which is defined as

f(xk + αkdk) ≤ f(xk) + δαkg
T
k dk, (4)

|g(xk + αkdk)
T dk| ≤ σ|gTk dk| (5)

so that 0 < δ < σ < 1.
A version of the Wolfe–Powell line search is the weak Wolfe–Powell (WWP) line

search, which is defined by (4) and

g(xk + αkdk)
T dk ≥ σgTk dk.

The most famous classical formulae of the CG methods are the Hestenes–Stiefel (HS)
[3], Fletcher–Reeves (FR) [4], and Polak–Ribiere–Polyak (PRP) [5] methods, which are
defined by the following update parameters, respectively:

βHS
k =

gTk yk−1

dTk−1yk−1
, βFR

k =
∥gk∥2

∥gk−1∥2
, and

βPRP
k =

gTk yk−1

∥gk−1∥2
, where yk−1 = gk − gk−1.
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Powell in [6] provided a counterexample showing that there exists a non-convex func-
tion for which the PRP and HS methods fail to satisfy the convergence properties even if
the exact line search is employed. Powell recommended the use of nonnegative paremeters
βHS
k and βPRP

k to achieve the convergence properties of the CG method. Gilbert and No-
cedal [7] proved that the nonnegative PRP or HS method defined by βk = max{βPRP

k , 0},
is globally convergent with arbitrary line searches.

The descent condition (downhill condition) plays a crucial role in the convergence of
the CG method and its robustness, and it is defined by

gTk dk < 0. (6)

Al-Baali [8] proposed another version of the downhill condition called the sufficient
descent condition, which also plays a significant role in the convergence of the CGmethod.
Al-Baali proposed the condition

gTk dk ≤ −c∥gk∥2 ∀k ∈ N (7)

to establish the global convergence properties of βFR
k . More precisely, if there exists

a constant c > 0 satisfying (7), then the search direction dk guarantees the sufficient
descent condition.

Based on the quasi-Newton method, the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
method and the limited-memory BFGS (LBFGS) method, and using Eq.(2), Dai and
Liao [9] proposed the conjugacy condition

dTk yk−1 = −tgTk sk−1 (8)

such that sk−1 = xk − xk−1 and t ≥ 0. In the case of t = 0, Eq.(8) is considered as
the classical conjugacy condition. Using Eqs. (2) and (8), Dai and Liao [9] proposed the
following CG formula:

βDL
k =

gTk yk−1

dTk−1yk−1
− t

gTk sk−1

dTk−1yk−1
. (9)

However, βDL
k cannot satisfy the descent condition and convergence properties similar

to βPRP
k and βHS

k because βDL
k is not nonnegative in general. Thus, Dai and Liao [9]

replaced the formula (9) by

βDL+
k = max{βHS

k , 0} − t
gTk sk−1

dTk−1yk−1
. (10)

However, βDL+
k cannot satisfy the descent property in some cases. Therefore, Dai and

Liao [9] restarted (10) using a negative gradient (steepest descent) when βDL+
k fails

to satisfy inequality (7). Another method for determining the optimal parameter t was
proposed by Babaie-Kafaki and Ghanbari [10,11], where they rewrote the search direction
(Eq.(2)) with βDL

k , and based on Perry [12], as follows: dk+1 = −Qk+1gk+1, where

Qk+1 = I − sky
T
k

sTk yk
+ t

sks
T
k

sTk yk
. Babaie-Kafaki and Ghanbari [10] proposed the following

adaptive choices for t:

t =
sky

T
k

∥sk∥2
+
∥yk∥
∥sk∥

and t =
∥yk∥
∥sk∥

.
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Andrei in [13] proposed a CG method with the parameter

βDL∗
k = max

{
yTk gk
yTk sk

, 0

}
− t∗k

sTk gk+1

yTk sk
,

where t∗k =
yT
k sk

∥sk∥2 . Hager and Zhang [14, 15] presented a modified CG parameter that

satisfies the descent property for any inexact line search with gTk dk ≤ −(7/8)∥gk∥2. This
new version of the CG method is globally convergent whenever the line search satisfies
the WWP line search. This formula is expressed by

βHZ
k = max{βN

k , ηk},

where βN
k = 1

dT
k yk

(
yk − 2dk

∥yk∥2

dT
k yk

)T
gk, ηk = − 1

∥dk∥min{η,∥gk∥} , and η > 0 is a constant.

Note that, if t = 2∥yk∥2

sTk yk
, then βN

k = βDL
k . Zhang et al. [16] proposed a new parameter

for Eq.(9) as follows:

t =
∥yk∥2

sTk yk
− 1

4

sTk yk
∥sk∥2

.

Yao et al. [2] proposed three terms of CG with a new choice of t as follows:

dk+1 = −gk+1 +

(
gTk yk − tkg

T
k+1sk

yTk dk

)
dk +

gTk+1dk

yTk dk
yk.

Based on the SWP line search, Yao et al. [2] selected tk to satisfy the descent condition

tk >
∥yk∥2

yTk sk
.

Yao et al. [2] also proposed a theorem stating that if tk is close to ∥yk∥2

yT
k sk

, then the

search direction results in a zigzag search path. Therefore, they selected the following
choice for tk:

tk = 1 + 2
∥yk∥2

yTk sk
.

Al-Baali et al. [17] proposed a new CG version called the G3TCG that offers many
selections of CG parameters. They found that the G3TCG method is more efficient than
βHZ
k in some cases and competitive in some other cases.

In this research, we propose a new CG iterative formula based on a modified parame-
ter of the Dai–Liao conjugacy condition of the CG method with the restart property. The
convergence of the proposed modified CG method is analyzed under standard assump-
tions. Numerical experiments are performed to illustrate the superiority of the proposed
method.

The highlighted results are achieved in the subsequent sections organized in the fol-
lowing manner. A novel CG formula is proposed in Section 2, as well as underlying
motivation. The convergence analysis of the modified CG method is presented in Section
3. Section 4 includes the results of numerical experiments and their discussion.
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2 Proposed CG Formula and Its Motivation

The CG method with βDL
k cannot satisfy the descent condition, but βDL

k inherits the
conjugacy condition. To improve the properties of βDL

k , we used βAZPRP
k as presented

by Alhawarat et al. [23] to propose a new nonnegative CG method that can satisfy the
sufficient descent condition and global convergence properties with the SWP line search
as follows:

βAZPRP
k =


∥gk∥

2−µk|gT
k gk−1|

∥gk−1∥2 , ∥gk∥2 > µk

∣∣gTk gk−1

∣∣ ,
0, otherwise.

The proposed CG update parameter is a modification of βDL
k and βHS

k , with the
restart criterion depending on the Lipschitz constant used in the study conducted by
Alhawarat et al. [23]. The modified formula is expressed as

βAZHS
k =


∥gk∥2−µk|gT

k gk−1|
dT
k−1yk−1

− 1
αk

µk
gT
k sk−1

dT
k−1yk−1

, ∥gk∥2 > µk

∣∣gTk gk−1

∣∣ ,
− 1

αk
µk

gT
k sk−1

dT
k−1yk−1

, otherwise,
(11)

where ∥·∥ represents the Euclidean norm and µk is defined as follows:

µk =
∥sk−1∥
∥yk−1∥

.

In the first case of the equality (11), we can note that

βAZHS
k ≤ ∥gk∥2

dTk−1yk−1
− 1

αk
µk

gTk sk−1

dTk−1yk−1
. (12)

It is worth noting that the formula (11) inherits the advantages of βDL
k , βHS

k , and
βAZPRP
k . Moreover, as we will see in the next sections, the new formula satisfies the

descent condition and the global convergence properties. The usage of the proposed
parameter βAZHS

k in (11) leads to the novel CG method described in Algorithm 2.1.

Algorithm 2.1 CG method based on βAZHS
k .

Step 1 Set a starting point x1. The initial point can be arbitrary or standard for
scientific functions. The initial search direction is the negative gradient, i.e., d1 =
−g1. Let k ← 1.

Step 2 If the stopping condition is satisfied, then stop.

Step 3 Compute the search direction dk based on Eq.(2) using Eq.(11).

Step 4 Compute the step size αk using Eqs.(4) and (5).

Step 5 Update xk+1 based on Eq.(1).

Step 6 Set k ← k + 1 and go to Step 2.
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3 Convergence Analysis of βAZHS
k

To perform the convergence analysis of the modified CG method, we consider the follow-
ing assumptions.

Assumption 1
A. The level set Φ = {x|f(x) ≤ f(x1)} is bounded. In other words, a positive

constant B exists so that

∥x∥ ≤ B, ∀x ∈ Φ.

B. In some neighborhood P of Φ, f is continuously differentiable, and its gradient is
Lipschitz continuous. In other words, ∀x, y ∈ P,∃L > 0 so that

∥g(x)− g(y)∥ ≤ L ∥x− y∥ .

This assumption implies that there exists a positive constant γ̂ such that

∥g(x)∥ ≤ γ̂, ∀x ∈ P.

Theorem 3.1 Let the sequences {gk} and {dk} be obtained using Eqs.(1) and (2), and
βAZHS
k , where αk is computed using the SWP line search in Eqs.(4) and (5). If σ ∈

(0, 0.5), then the descent condition provided in (7) holds.

Proof. The proof is carried out for two cases.
Case 1: ∥gk∥2 > µk

∣∣gTk gk−1

∣∣.
This assumption implies

βAZHS
k =

∥gk∥2 − µk

∣∣gTk gk−1

∣∣
dTk−1yk−1

− 1

αk
µk

gTk sk−1

dTk−1yk−1
.

Multiplying (2) by gTk , we can conclude that

gTk dk = gTk (−gk + βkdk−1) = −∥gk∥2 + βkg
T
k dk−1

≤ −∥gk∥2 +
∥gk∥2∣∣dTk−1yk−1

∣∣ ∣∣gTk dk−1

∣∣− µk

∥∥gTk dk−1

∥∥2
dTk−1yk−1

.

The usage of the SWP line search leads to the inequality∣∣gTk dk−1

∣∣∣∣dTk−1yk−1

∣∣ ≤ σ

1− σ
.

Thus,

gTk dk ≤ −∥gk∥
2
+

σ∥gk∥2

(1− σ)
= −∥gk∥2

(
1− σ

1− σ

)
= −c∥gk∥2.

Case 2: ∥gk∥2≤µk

∣∣gTk gk−1

∣∣.
This assumption implies

βAZHS
k = − 1

αk
µk

gTk sk−1

dTk−1yk−1
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and further
gTk dk = gTk (−gk + βkdk−1) = −∥gk∥2 + βkg

T
k dk−1

≤ −∥gk∥2 +

(
− µk

αk−1

gTk sk−1

dTk−1yk−1

)
gTk dk−1

= −∥gk∥2 − µk

∥∥gTk dk−1

∥∥2
dTk−1yk−1

.

Since the SWP line search is used, it follows that dTk−1yk−1 > 0, and further

gTk dk ≤ −c∥gk∥
2
,

which completes the proof.

Lemma 3.1 shows that if L > 1, then equation (13) holds. Note that if L ≪ 1, then

∥gk∥2 > µk

∣∣gTk gk−1

∣∣ can not be satisfied.

Lemma 3.1 If ∥gk∥2 > µk

∣∣gTk gk−1

∣∣ and L > 1, then

∥gk∥2 −
1

L

∣∣gTk gk−1

∣∣ ≤ L
∣∣∣∥gk∥2 − ∣∣gTk gk−1

∣∣∣∣∣ . (13)

Proof. The proof is performed using contradiction. Suppose

∥gk∥2 −
1

L

∣∣gTk gk−1

∣∣ > L
∣∣∣∥gk∥2 − ∣∣gTk gk−1

∣∣∣∣∣ ,
and divide both sides by L:

∥gk∥2

L
− 1

L2

∣∣gTk gk−1

∣∣ > ∣∣∣∥gk∥2 − ∣∣gTk gk−1

∣∣∣∣∣ . (14)

Using Assumption 1, the following relationship is derived:

∥gk∥2 > µk

∣∣gTk gk−1

∣∣ > 1

L

∣∣gTk gk−1

∣∣ .
If L > 1, we conclude that inequality (14) is not true, which results in a contradiction.
Thus, inequality (13) holds.

The following Lemma 3.2 indicates the step length always has a lower bound.

Lemma 3.2 [25]. Suppose that the objective function satisfies Assumption 1. If the step
length αk fulfills the SWP line search conditions (4) and (5), then

αk ≥
(1− σ)

∣∣gTk dk∣∣
L∥dk∥2

.

Lemma 3.3 Let Assumption 1 hold. Consider any form of Eqs.(1) and (2) with the
step size αk satisfying the SWP line search, where the search direction dk is descent.
The following inequality is obtained:

∞∑
k=0

(gTk dk)
2

∥dk∥2
<∞. (15)
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The condition presented in inequality (15) is called the Zoutendijk condition [25] and
plays an important role in proving the convergence properties of the CG method. We
use the contradiction technique with (15) to prove lim inf

k→∞
∥gk∥ = 0.

Moreover, (15) holds for the exact and SWP line searches. By substituting (7) into
(15), we obtain

∞∑
k=0

∥gk∥4

∥dk∥2
<∞. (16)

Lemma 3.4 If ∥gk∥2 > µk

∣∣gTk gk−1

∣∣ is satisfied, then µk = ∥sk−1∥
∥yk−1∥ is bounded above and

below.

Proof. Since ∥gk∥2 > µk

∣∣gTk gk−1

∣∣ > 1
L

∣∣gTk gk−1

∣∣, based on Assumption 1, it follows
that 0 < µk ≤ E, where E denotes a positive constant. Moreover, if yk+1 = 0, this
means xk+1 = xk and it is known that xk+1 = xk + αkdk. Thus, αkdk = 0. However, by
Lemma 3.2, we conclude that αk > 0. This means that dk = 0. The usage of Theorem
3.1 and Lemma 3.3 leads to a contradiction.

Dai et al. [26] presented the following Theorem 3.2, which is also useful for proving
the global convergence properties of CG methods.

Theorem 3.2 Suppose that Assumption 1 holds. Consider any CG method in the form
of Eqs.(1) and (2), where dk is a descent direction and αk is obtained using the SWP
line search. If

∞∑
k≥1

1

∥dk∥2
=∞,

then
lim inf
k→∞

∥gk∥ = 0.

Global convergence properties for the convex functions

In the following theorem, if f(x) is a uniformly convex function, then the CG method
satisfies βAZHS

k strong global convergence properties.

Theorem 3.3 Suppose that Assumption 1 holds. Consider the CG method in the form
of Eqs.(1) and (2) with βAZHS

k , L > 1, and dk as a descent direction, where αk

is obtained using the SWP line search. If f(x) is a uniformly convex function, then
lim infk→∞ ∥gk∥ = 0.

Proof. Since the function f(x) is uniformly convex, there exists a positive constant
ϖ satisfying

ϖ∥x− y∥2 ≤ (∇f(x)−∇f(y))T (x− y)

for all x, y ∈ P. Thus,
dk−1yk−1 ≥ ϖαk−1∥dk−1∥2 (17)

and

βAZHS
k =

∥gk∥2 − µk

∣∣gTk gk−1

∣∣
dTk−1yk−1

− µk

αk−1

gTk sk−1

dTk−1yk−1

≤
∥gk∥2 − 1

L

∣∣gTk gk−1

∣∣
dTk−1yk−1

− µk

αk−1

gTk sk−1

dTk−1yk−1
.
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An application of inequalities (17) and (13) gives

βAZHS
k ≤ L ∥gk∥ (∥gk − gk−1∥)

ϖαk−1∥dk−1∥2
+ E

∣∣gTk sk−1

∣∣
ϖα2

k−1∥dk−1∥2

≤ L ∥gk∥ ∥gk − gk−1∥
ϖαk−1∥dk−1∥2

+ E
∥gk∥ ∥sk−1∥

ϖα2
k−1∥dk−1∥2

.

Applying Assumption 1, we obtain

βAZHS
k ≤ L2 ∥gk∥αk−1 ∥dk−1∥

ϖαk−1∥dk−1∥2
+ E

∥gk∥ ∥dk−1∥
ϖαk−1∥dk−1∥2

≤ L2 ∥gk∥
ϖ ∥dk−1∥

+ E
∥gk∥

ϖαk−1 ∥dk−1∥
.

Based on Eq.(2), it can be obtained that

∥dk∥ ≤ ∥gk∥+ |βk| ∥dk−1∥

≤ ∥gk∥+
∥gk∥
∥dk−1∥

(
L2

ϖ
+

E

ϖαk−1

)
∥dk−1∥

≤ γ̂

(
1 +

(
L2

ϖ
+

E

ϖαk−1

))
.

Thus, Theorem 3.2 leads to the conclusion

lim inf
k→∞

∥gk∥ = 0

and completes the proof.

Global convergence for βAZHS
k with the SWP line search for general functions

Using Property(*) and some lemmas, Gilbert and Nocedal [7] proved the global conver-
gence of nonnegative PRP and HS methods. Because our modification is nonnegative
and satisfies Property(*), by using the other lemmas presented below, we perform our
proof in the same way as in [7]. This property is defined as follows.
Property(*)
Consider any CG method in the form of Eqs.(1) and (2). Assume

0 < γ ≤ ∥gk∥ ≤ γ̂ (18)

for all k ≥ 1. The CG method then inherits Property(*) if for ∀k, there exist constants
b > 1 and λ > 0 such that |βk| ≤ b and ∥sk∥ ≤ λ, which implies that |βk| ≤ 1

2b .
Lemma 3.5 shows that βAZHS

k satisfies Property(*).

Lemma 3.5 Consider a CG method in the form of Eqs.(1) and (2) using βAZHS
k with

L > 1. Lemma 3.1 holds true, then βAZHS
k satisfies Property(*).

Proof. Let b = 2Lαk−1γ̂
2+Bγ̂

αk−1L(1−σ)cγ2 ≥ 1, and let λ ≤ (1−σ)cγ2

2(L2+ E
αk−1

)γ̂b
. Then the following

inequality holds:

βAZHS
k ≤

∥gk∥2 − µk

∣∣gTk gk−1

∣∣
dTk−1yk−1

− µk

αk−1

gTk sk−1

dTk−1yk−1
.
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Inequalities (13) and (18) are a basis for the inequalities

βAZHS
k ≤

∥gk∥2 +
∣∣gTk gk−1

∣∣
dTk−1yk−1

+
E

αk−1

∣∣gTk sk−1

∣∣
dTk−1yk−1

≤ 2γ̂2

(1− σ)cγ2
+

EBγ̂

αk−1L(1− σ)cγ2
=

2Lαk−1γ̂
2 + EBγ̂

αk−1(1− σ)cγ2

= b > 1.

Further, ∥sk∥ ≤ λ gives

βAZHS
k ≤

∥gk∥2 − µk

∣∣gTk gk−1

∣∣
dTk−1yk−1

− µk

αk−1

gTk sk−1

dTk−1yk−1

≤ L ∥gk∥ ∥gk − gk−1∥
dTk−1yk−1

+
E

αk−1

∥gk∥ ∥sk−1∥
dTk−1yk−1

≤ L2 ∥gk∥ ∥sk−1∥
dTk−1yk−1

+
E

αk−1

∥gk∥ ∥sk−1∥
dTk−1yk−1

≤
(L2 + E

αk−1
) ∥gk∥ ∥sk−1∥

dTk−1yk−1

≤
(L2 + E

αk−1
)γ̂λ

(1− σ)cγ2
=

1

2b
.

Thus, the proof is complete.

Lemma 3.6 and Lemma 3.7 are similar to Lemma 4.1 and Lemma 4.2 presented by
Gilbert and Nocedal in [7].

Lemma 3.6 Assume that Assumption 1 holds and the sequences {gk} and {dk} are
generated using Algorithm 1, where the step size αk is computed via the SWP line search
so that the sufficient descent condition holds. If βk ≥ 0, there exists a constant γ > 0
such that ∥gk∥ > γ for all k ≥ 1. Then dk ̸= 0 and

∞∑
k=0

∥uk+1 − uk∥2 <∞,

where uk = dk

∥dk∥ .

Proof. The assumption dk = 0, based on the sufficient descent condition, leads to
gk = 0. So, dk ̸= 0 as well as

∥gk∥ ≥ γ, where γ > 0. (19)

Eq.(11) can be divided into two parts as follows:

β
(1)
k =

∥gk∥2 − µk

∣∣gTk gk−1

∣∣
dTk−1yk−1

, β
(2)
k = − µk

αk−1

gTk sk−1

dTk−1yk−1
.
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Then the following values can be defined:

ξ =

∥∥∥−gk + β
(2)
k dk−1

∥∥∥
∥dk∥

, ζ =
β
(1)
k ∥dk−1∥
∥dk∥

.

From the definition of uk, it can be derived that

uk =
dk
∥dk∥

=
−gk + (β

(1)
k + β

(2)
k )dk−1

∥dk∥
= ξ + ζ

dk−1

∥dk∥
= ξ + ζuk−1.

Since uk is a unit vector, it follows that ∥ξ∥ = ∥uk − ζuk−1∥ = ∥ζuk − uk−1∥ .
By using the triangle inequality and ζ > 0, one concludes

∥uk − uk−1∥ = 2 ∥ξ∥ . (20)

Using the definition of ξ, we obtain

∥ξ∥ ∥dk∥ =
∥∥∥−gk + β

(2)
k−1dk−1

∥∥∥ ≤ ∥gk∥+ ∥∥∥β(2)
k−1

∥∥∥ ∥dk−1∥ . (21)

By using the equations of SWP (Eq.(5)) and line search (Eq.(6)), one gets

dTk−1yk−1 ≥ (σ − 1)gTk−1dk−1,

∣∣∣∣∣ gTk dk−1

dTk−1yk−1

∣∣∣∣∣ ≤
(

σ

1− σ

)
.

Thus,

β
(2)
k = − µk

αk−1

gTk sk−1

dTk−1yk−1
≤ E

αk−1

∣∣gTk sk−1

∣∣
dTk−1yk−1

≤ E

αk−1

∥gk∥ ∥sk−1∥
dTk−1yk−1

.

By using Eq.(21), we obtain the following:

∥ξ∥ ∥dk∥ =
∥∥∥−gk + β

(2)
k−1dk−1

∥∥∥ ≤ ∥gk∥+ E

αk−1

∣∣∣∣∣ gTk dk−1

dTk−1yk−1

∣∣∣∣∣ ∥sk−1∥

≤ γ +
E

αk−1

(
σ

1− σ

)
B.

The application of Eq.(20) leads to

∥uk − uk−1∥ = 2 ∥ξ∥ = 2
γ + E

αk−1

(
σ

1−σ

)
B

∥dk∥
,

∥uk − uk−1∥2 = 4

(
γ + E

αk−1

(
σ

1−σ

)
B
)2

∥dk∥2
.

Utilizing Eq.(19), we obtain the following:

∞∑
k=1

1

∥dk∥2
≤ ∞,

which completes the proof.
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Lemma 3.7 Assume that Assumption 1 holds and the sequences {gk} and {dk} are
generated using Algorithm 1, where αk is computed via the WWP line search so that the
sufficient descent condition given in Eq.(7) holds and consider that the method satisfies
Property(*). Suppose also that Eq.(19) holds. Then there exists a constant λ > 0 so that
for any ∆ ∈ N and any index k0, there exists an index k > k0 that satisfies the following
inequality: ∣∣κλ

k,∆

∣∣ > λ

2
,

where κλ
k,∆ = {i ∈ N : k ≤ i ≤ k+∆−1, ∥si∥ > λ}, N denotes the set of positive integers,

and
∣∣∣κλ

k,∆

∣∣∣ denotes the number of elements in κλ
k,∆.

From Lemmas 3.5, 3.6 and 3.7, the convergence properties of Algorithm 1 with the
SWP line search can be satisfied in a manner similar to that used in Theorem 3.6 pre-
sented by Gilbert and Nocedal [7]. Therefore, the proof of the following theorem is
omitted.

Theorem 3.4 Assume that the sequences {gk} and {dk} are generated using Eqs.(1)
and (2) with the CG formula βAZHS

k , and let the step length satisfy Eqs.(4) and (5). If
Lemmas 3.5, 3.6, and 3.7 are true, then lim infk→∞∥gk∥ = 0.

Note that if Lemma 3.1 does not hold true, then it is enough to show that

βAZHS
k =

∥gk∥2 − µk

∣∣gTk gk−1

∣∣
dTk−1yk−1

satisfies Property (*) similar to Lemma 3.3 in [23].
The following theorem shows that if the second case of equation (11) holds, i.e.,

βAZHS
k = − 1

αk
µk

gTk sk−1

dTk−1yk−1
, (22)

then we will obtain the result stated in Theorem 3.6.

Theorem 3.5 Assume that Assumption 1 holds. Consider the conjugate gradient
method in (1) and (2) with equation (22), where dk is a descent direction and αk is
obtained by the strong Wolfe line search. Then lim infk→∞∥gk∥ = 0.

Proof. We will prove this theorem by contradiction. Suppose Theorem 3.5 is not
true. Then equation (19) holds and

∥dk∥2 = ∥gk∥2 − 2βkg
T
k dk−1 + β2

k∥dk−1∥2

≤ ∥gk∥2 + 2 |βk|
∣∣gTk dk−1

∣∣+ β2
k∥dk−1∥2

≤ ∥gk∥2 +
2E

αk

∥gk∥ ∥sk−1∥
(1− σ)

∣∣gTk−1dk−1

∣∣ (σ) ∣∣gTk−1dk−1

∣∣+ E2

α2
k

(σgTk−1dk−1)
2 ∥sk−1∥2

(1− σ)2
∣∣gTk−1dk−1

∣∣2
≤ ∥gk∥2 +

2E

αk

∥gk∥ ∥sk−1∥
(1− σ)

σ +
E2

α2
k

σ2 ∥sk−1∥2

(1− σ)2
.
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Further calculation gives

∥dk∥2

∥gk∥4
≤ ∥gk∥

2

∥gk∥4
+

2E

αk

∥gk∥ ∥sk−1∥
(1− σ)∥gk∥4

σ +
E

α2
k

σ2 ∥sk−1∥2

(1− σ)2∥gk∥4

≤ 1

∥gk∥2
+

2E

αk

∥sk−1∥
(1− σ)∥gk∥3

σ +
E2

α2
k

σ2 ∥sk−1∥2

(1− σ)2∥gk∥4

≤ 1

∥gk∥2
+

2E

αk

∥sk−1∥
(1− σ)∥gk∥3

σ +
E2

α2
k

σ2 ∥sk−1∥2

(1− σ)2∥gk∥4
.

If
∥gk∥m = min

{
∥gk∥2, ∥gk∥3, ∥gk∥4

}
, m ∈ N,

then it follows that

∥dk∥2

∥gk∥4
≤ 1

∥gk∥m
(
1 +

2E

αk

λ

(1− σ)
σ +

E2

α2
k

σ2λ2

(1− σ)2

)
.

Also,

R =

(
1 +

2E

αk
λσ +

E2

α2
k

σ2λ2

(1− σ)2

)
initiates

∥dk∥2

∥gk∥4
≤ R

∥gk∥m
≤ R

k∑
i=1

1

∥gi∥m
and

∥gk∥4

∥dk∥2
≥ ϵm

kR
.

Therefore,
∞∑
k=0

∥gk∥4

∥dk∥2
=∞.

This result contradicts (15). Therefore, lim infk→∞ ∥gk∥ = 0, completing the
proof.

4 Numerical Results and Discussion

To analyze the efficiency of the proposed method, we use more than 200 standard test
functions presented in Table 1. These test functions are available from the CUTEst
library [28] with the CUTEr/st test functions and SIF extension available on the website

http://www.cuter.rl.ac.uk/Problems/mastsif.shtml

The numerical results of CG Descent 5.3 were obtained by running the code provided
by Hager and Zhang [29] with memory set to 0. The numerical results of AZHS are
obtained using a modified CG Descent code with the SWP line search, employing σ = 0.1

and δ = 0.01. If µk > 1, then we conclude that L < 1 and ∥gk∥2

|gT
k gk−1| > 1. Thus, it is

reasonable to modify Eq.(11) as follows:

βAZHS
k =


∥gk∥2−|gT

k gk−1|
dT
k−1yk−1

, if ∥gk∥2 >
∣∣gTk gk−1

∣∣ ,
∥gk∥2−µk|gT

k gk−1|
dT
k−1yk−1

− 1
αk

µk
gT
k sk−1

dT
k−1yk−1

, if ∥gk∥2 > µk

∣∣gTk gk−1

∣∣ ,
− 1

αk
µk

gT
k sk−1

dT
k−1yk−1

, otherwise.

http://www.cuter.rl.ac.uk/Problems/mastsif.shtml


NONLINEAR DYNAMICS AND SYSTEMS THEORY, 25 (3) (2025) 266–287 279

Note that if βAZHS
k =

∥gk∥2−|gT
k gk−1|

dT
k−1yk−1

, then βAZHS
k ≤ βHS

k , thus the proof will be

similar to that presented in [7].
The host computer used was an AMD A4-7210 APU with AMD Radeon R3 Graphics,

4 GB RAM, and a 64-bit operating system. The graphs on the following results were
obtained using SigmaPlot, a performance measure introduced by Dolan and Moré [30].

This performance measure compares the performance of a set of solvers S on a set of
problems ρ. For ns solvers and np problems in S and ρ, respectively, the measure tp,s is
the computation time (e.g., the number of iterations or CPU time) required for solver s
to solve problem p.

To establish a baseline for comparison, the performance of solver s on problem p is
scaled relative to the best performance of any solver in S on that problem, yielding the
ratio

rp,s =
tp,s

min{tp,s : s ∈ S}
.

A parameter rM ≥ rp,s for all p, s is selected such that rp,s = rM if and only if solver
s cannot solve problem p. To obtain an overall assessment of the performance of each
solver, we define the measure

Ps(t) =
1

np
size{p ∈ ρ : rp,s ≤ t}.

Ps(t) is the probability for solver s ∈ S that the performance ratio rp,s will be within
a factor t ∈ R of the best possible ratio. If we denote the cumulative distribution function
of the performance ratio as ps, then the performance measure ps : R→ [0, 1] for a given
solver is non-decreasing and piecewise continuous from the right. The value of ps(1) is
the probability that the solver will achieve the best performance among all solvers. In
general, a solver with higher values of Ps(t), which will lie closer to the upper right corner
of the figure, is preferable.

The numerical results are shown in Figures 1, 2, 3 and 4. Figure 1 depicts the number
of iterations, showing that the new modification significantly outperforms CG Descent
5.3. Figure 2 illustrates that the new modification, AZHS, outperforms CG Descent 5.3
in the number of function evaluations. Figures 3 and 4 show the performance based
on the number of gradient evaluations and CPU time, respectively. It is observed that
AZHS outperforms CG Descent 5.3 in CPU time and is significantly competitive with
CG Descent 5.3 in the number of function evaluations and gradient evaluations as the
latter used an approximate Wolfe line search with σ = 0.9 and δ = 0.1. Thus, we can
conclude that βAZHS

k outperforms CG Descent 5.3 in all figures.

5 Application to Heat Conduction Problem [32]

Suppose a rectangular flat plate with dimensions of 5 × 4 units generates heat [33].
Suppose the thermal conductivity k is fixed, and the heat production per unit area f is
a nonlinear function of the temperature M . Our objective is to define the temperature
of the slab such that the temperature outside the perimeter of the slab is zero. Poisson’s
equation classifies the temperature distribution within this region as follows:

k

[
∂2M

∂x2
+

∂2M

∂y2

]
+ f(M) = 0.
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Figure 1: Performance measure based on the number of iterations.

Figure 2: Performance measure based on the function evaluation.

Figure 3: Performance measure based on the gradient evaluation.
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Function Dim Function Dim Function Dim

AKIVA 2 FBRAIN2LS 4 OSCIPATH 10
ALLINITU 4 FLETCBV2 5000 PALMER1C 8
ARGLINB 200 FLETCHCR 1000 PALMER1D 7
ARGLINC 200 FMINSRF2 5625 PALMER2C 8
ARWHEAD 5000 FMINSURF 5625 PALMER3C 8
BARD 3 GENHUMPS 5000 PALMER4C 8
BDEXP 5000 GROWTHLS 3 PALMER5C 6
BDQRTIC 5000 GULF 3 PALMER6C 8
BEALE 2 HAHN1LS 7 PALMER7C 8
BIGGS3 6 HAIRY 2 PALMER8C 8
BIGGS5 6 HATFLDD 3 PARKCH 15
BIGGS6 6 HATFLDE 3 PENALTY1 1000
BIGGSB1 5000 HATFLDFL 3 PENALTY2 200
BOX2 3 HATFLDFLS 3 PENALTY3 200
BOX3 3 HEART6LS 6 PENALTY3 200
BOX 10000 HEART8LS 8 POWELLBSLS 2
BRKMCC 2 HELIX 3 POWELLSG 5000
BROYDNBDLS 10 HIELOW 3 POWER 10000
BROWNAL 200 HILBERTA 2 POWERSUM 4
BROWNBS 2 HILBERTB 10 PRICE3 2
BROWNDEN 4 HIMMELBB 2 PRICE4 2
BROYDN7D 5000 HIMMELBF 4 QING 100
BRYBND 5000 HIMMELBG 2 QUARTC 5000
CAMEL6 2 HIMMELBH 2 RAT43LS 4
CHNROSNB 50 HUMPS 2 RECIPELS 3
CLIFF 2 HYDCAR6LS 29 ROSENBR 2
COSINE 10000 INDEF 5000 ROSENBRTU 2
CUBE 2 INDEFM 100000 S308 2
CURLY10 10000 INTEQNELS 12 SCHMVETT 5000
CURLY20 10000 JENSMP 2 SENSORS 100
CURLY30 10000 JIMACK 3549 SINEVAL 2
DENSCHNA 2 JUDGE 2 SINQUAD 5000
DENSCHNB 2 KOWOSB 4 SISSER 2
DENSCHNC 2 KSSLS 1000 SNAIL 2
DENSCHND 3 LANCZOS1LS 6 SPMSRTLS 4999
DENSCHNE 3 LANCZOS2LS 6 SROSENBR 5000
DENSCHNF 2 LANCZOS3LS 6 SSCOSINE 5000
DIXMAANA 3000 LIARWHD 5000 SSI 3
DIXMAANB 3000 LOGHAIRY 2 STREG 4
DIXMAANC 3000 LSC1LS 3 STRATEC 10
DIXMAAND 3000 LSC2LS 3 STRTCHDV 10
DIXMAANE 3000 LUKSAN11LS 100 TESTQUAD 5000
DIXMAANF 3000 LUKSAN12LS 98 THURBERLS 7
DIXMAANG 3000 LUKSAN13LS 98 TOINTGOR 50
DIXMAANH 3000 LUKSAN14LS 98 TOINTGSS 5000
DIXMAANI 3000 LUKSAN15LS 100 TOINTPSP 50
DIXMAANJ 3000 LUKSAN16LS 100 TOINTQOR 50
DIXMAANK 3000 MANCINO 100 TQUARTIC 5000
DIXMAANL 3000 MARATOSB 2 TRIDIA 5000
DIXMAANP 3000 MEXHAT 2 TRIGON1 10
DIXON3DQ 10000 MEYER3 3 TRIGON2 10
DJTL 2 MGH09LS 4 VANDANMSLS 22
DMN15332LS 66 MGH10LS 3 VARDIM 200
DQDRTIC 5000 MGH10SLS 3 VAREIGVL 50
ECKERLE4LS 3 MGH17LS 5 VESUVIALS 8
EDENSCH 2000 MISRA1BLS 2 VESUVIOULS 8
EGGCRATE 2 MISRA1CLS 2 VIBRBEAM 8
EG2 1000 MISRA1DLS 2 WAYSEA1 2
EIGENALS 2550 MODBEALE 20000 WAYSEA2 2
EIGENBLS 2550 MOREBV 5000 WOODS 4000
EIGENCLS 2652 MSQRTALS 1024 YATP1CLS 123200
ELATVIDU 2 MSQRTBLS 1024 YATP2CLS 123200
ENGVAL1 5000 NCB20 5010 YFITU 3
ENGVAL2 3 NELSONLS 3 ZANGWIL2 2
ENSOLS 9 NONCVXU2 5000
EXPFIT 2 NONDIA 5000

Table 1: Test functions.
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Figure 4: Performance measure based on the CPU time.

If k = 2 and f(M) = 20− 3
2M + 1

20M
2, there are 12 mesh points in total. Symmetry

reduces the problem to only four distinct temperatures.

2(M2 +M3 − 4M1) = −20 +
3

2
M1 −

1

20
M2

1 ,

2(M3 +M1 +M4 − 4M3) = −20 +
3

2
M3 −

1

20
M2

3 ,

2(M1 +M4 + 4M2) = −20 +
3

2
M2 −

1

20
M2

2 ,

2(2M3 +M2 − 3M4) = −20 +
3

2
M4 −

1

20
M2

4 .

These equations, expressed in powers of M1, are as follows:(
M2

1 − 190M1

)
+ 40 (M2 +M3 + 10) = 0,

M1 +
M2

3 − 150M3 + 400

40
+M4 = 0,

2M1 +
M2

2 − 190M2 + 400

40
+M4 = 0,(

M2
4 − 150M4

)
+ 40M2 + 80M3 + 400 = 0.

The objective function f is constructed by summing the squares of the functions
connected with each nonlinear equation as follows:

f(M1,M2,M3,M4, H1, H2, H3, H4, H5, H6) = Q1 +Q2 +Q3 +Q4,

where
Q1 = Q2

5, Q2 = Q2
6, Q3 = Q2

7, Q4 = Q2
8,

Q5 =
1

20

[
M2

1 +H1M1 +H2 (M2 +M3 +H3)
]
,

Q6 = 2

[
M1 +

M2
3 +H4M3

H2
+H5 +M4

]
,
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Q7 = 2

[
H6M1 +

M2
2 +H1M2

H2
+H5 +M4

]
,

Q8 =
1

20

[
M2

4 +H4M4 +H2M2 +H2H6M3 +H2H5

]
.

If

H1 = −190, H2 = 40, H3 = 10, H4 = −150, H5 = 10, H6 = 2,

let
M1 = x1, M2 = x2, M3 = x3, M4 = x4.

Then, we obtain the following function:

f(x1, x2, x3, x4) =

(
2(x2 + x3 − 4x1) + 20− 1.5x1 +

x2
1

20

)2

+

(
2(x1 − 3x3 + x4) + 20− 1.5x3 +

x2
3

20

)2

+

(
2(2x1 + x4 − 4x2) + 20− 1.5x2 +

x2
2

20

)2

+

(
2(x2 + 2x3 − 3x4) + 20− 1.5x4 +

x2
4

20

)2

.

We say that f(x1, x2, x3, x4) is the Heat Conduction Problem function. By using
Algorithm 1, we can find the values of x1, x2, x3, x4 as follows:

x1 = 4.8521, x2 = 6.0545, x3 = 6.4042, x4 = 8.1383.

The function value is 1.9631× 10−7.

6 Application to Image Restoration

Restoring damaged images is one of the most important applications of the CG method.
In this study, we applied Gaussian noise with a standard deviation of 25% to the original
images in Table 3. After that, we used Algorithm 1 to restore these images. To express
the efficiency of the proposed method, we made a comparison between Algorithm 1,
CG-Descent5.3, and DL+ in terms of the number of iterations, CPU time, and root-
mean-square error (RMSE).

We utilized the RMSE between the restored image and the original true image to
calculate the quality of the restored image:

RMSE =
∥ν − νk∥2
∥ν∥

.

The restored image is denoted by νk and the true image by ν. The RMSE determines
the quality of the restored image, in which lower values correspond to higher quality.
The results in Table 2 show that the new search direction outperforms CG-Descent5.3
and DL+ in terms of the number of iterations, CPU time, and the RMSE value. The
criteria for stopping is

∥xk+1 − xk∥2
∥xk∥2

< ε.

In this context, ϵ = 10−3. Note that if ϵ = 10−4 or ϵ = 10−6, then the RMSE remains
fixed, meaning that a fixed RMSE can have a variation in the number of iterations.

Table 3 below shows the outcomes of restoring the destroyed images using Algorithm
1, indicating that it can be regarded as an efficient approach.
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Image Algorithm Number of Iteration CPU Time (s) RMSE

Mandi 128 pixels DL+ 127 1.724e+000 0.1003
AZHS 126 1.663e+000 0.1002
CG-Descent5.3 134 1.825e-001 0.1004

Coins 128 pixels DL+ 135 1.542e+000 0.0832
AZHS 130 1.491e+000 0.0824
CG-Descent5.3 133 1.491e+000 0.0831

Mandi 256 pixels DL+ 120 1.856e+001 0.0519
AZHS 111 1.545e+001 0.0510
CG-Descent5.3 119 1.656e+001 0.0991

Coins 256 pixels DL+ 134 1.447e+001 0.0506
AZHS 120 1.164e+001 0.0501
CG-Descent5.3 130 1.564e+001 0.0508

Mandi 512 pixels DL+ 114 7.981e+001 0.0371
AZHS 105 6.755e+001 0.0360
CG-Descent5.3 116 7.314e+001 0.0472

Kids 512 pixels DL+ 57 6.955e+001 0.0377
AZHS 56 5.325e+001 0.0384
CG-Descent5.3 55 5.634e+001 0.0395

Coins 512 pixels DL+ 129 7.323e+001 0.0326
AZHS 128 5.248e+001 0.0324
CG-Descent5.3 127 6.323e+001 0.0503

Coins 1024 pixels DL+ 128 3.441e+002 0.0326
AZHS 110 2.549e+002 0.0172
CG-Descent5.3 124 2.897e+002 0.0289

Table 2: Numerical outcomes from the images with Gaussian noise with a 25% standard
deviation added to the original images using the Dai-Liao CG method, AZHS, as well as CG-
Descent5.3.

7 Conclusion

In this study, we investigate a modified Hestenes–Stiefel (HS) conjugate gradient (CG)
method based on the Dai–Liao conjugacy parameter, with the restart property depending
on L. The newly modified CG method inherits global convergence properties and a
sufficient descent condition through the SWP line search. Moreover, the numerical results
are efficient and competitive with CG Descent5.3. Applications to solving the Heat
Conduction Problem and image restoration are presented. In future studies, we will
focus on the Lipschitz constant because it plays an essential role in the efficiency and
robustness of the CG method.
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Image Original Image Image with Gaussian Noise Restored Image

Mandi (128 pixels)

Mandi (256 pixels)

Coins (256 pixels)

Kids (512 pixels)

M.83 (1024 pixels)

Table 3: Restoration of the destroyed images of Mandi, Coins, Kids, as well as M.83 by reducing
z via Algorithm 1.
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