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1 Introduction
In this work, we study the following Timoshenko system with fractional delays:

prou =k (pa + ), + 01070 (t — 5) + arpr = 0" ¢,

potet — bbus + k (00 +¥) + 20y 0 (t — 5) + gty = []7 24,

oz =0,t) =¢(x=0,t) = p(z = L,t) =¢(z = L,t) =0,

@(‘Tﬂt = O) = @O(I)v QZJ(I’,t = O) = 1/10(95)7 (1)
pr(z,t =0) = p1(x), ¥t (z,0) = 1 (),

43 (mat_s) :fO ($7t—8)7t€ (073)7

wt (.’I},t—S) = 4Jo (J?,t—S),t S (075)7

where x € Q = (0,L),L > 0,t € R%,p1,p2,a1,a2,a1,02,b and k are positive real
constants. The constant s > 0 is the time delay and the exponents p and ¢ satisfy p > 2

* Corresponding author: mailto:chahrazed.messikh@univ-annaba.dz

(© 2025 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua299


mailto: chahrazed.messikh@univ-annaba.dz
http://e-ndst.kiev.ua

300 C. MESSIKH, N. BELLAL, S. LABIDI AND KH. ZENNIR

and g > 2. The functions g, 1, ¥, Y1, fo,go are the initial data belonging to suitable
spaces. The well known notation 9,"” stands for the generalized Caputo’s fractional
derivative, see [17,/18], it is defined as

1 t a
8f’ﬁu(t):m/o (t—s)"" e Py, (s) ds, O0<a<1, §>0.

The problem is considered without internal and external forces, this type of systems
has been introduced in [19]. It describes the transverse vibration of a thick beam of
length L, where ¢ is the transverse displacement of the beam, v is the rotation angle
of the filament of the beam, and p1, p2, k and b account for some physical properties of
the beam, see |[11]. In our case, the Timoshenko beam is subject to internal forces given
by fractional delay terms and frictional damping, and to external forces represented by
source terms. Physically, the occurrence of fractional delay terms in many systems can
lead to undesirable dynamics such as degraded performance, reduced robustness, or even
instability. Generally, these harmful effects are controlled by various dissipation terms;
for more results, see [1},2].

In the last decades, the study of the well-posedness and stability /instability of evolu-
tion equations with time delay has received considerable attention of researchers. Many
authors have shown that the time delay can be a source of instability that is asymptoti-
cally stable in the absence of time delay, see in this direction [3l[15]. More results in this
context can be found in [4,/5,[8L|10}20].

For the Timoshenko system with time delay, we mention the work [7], in which the
following problem is considered:

{ prpw (2,1) — k (oo + w)x (z,t) + a1 (z,t — 1) + a1 (2, ) =0, (2)
P2t (2, 1) — bgy (1) + K (0r + ) (2,8) + a2®) (z,t — 72) + a2t)y (z,t) = 0.
The authors obtained the exponential decay rate when the weights of time delays are
smaller than the corresponding damping. By adopting the spectral analysis approach,
A. Adnane et al. [1] showed the same result by considering the time delay of fractional
type rather than the time delay in the system (2) without sources.

In the absence of delay, the problem of existence and energy decay for a single wave
equation with damping and/or source terms has been extensively studied by several
authors. They showed the damping term assures global existence in the absence of
source term, whereas without the damping term, the source term causes finite time blow-
up of the solution. Hence, it is valuable to study the asymptotic behavior of a single
wave equation with terms having opposite effects, see [6,/12,/13]. For more results about
systems with various other damping and source terms, we refer the reader to [9,/14}/16].

The purpose of this paper is to analyse the influence of the damping terms, delay
terms and source terms on the solutions to . Under suitable assumptions, we establish
local existence, global existence and asymptotic behavior of solutions to . As far as
we know, this type of problems has never been considered before in the literature.

This paper is structured as follows. In Section [2] we state some assumptions, the
augmented problem , and lemmas for this analysis. Section [3|is devoted to the proof
of the local and global existence results by using the semi-group approach. In Section [4]
we state and prove the exponential decay rate result by using the multiplier method and
appropriate Lyapunov functional.
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2 Preliminaries and Tools

Here, we shall reformulate the initial problem (1)) into the augmented system (8). To
this end, we need the following results.

Lemma 2.1 (see [2], p. 286) Let w be a function defined for o € (0,1) as

2a—1

w)=v = , veR.

Then the relationship between the 7input” U and "output” O of the system
o (z,v,t) + (u2 +6) o (z,v,t) — U (x,t) w (v) =0,

o) = (7r)71 sin (ar) fj;o ¢ (z,v,t)w (v)dy,
where v € R, t >0, 8> 0, is given by
O =1y,
here,
8 L L -B(t—7)
I = — )Tl BT .
w(t) (o) /0 (t—1) e w(r) dr

Lemma 2.2 ( [9], p. 286) If
A€ Dg=C\|-o0,—0[,

then oo m2(y) _ »

/_OO A+ B+v2 dv = sin (arr) A+B)™
The constants a;, «; are supposed to satisfy

a;f* P <a; fori=1,2. (4)

As in (1], p. 1063), we can introduce new variables

21 (2,p8) = o1 (2t — p) p € (0,1), >0, (5)

2z (z,pt) =P (x,t —sp), p€(0,1), t>0. (6)
Then 4

zit (z,p,t) = — Fir (z,p,t), p€(0,1), t >0, (7)

with ¢ = 1,2. For v € R, p € (0,1), we denote z;; = % (z;) and z;, = 6% (z;), then by
and Lemma the initial system is equivalent to

P1p1e =k (pa + 1), + bi1o1 x @ + a1 = [P,

P2ttt — bbaw + K (02 + 1) + bagh ¥ @ + gty = [P[P72y,
od1¢ (T, v,t) + (1/2 + B) o1 (xz,v,t) — 21 (2, 1,t) w (v) =0,
SZ1t (xa P t) + 21p (.’ﬁ, |2 t) =0,

oot (x,v,t) + (1/2 + ,8) oo (x,v,1) — 29 (2, 1,t) w (v) =0,

SZot (l‘, P t) + 22p (xa j2 t) =0, (8)
go(a::L,t):go(mzo,t):wx:L,t)zz/;(sz,t):O,

21($,p:07 ):@t($7t)722(xap: at):wt($7t)a

p(x,t =0) = po, pe(x,t=0) =1,

w(x7t:0) :¢07 ¢t(xvtzo) :wla
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where v € R and
—+o0

i xw = i (x,v,t) w (v) dv,

and
bi = (7) 'sin(am)a;, i=1,2.

To prove the dissipativity of the energy £, we need the following lemma.

Lemma 2.3 (See [2], p. 286) For z € L*(Q) and vp € L? (Q x (—o0,+00)), we
have

’fﬂz(x,p,t) fj;;w(u)gb(x, v, t) dv dx‘ < Ao [y |z (2, p,0)° da

+ 3 fQ = (V2 +8) ¢ (x, v, dv dx,

where

The energy associated to is defined by

5(15) =3 [plledl® + Elles + 01> + P2||%th||2 + b2 [|?]
+ Z fo fjoo |o; (z, v, t)| dv dx + Evlsfo fo |zi (x, p, t )\2 dp dz (9)
1H90||p el

where v; satisfies
Aobi <v; < oy — bZ‘Ao, 1= 1, 2. (10)

Lemma 2.4 Let hold. Then the energy (@) satisfies
dE(t) 2 ) ,
& <CLlo (Izz- (2, 1,1)]* + |2 (2,0, )] ) dz
2 b, rL ptoo 2 9
_.Zjlflfo f—oo (V “‘5) |pi (z,v,t)|” dv dz <0

for C >0 and b; = (7) " sin (ax) a;,i = 1,2.

Proof. By multiplying 1 by ¢; and integrating over (0, L), integrating by parts
and using the boundary conditions, we find

L
3 8 Ieel2 = Slell?] +k i (0x + ) @ar do+ o loe]

oo (12)
+b1 fOL ( joo 1 (z,v,t) w (s) dy) oy dr = 0.
Multiplying 2 by 1 and integrating over (0, L), we have
L
4 (21l + Sl 2 = L1le] + asllvall® + & Jy (o0 + ) 1 do ”

+b2 foL (fj_:: o2 (z,v,t) w (v) d;/) ¥y dz = 0.
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Multiplying (8); by bi¢; with (i,5) = (1,3), respectively (i,j) = (2,5), and integrating
over (0, L) x R, we obtain

/ /+°° (2dt [6i (2w + (v + B) |61 (1, v,1)] ) dv do
*bz/o z(x,lyt)/m () ¢ (z,,t) dv dz = 0.

— 00

(14)

Multiplying (8); by 2v;z; with (4, 7) = (1,4), respectively (i,j) = (2,6), and integrating
over (0,L) x (0,1), we have

— < sy, zi (z, p,t)|” dp dx
ﬁ{‘AA|< ) )

i f {|zi (2, 1,6)[% = |z (,0,0)]%| da =0,

Summing (12)), ( and ([15) and due to the fact that ¢ (z,t) = 21 («,0,¢),
Py (2,t) = 22 (x, O,t) we have

dé‘(t 22: (a; fOL |2 (gr;,O,t)\2 dt
—Zb fo zla:Otf o; (x,v,t)w (v) dv dx
_ ;bi fo ffoo (1/ —|—ﬂ) | (1/)|2 dv dx
b S 1 0) [ 6 (v ) 0 (v) v d
ey L 2
— > v fy lzi(z,1,0)] da.
i=1

Thanks to Lemmanand putting C' = min;—; 2 (v; — Aob;, a; — v; — b;Ag) >0, i = 1,2,
the estimate is established.

3 Unique Local and Global Weak Solution

Set u = ¢y and v = Y, and denote U = (gp,u,z/;,v,gbl,gbz,zl,zZ)T, then takes the
abstract form

{ Ui(t) = AU(t) + F(U(t)), (16)
Uo = (0, ¢1,%0,91,0,0, fo (—ps) , g0 (—ps))", for p € (0,1),

where the operator A is defined by

k b b k
AU = (u L (), — Lk — L0,y — — (0 + ) — f¢2*w— 22,
P1 1 1 P2 P2 P2

- (V2+ﬁ) $1+21 (J}, 1) w (V) 7_(1/2 + ﬁ) P2+22 (JJ, 1) w (V) 7_221/) (x,p) ) _§Z2p ('Ta p)) )

where

+oo
¢MW=/ bi (z,0) @ (v) dv, i=1,2,
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for ¢ = 1,2, the domain is given by

Uer : (pv) e (H* (D), (u,0) € (H} Q)
D(A) = zieLQ(Qle(O,l)) fori=1,2, w=2(,0),v=2(.,0),
) v € L?(Q x (o0, +00))  fori=1,2,
(v + B) ¢i — 2 (x,1) @ (1) € L* (Q x (—o00, +00))

where H is given as
H = (HY () x L (2))% x (L? (2 x (=00, +00)))” x (L2 (€ x (0,1)))?
and equipped with the inner product
(U, U),, =k [o (e + 1) (Pz + ) dr+b [oVuthe dx+ py [ uii + pa [0 d
30y [0 ) i) dv de 425 wis oy ) (0) 3 o) dp o

for all U = (@?17/71/;767(517&2)21722) .

Theorem 3.1 (Unique local weak solution) Assume that p > 2 and q¢ > 2. Let (@
hold. Then, for any Uy € H, the system @ has a unique local weak solution

UeC(0,T],H).
Moreover, if Uy € D (A), then
Ue C([0,T],D(A)nCH([0,T],H).
Proof. 1t will be proved that A is a maximal dissipative operator. We have

2 2
€0 — 1dU|? = (AU,U) < ~C > o lzi (@ L) dz —C > o la (2,0,0)]* dz

2
= % foL fj;o (y2 + B) i (x, v, t)|2 dv dx <0,
i=1

therefore A is dissipative.
Now, it will be shown that I — A is surjective. Indeed, let

F = (f1, f2. f3, f4, f5: for f7. fs)" € H, and look for U € D (A) such that (I — A)U = F.
This is equivalent to

L3 um & (o), 4 B e = o),

1+ 2) oLy, + £ (g +1

gy xw = fu(2), (17)

Z1 + %le:f'?(x)p) pE(O, )a
2+ 22, = fs(x,p) pe(0,1).

Suppose (¢,v) € (H& (Q))Q, then by 1 and 3, we obtain
u=p—f1€H (), (18)
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v=1— fy € H}(Q), (19)
and from 778, we get
1 (p) = P (w,0) b5 |1 (o) ar, (20)
0
29 (x,p) = € *P29(x,0) + se” /p e’ fs (z,7) dr. (21)
0
Using and , we have
u(x):zl(z,O):cp—fl (x)a (22)
v(z) = 22(2,0) = ¢ — f3 (). (23)

Substituting and respectively in and , we get, forall z € (2), p € (0,1),

z1(x,p) =e*Plp— f1(x)] + se fop e 5T fr (x,7) dr € L? (2 x (0,1)), (24)
w2 (wp) = e[ — fy (@) +se 0 [P e fi(0,7) dr € L2 (@ % (0,1)).

Returning back to (17)7,s, we find that
1p=58f7(x,p) — sz € L? (9 x (0,1)),22, = sfs (x,p) —s22 € L? (2 x (0,1)).
Using (L7)5 and (176, we obtain

fs+ 2 (x, 1)@ (V)
1+v24 4

fo+ 2 (x, 1)@ (v)
1+v24 4

(bl = € L2 (Q X (—OO, +OO)) ) (25)

o = € L* (9, x (—o0, +0)). (26)

Therefore

vé1 = ey s + 21 (2. 1) @ ()] € L2 ((0, L) x (~o0,40c))
Vb =ty s + 22 (2, 1) @ (1)] € L2 (2 x (~00, +00)).

Inserting ([17); and in (L7)2, respectively (L7)3, and in ([17)4, we have

14 so—,f’j(%+¢) = - b [EEEe oy (14 21)

1+ 22) g = Ly + £ (o +9) = fo - &2 | Bplle=0l ] o (27)

P2

(1+a2>f3
By replacing and for p=1in , we get
(1+M+ﬂ)s@fﬁ(%+w) :f2+(1+%)f1

P1

+o0 w(v) f5(v) b +oo w (l/
T ffoo 1+v248 dv, + 1f f 00 1+V2+ﬁdy’

(1+’ﬂe*s+%)¢— b+ o pe ) = fat (1452) o

b +00 w(v)fe(v) b +OO w*(v)
—2 [0 TRy dv+ 2fas [0 1+u2+ﬁdV

(28)
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where, for i=1, 2,

+o00 2 1
bis :bi/—oo %dV, fiz=h —86_8/0 e fr (z,7) dr,

and

1
f3,8 = f3 — 86_5/ €Tsf8 (.’E,T) dT.
0
_ - 2 . _ = .
Let (g,%) € (H§((0,L)))" . Multiply 1’ by p1¢ and 1) by p2t. Integrating by

parts, and summing the obtained result, we get
M (o,4:8,9) = L(@,%) , (29)
here, the bilinear form
M : (HY((0,1)) x HE((0,L)))” —» R
is defined by
(<P ¥;@,9) = (p1 +bue™* + @) ) Jo @ dx + (p2 + by ™ + ) [ Yi) da
+ka 2+ ) (@ + ) da:+bf0 iy de,

and the linear form )
L:(H}((0,L)” =R

by

L(p.0) = p1 fy fop do+ (o1 + npy) fy frpde — by Jy {72 ZEEED av odo
b2 fy {f_*;f =) ayhp do+ po f) fad do+ (pa + o) fy St da
+b1 f+oo 11/5:_,86@ fo f1—se* fol e fr (x,7) dr ¢ pdx

— 00

+by fjooj 1+V§'ﬁﬁdy fo f3 —se™® fol e fg (x,7) dr ¢ d.

It is not hard to see the bilinear operator M is coercive and continuous and L is continu-
ous. Then, applying the Lax-Milgram Theorem to find ¥ (@, z/;) € (H& ((0, L)))2 , We see

that the system has a unique weak solution (¢,) € (H} ((0, L)))Q. Owing to the
classical elliptic regularity, we find by that

(p.0) € (H ((0, L))"
It remains only to prove
V2 + B — 2 (v,1) w (v) € L* ((0,L) x (—00,+00)),i = 1,2.
Indeed, we have from 5 and 6,

(1/2 + 5) ¢ — 2 (2, 1)w (v) = f5 — ¢1 € L2 ((0,L) x (—00, +0)),
(u2 + ﬁ) b2 — 22 (x,1)w (V) = fo — ¢p2 € L? ((0, L) x (—00, +00)).

Therefore, U € D (A). Thus, the operator I — A is surjective. Now, we prove that
F: H—->H
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is locally Lipschitz. For U,U € H, we have

HF (U) -F (U) H%—L < C {HSD - @H?qé(g) + ”"/} - "Z}H%{[}(Q) . (30)

Thus, [ is locally Lipschitz. This completes the proof.
We show the global existence result. First, we introduce the following useful func-

tionals:
0=ty 3 lo1 (@0, O dv do+ Kllea + v

(31)
+2H¢ZL’”2 - ||90||£ + sv1 fQ f() |Zl ($7P, t)‘Q dp ’
12<t) = b2 fQ j;01|¢2 (.Z‘,I/, t)‘2 dl/ d-’If + %me||2 (32)
— (1112 + v fo fy 122 (2, p,0)* dp da,
R0 =3 Jo [73 161 (@, t) dv dof’ + Sllow + I + fllea |
(33)
_%HWH§+SU1 fQ fO |Z1 z,p, )l dp dl‘v
and p b e , ,
2() =% Jo [0 \¢>2(af v, t)* dv de + 3|y, (34)
2
- %‘WHZ + sv2 fQ fo |22 z, p, t)‘ dp dx.
We easily see that
1 1
E(t) = Sllprl + Sl + @) + T2 (0) (33)

Lemma 3.1 Suppose that conditions , p>2and q> 2 hold. Then, for Uy € H
satisfying

Bemas (e (22 0) et (2e0) T ) <1 0
I;(0) >0 fori=1,2,

we have for all t > 0,
I;(t) >0, fori=1,2.

Proof. As I; (0) > 0 for i = 1,2, by continuity of ¢ and 1, there exists T* < T such
that
Ii(t) >0 forallte[0,t*], i=1,2, (37)

and with a straight forward calculation, we can find

22 Ji(t) = ks + )2 + by fQ [ en (, v, 8))? dvda + Bjop, ||

(38)
T2ty [ e (e p O dp da 4 200 0) > Kl I+ Bl .
) =b g 22162 ) o do SH%IIQ (39)
+ 2(q 2 ) vy fQ fo |20 (z, v, 1)]* dv dr + Z51(t) > s |
Exploiting , ., and Lemman we find

b 2 2 2p 2p *
5 T T S S f 11 ) ) 4
2||¢ |* + kll@z + ¥ p_25(t) p_2€(0) or all t € [0,¢"] (40)
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and

b 2 2q 2q
— < < for al . 41
2||1/Jw|| _q—2g(t)_q—2€(0) or all t € [0,t"] (41)

Applying Sobolev-Poincaré’s inequality and taking into consideration , and ,
we get

p
lell < CEll1? < ., [VEllgs + il + 3l -

< CL(E©) 7 [Kllww + vl + Slnl?] < kllpw + 612 + §l1vll?

and
p—2

lellg < CHlallg = CL [ 25 @] T $lvel} < S} (43)
This implies that
L(t) >0 fori=1,2VYte][0,t"].

By repeating this procedure and using the fact that

. 2p = 2q T
p (_“P_ N
tl_lgjl max (C** (p — 25 (0)> , CL (q — 25 (0)> ) <1,

we can take T* = T.

Theorem 3.2 (Global existence) Assume that condition @, p>2andq> 2 are
satisfied. Then, for Uy € D(A) satisfying @, the solution of system is global in
time.

Proof. Tt suffices to show that [lg, + ¥[* + [[¢2(* + [[¢* + [[0e]* is bounded
independently of ¢.

Indeed, by , , , we get

E(0) > E@t) = 5 [lleell® + lbel?] + Ja(t) + Ja(t)

. -2 _
> min (3, G2k, 528) (ool + el + llew + I + 2],

which implies that

el + [0l + o + 0] + |0]|2 < CE(0),

where C' is a constant depending only on p, ¢, k and b.

4 Decay Rate Result

Our next step is devoted to the proof of the decay result to the problem . For this
purpose, we prepare some Lemmas and present some appropriate functionals. Firstly,
we define

2 2 .
o bi Foo
ki(t) = E /Qpigo;cpz dx + E 5/9/ (v* + B) | M; (z,v, ) dv de, (44)
i=1 i=1 —
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and ) )
t) = SZ/ / e |z (z,p,)° dp du, (45)
i=1 /270
where
M; (z,v,t) = /t ¢; (z,v, 2) dz -2 B / fé (x, —ps) dp+ @ (v) (46)
0 + 2 +5
with

(fo (@, =ps) 5 (), @' (2,1)) =

Lemma 4.1 [1] Let (¢, d1, 21, %, d2,22) be a regular solution of problem , then
we have

(V2 + ) M; (z,,1) = —sw<u>/ 2 (@ pt) dpt ¢ (2,8 @ (1) — i (2,1, 1)
0
and

Jo _+°°(1/ —|—B)¢Z(x v, t) M; (z,v,t) dv dz = [, ¢ ( :ct)f+oo¢l(m v,t)w (v) dv dx
szfO zi (z,p,t) _OO (v) ¢i (z,v,t) dv dp dx—fﬂfj;owl(x,u,tﬂ dv dx,i=1,2.

Lemma 4.2 [1] Let (p, ¢1, 21,9, ¢2,22) be a regular solution of the problem (),
then we have

‘fQ +oo = (v + B) [ M; (v, H? dv dx’ < 352A0fﬂf0 |zi (z, p, ) dp da
+3A40C2|L 13 + 3 fo J12 N (v, O dv da, i =1,2.

Lemma 4.3 Assume with p > 2 and q > 2 hold. The functional ki defined in
satisfies

kigt) < =Cillos + ¥I? = Colltal® + Cllee® + Cllve?
- Z bi Jo /7 1 (@ v ) dv da + [|o]lf + 9]

+s7 szfgfo |2 (x, p,0)[* dp dz+2 oSO8 (4 8) [ (v, ) du de,

(47)
where Cy,Cq, C are positive constants.

Proof. Differentiating k; with respect to t, using 1 and 2, by integration by
parts and using Lemma [£.1] we obtain

ki (t) = —klloz + 911 = bllvoa|* + prlleel| + pallel®

2
_ Z b; fQ erOO | (v, t)|2 dv dx — oy fQ ppy dr — ao fQ PPy dx (48)

=5 Z biJo Jo 2 [ @i (x,v,t) dv dp da+ [[llb + (|42
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Now, we will estimate the last three terms of the RHS as follows. Using Lemma [2.3] and

due to the fact that b;Ag < v;, ¢ = 1,2, and then integrating over (0,1) with respect to
p, We can write

2 2
— > bi Jg sz fj;o wo (z,v,t) dv dx < s v; Jo fol |zi (z, p, t)|2 dp dx
i=1 i=1

: (49)
+3 % fo fjocf (V% + B) i (a, v, t)|* dv da.
=1

By Young and Poincaré’s inequality, we have

—on Jyper drtag fovin da < Sl + Il + Coonllos + 0P o
+C6 (a + a1C) |1 |2

Inserting and in , we arrive at
ki (t) < —(k—Cden) g</>z+1/)ll2*(b705 (@t 0)) II%HQJ;(%HO leel?
(5 +02) [l = 300 Jo S5 10 0y O v do 5 35w fo fy e (s ) dp e

Y fo S5 (0% 4 B) 16 (2,0, 017 dv da+ |5+ )12,

o

+

: o~
M g

i=1

we choose § = min (ZC(Q2I’+Q10), QCkal) , then setting C; = k — Cda; and

Co=b—Co(as+a1C), we get .

Lemma 4.4 With the same hypotheses as in Lemma[{.3, the functional ko defined
mn @ satisfies

2 1
ka(t) < *56782/9/ |2 (2, p, )| dp da + [|ol|* + [l (51)
i=1 0

Proof. We take the derivative of ko with respect to ¢, and using (8)4 and (§)g, we
get

2 2 2 1
B0 =3 [ 15 @00EY [ el w10 dpda-sy [ [ e e (opt) dp da
=174 =179 i=178/0

We have z; (z,0,t) = ¢! (z,t), and since e~%” > e~*, we obtain .
Now, we introduce the perturbed modified energy, named Lyapunov function, as

L(t) = NE(t) + ek1(t) + kao(t)
fore >0and N > 0.

Lemma 4.5 For ey small and N large enough, we have

gé‘(t) < L(t) <2NE(), Vt>0. (52)
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Proof. The application of Young and Poincaré’s inequalities gives

£) < NEW + § [nllnl® + mOee + 0IP] + 5 [palhl + C2 s + 2} Il
2
+3 %sfg fj;; (V2 +B) |M; (x,y,t)| dv dx + s Z Jo fo =P |2 (, p, )| dp dz.
i=1

Using £(t), I1, I, Lemma and the fact that b;Ag < v; for i = 1,2, we get

DNE(t) = L(t) = 4 [N = el il + 8 [N = ] el
FEL 4 By + [N 02 (30 + ]| s + w2

+3 [W —eCACE (Bui+ p1) + 3va + P2}} 142117

5 Jo Jy ([0 1= Sseu | 21 (2, p O+ [ YD 1= Sz | |23 (2, p, I ) dp do
g (MR 5] f T o (v ) dv dat Y [N 35] [ [ s (w0, db da

On the other hand, we can estimate the following;:

L(t) - FEM) > FEW) = 5 [pllel® + CQmIl% + 9|17
+5 [palltnl® + CZ A C2p1 + pa} [¥:]?] + 5 Z e [o [y zi (. p,t) dp d

+ E bés fQ fj;o (1/2 + B) |M; (z, v, t)| dv dzx.
i=1
Using Lemma [4.2] and the fact that b;Ag < v;, i = 1,2, we obtain

L(t) - %5( )= 5[5 —e]lled® + 5[5 —e] 1eel® + Sph + Fal2
+3 [L(ﬁfz) - Cf (p1 + 301 } Pa +¢||2

+1 {W —eC2, {p2+3v2 + C2 (p +3v1)}} 12|
+h (N(;;;2) - 7) Jo 72060 (v, 0)? dv dx

+2 N(gq—2) - 7) fo+°°\¢2 (z,v, )] dv dx

+s %51)4%‘3—%5@15} Jo Jo V21 (@ p, 017 dp der

+s {%Zl) +e 5 — %svge} Jo fol |22 (z, p, ) dp d.
Finally, if we pick ¢ small and N large enough, we deduce that
N
L(t) — 55(7&) >0 and 2NE(t)— L(t) > 0.

Hence, we conclude that
E(t) ~ L(t) Vt>D0.

Theorem 4.1 (Ezponential decay rate) Let p > 2 and q > 2. Assume that holds
fori=1,2, and Uy € H satisfying @, then the unique solution of satisfies

E(t) < ke ™ VWt >0,

for some positive constants k and m independent of t.
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Proof. We remember that
L(t) = NE(t) + eky () + kal2).
By means of Lemma [£.3] and Lemma [£.4] we get for all ¢ > 0,
L'(t) < = (NC=eC = 1)l = (NC = eC = 1) [|a|?
S N = 5L I (4 B) 105 s do d = Crellpn + 2~ Caclal?

A:1

- Z ebi [o, [0 |9i (@, v, H? dv dz — 22: s(e™® —wise) [o fol |zi (z, p, 0)* dp da
i=1
+e [||%0||p+ l11g] -

We now choose € small enough such that e™* —v;se > 0,7 = 1, 2. Pick N large enough
such that N > max (CEH 5) Thus, dm; > 0 so that

L) < —miE(t) Vt>0.

By Lemma [1.5] it follows that £(¢) and L(t) are equivalent V¢ > 0. Then, 3m > 0 such
that

S

L'(t) < —mL(t) Vt>0. (53)
Hence, the solution of is given by
L'(t)<L0)e ™ Vt>0,
so, we have
Et) <ke ™ VYt >0,
with k& > 0. This completes the proof.

Example

Consider the problem (If) with Q = (0,27), p1 = p2 = 1,
p=q=3>2b=1K = 3, 9(z) = t(z) = 55 sinz,
v1(z) = P1(x) = *\/ﬁ sinx, where C is the maximal value between two constants

denoted by the same notation C, and they are given by and . The initial delays
fo(z,t —38)=go(x,t —s)=0"fort e (0,s). We set v; = 2b;Ag and a; = 4b; Ay for i=1,2.
Then we have

1. The initial condition Uy = —sinx, sinz, —sinz,0,0,0,0) € D(A).

1 .
Varc (sine,

2. By LemmaH we have Ay = W:m), from the definition of b;,
it follows that o; = 4a; 6%~ 1. Then the condition is satisfied.

3. It easy to notice that the relation holds.

< 1.

By a simple and direct calculation, we find ;(0) = 3I5(0) = 1z55 > 0. Then we
deduce that the conditions are verified.

So, by Theorem and Theorem the problem has a unique local and global
solution. Furthermore, by Theorem we get the decay result.

4. From the expression of the energy (9, we get £(0) = 1365. Thus, B =

S
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Conclusion

In this paper, we prove the well-posedness result of problem using the semi-group
theories. Then, we prove that the solution decay exponentially by means of the multiplier
approach. Finally, we provide an example in which our results can be applied. The main
contribution of this work is the extension of the previous results from [2]. It will be
interesting to extend our results to the following system:

-2
= el o, ,
t—s) =" ",
),

)

P — k(g + 1), + @107 (0 — s
P2t — biboa + k (00 + ¥) + 020,79
(p(l‘,t = O) = @O(x% ¢($’t = O) =1
th($,t = 0) = @1(x)a (o (3’],0) = 7/)1(33
Gu (@t —5) = fo (2.t — 8),t € (0,5),
P (x,t —8) =go (z,t —s),t € (0,s)

fon I

~

under the following boundary conditions:

{ (pr + dJ)(Lﬂf) + al‘Pt(Lvt) =0,
%(LJ) + a2¢t(L7t) =0,

which will be an open problem.
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