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Abstract: In this paper, the formation problem of multiple unmanned aerial vehicles
(UAVs) is addressed. In particular, the formation of UAVs is achieved by using
complex systems theory and backstepping nonlinear control. We apply the obtained
formation of multiple UAVs to search for and detect a target of interest within an
exploration area. In addition, a coverage study of the formation of UAVs for search
and detection by tracking time-variable trajectories is reported.
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1 Introduction

From the formation of some kinds of birds to extend their flight time, to the grouping of
fish to avoid attacks of predators, different groups of animals often associate naturally
to achieve a common goal or benefit, which they individually could not achieve, and
therefore could not survive [6], [18], [19].

The exchange of information due to the interactions between the members of these
groups gives rise to a set of collective behaviors that are different from an isolated indi-
vidual behavior. It is called emergent collective behavior [17], [21].
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In the literature, there are many works dealing with this problem, one of them is the
work by R. Abas and Wu [1], in which the dynamic model of a quadcopter is studied
by using the Newton-Euler method, and the synchronization of three quadcopters is
achieved in the simulation using sliding modes as a control algorithm.

In the work done by P. Flores [9], the author faces the problem of the formation of a
group of unmanned aerial vehicles (UVAs), for this a dynamic model of a quadcopter is
consedered using the Newton-Euler method, the control algorithm for the formation is
backstepping control, and the formation of a group of three quadcopters is achieved.

In the work reported by A. Toledo [2], the dynamic model of a quadcopter is con-
sidered using the Newton-Euler method and an integral backstepping control algorithm
with sliding modes is proposed for an unmanned aerial vehicle. The experimental results
are obtained by using a Qball-X4 quadcopter.

In the work by N. Koksal [14], the dynamic model of the Qball-X4 quadcopter is
considered. A PID control algorithm is used for the translation system and another
algorithm is applied for the rotation system, the simulations results are obtained for a
group of 3 quadcopters, and experimental tests with two Qball-X4 type quadcopters are
carried out.

In the work done by X. Dong [7], a dynamic model for a small UAV type mini
helicopter is considered assuming that there is a leading quadcopter and the other are
followers, they use a PID control algorithm and obtain the formation of the group of
quadcopters in simulation and experimental results.

The main goals of this paper are: (i) to obtain network synchronization and formation
flight of coupled UAVs in star topology, considering a single master UAV with four slave
UAVs. This objective is achieved by using recent results from complex systems theory.
In addition, (ii) to apply the network formation to object detection, and (iii) to carry
out a coverage study of the formation of UAVs for search and detection by tracking
time-variable trajectories. To our knowledge, the results have not been reported.

The organization of the paper is as follows. In Section 2, the problem statement is
presented. Section 3 describes the mathematical model of the UAV quadrotor used in
this work. Section 4 contains the designed control algorithm for synchronization and
formation of UAVs. Section 5 presents the obtained numerical results. In Section 6, an
application to object detection is provided. Finally, some conclusions are given in Section
7.

2 Problem Statement

In recent decades, many control proposals have emerged in order to achieve formations
in mobile robots. Particularly, formations in Unmanned Aerial Vehicles (UAVs) have
received considerable interest due to their wide potential applications in the military,
civil and industrial fields, and agriculture [10], [13]. The purpose of this study is to
preserve mobility and compact groups at the same time, which generates advantages
such as reduced implementation costs, increased robustness, system efficiency, etc.

The quadcopter is used to access hostile environments, where the safety of the pilots
can not be guaranteed. The quadcopter´s configuration makes it capable of taking off
vertically, controlled landing, as well as great maneuverability. These advantages have
attracted many researchers’ interest in recent years.

Different control techniques can be applied to a quadcopter, for example, a nonlinear
controller, PID control, backstepping, dynamic feedback linearization, and sliding modes,
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among others. See for example [3], [7], [12].
The study of collective behaviors seen in nature and their representation in mathemat-

ical equations opens the door for multiple applications in robotics and, in our particular
case, the formation of multiple unmanned aerial vehicles (UVAs).

The purpose of this paper is to reproduce collective behaviors observed in animals,
namely synchronization and formation, and apply them to the networks of unmanned
aerial vehicles (UVAs) for applications in search, rescue, and patrol task. Fig. 1 illustrates
a group of quadcopters searching for the target of interest T.

𝑄1

𝑄2

𝑄𝑛

T

Figure 1: Group of quadrotors searching for the target T.

We will solve the stated problem on the network formation of five UAVs with a single
master and four slaves by using complex systems theory and nonlinear backstepping
control, providing an analytical stability proof based on the Lyapunov theory, and we
will also analyze the search and detection coverage of the object in the area. In addition,
for a particular type of UAV, we will use the mathematical model of the quadrotor
described in Section 3.

3 Quadrotor Dynamic Model

The complete quadrotor dynamic model, with the x, y, z−plane position and orientation
angles (roll, pitch, and yaw), is described by [2], [3]- [5], [20]

ϕ̈ = θ̇ψ̇
(

Iy−Iz
Ix

)
− Jr

Ix
θ̇Ω+ l

IxU2,

θ̈ = ϕ̇ψ̇
(

Iz−Ix
Iy

)
+ Jr

Iy
ϕ̇Ω+ l

IyU3,

ψ̈ = ϕ̇θ̇
(

Ix−Iy
Iz

)
+ l

Iz
U4,

ẍ = (cosϕ sinθ cosψ + sinϕ sinψ) 1
mU1,

ÿ = (cosϕ sinθ sinψ − sinϕ cosψ) 1
mU1,

z̈ = −g + cosϕ cosθ 1
mU1.

(1)

The first three differential equations correspond to the quadrotor orientation
(ϕ, θ, ψ)T , and the last three differential equations represent the position of the quadrotor
with respect to the original inertial frame (x, y, z)T , see Figure 2.
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Figure 2: Quadcopter representation with respect to the inertial frame.

The angular velocity due to the propellers in each engine is represented by Ωi, for
i = 1, 2, 3, 4, respectively. The control inputs of the quadrotor are denoted by Ui, i =
1, 2, 3, 4, and Ω is a disturbance, which correspond to

U1 = b(Ω2
1 +Ω2

2 +Ω2
3 +Ω2

4),
U2 = b(Ω2

4 − Ω2
2),

U3 = b(Ω2
3 − Ω2

1),
U4 = d(Ω2

2 +Ω2
4 − Ω2

1 − Ω2
3),

Ω = Ω2 +Ω4 − Ω1 − Ω3.

(2)

The quadrotor dynamic model described in Eq. (1) can be rewritten in a state space
as Ẋ = f(X,U), introducing the following state vector:

X = [ϕ, ϕ̇, θ, θ̇, ψ, ψ̇, x, ẋ, y, ẏ, z, ż]T , (3)

where

x1 = ϕ, x2 = ẋ1 = ϕ̇,

x3 = θ, x4 = ẋ3 = θ̇,

x5 = ψ, x6 = ẋ5 = ψ̇,
x7 = z, x8 = ẋ7 = ż,
x9 = x, x10 = ẋ9 = ẋ,
x11 = y, x12 = ẋ11 = ẏ.

(4)

From Equations (1) and (4), the quadrotor mathematical model can be described in
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the state space as follows:

Ẋ = f(X,U) =



x2
x4x6a1 + x4a2Ω+ b1U2

x4
x2x6a3 + x2a4Ω+ b2U3

x6
x4x2a5 + b3U4

x8
−g + (cosx1cosx3)

1
mU1

x10
ux

1
mU1

x12
uy

1
mU1



, (5)

where
a1 =

Iy−Iz
Ix

, a2 = −Jr

Ix
, a3 = Iz−Ix

Iy
, a4 = Jr

Iy
, a5 =

Ix−Iy
Iz

,

b1 = l
Ix
, b2 = l

Iy
, b3 = l

Iz
,

ux = cosx1 sinx3 cosx5 + sinx1 sinx5,
uy = cosx1 sinx3 sinx5 − sinx1 cosx5.

The quadrotor mathematical model (5) can be divided into two subsystems: orienta-
tion and translation. The first one is given by

ẋo = fo(xi) +BiUoi, (6)

where Uoi =
(
U2 U3 U4

)T
,

fo =


x2

x4x6a1 + x4a2Ω
x4

x2x6a3 + x2a4Ω
x6

x4x2a5

 , Bi =


0 0 0
b1 0 0
0 0 0
0 b2 0
0 0 0
0 0 b3

 . (7)

On the other hand, the translation subsystem is described by the following expression:

ẋti = f t(xi) +GU ti, (8)

where U ti =
(
U1 Ux Uy

)T
,

f t =


x8
−g
x10
0
x11
0

 , G =


0 0 0

cosx1cosx3

m 0 0
0 0 0
0 1

m 0
0 0 0
0 0 1

m

 . (9)
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The physical parameters of the quadrotor mathematical model (5) are given in Table
1.

Parameter Definition Value
m Mass 0.650 kg
Ix x-axis inertia 7.5e−3 kgm2

Iy y-axis inertia 7.5e−3 kgm2

Iz z-axis inertia 1.3e−2 kgm2

b Thrust coefficient 3.13e−3 Ns2

d Drag coefficient 7.5e−7 Nms2

Jr Rotor inertia 6e−5 kgm2

l Arm length 0.23 m
g Gravity 9.8 N/kg

Table 1: Physical parameters of the quadrotor mathematical model (5).

4 Control Design for Trajectory Tracking

In nonlinear control theory, backstepping is a technique developed around 1990 by Petar
V. Kokotovic, Miroslav Krstiv, and Ioannis Kanellakopoulos [15] to design stabilizing
controls for a special class of nonlinear dynamical systems. These systems are built from
subsystems that originate from an irreducible subsystem that can be stabilized using
some other method.
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Figure 3: Block diagram of quadrotor helicopter Q and its controller.

In the backstepping approach, the control law is designed so that the system can
follow the desired trajectory. For this, it is considered that the quadrotor mathematical
model (5) can be divided into two subsystems, one is the orientation and the other is the
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position [5], as previously discussed in Section 3. Figure 3 shows the block diagram of
quadcopter and its controller for tracking a desired path.

Due to its complete independence with respect to the other subsystem (Eqs.(6) and
(8)), the control input for the angular rotations of the subsystem is considered first and
then the position control input is derived. A desired trajectory x1d is defined, in which
the following error is given by

z1 := x1d − x1, (10)

from expression (10), we have

ż1 = ẋ1d − ẋ1. (11)

From the quadrotor mathematical model (5), ẋ1 = x2 is known. Substituting into
(11), we have

ż1 = ẋ1d − x2. (12)

Now, consider the following Lyapunov candidate function in terms of z1:

V (z1) =
1

2
z21 . (13)

Differentiating the candidate Lyapunov function with respect to time gives

V̇ (z1) = z1ż1. (14)

Substituting Equation (12) in (14) gives

V̇ (z1) = z1(ẋ1d − x2). (15)

x2 is considered as a virtual control to stabilize z1, thus we have

x2 = ẋ1d + α1z1, (16)

we make α1 > 0 so that the derivative of the Lyapunov function is negative definite.
Solving for (16) in (15), we have

V̇ (z1) = z1(ẋ1d − x2)

= z1(ẋ1d − ẋ1d − α1z1)

= −α1z
2
1 .

(17)

After the variable change

z2 = x2 − ẋ1d − α1z1, (18)

differentiating Equation (18), we have

ż2 = ẋ2 − ẍ1d − α1ż1. (19)

The following Lyapunov candidate function is proposed as a function of (z1, z2):

V (z1, z2) =
1

2
(z21 + z22). (20)
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Differentiating the candidate Lyapunov function and solving, we have

V̇ (z1, z2) = z2ż2 + z1ż1

= z2(ẋ2 − ẍ1d − α1ż1) + z1(ẋ1d − x2)

= z2(ẋ2 − ẍ1d − α1(ẋ1d − x2)) + z1(ẋ1d − x2).

(21)

Solve x2 from Equation (18): x2 = z2 + ẋ1d + α1z1, thus

V̇ (z1, z2) = z2(ẋ2 − ẍ1d − α1(ẋ1d − x2)) + z1(ẋ1d − x2)

= z2(ẋ2 − ẍ1d − α1(ẋ1d − (z2 + ẋ1d

+ α1z1)) + z1(ẋ1d − (z2 + ẋ1d + α1z1))

= z2ẋ2 − z2(ẍ1d − α1(z2 + α1z1))− z1z2 − α1z
2
1

= z2(a1x4x6 + a2x4Ω+ b1U2)− z2(ẍ1d − α1(z2 + α1z1))

− z1z2 − α1z
2
1 .

(22)

Considering ẍ1d,2d,3d = 0 and given V̇ (z1, z2) < 0, the virtual controller U2 is designed
as

U2 =
1

b1
(z1 − a1x4x6 − a2x4Ω− α1(z2 + α1z1)− α2z2). (23)

The remaining control inputs U3, U4, and U1 can be solved by a similar approach,
obtaining the corresponding virtual controllers for each control input:

U3 =
1

b2
(z3 − a3x2x6 − a4x2Ω− α3(z4 + α3z3)− α4z4), (24)

U4 =
1

b3
(z5 − a5x2x4 − α5(z2 + α1z1)− α6z6). (25)

The control input for the positioning subsystem is given by

U1 =
m

cosx1cosx3
(z7 + g − α7(z8 + α7z7)− α8z8 + ẍ7), (26)

ux =
m

U1
(z9 − α9(z10 + α9z9)− α10z10 + ẍ9), (27)

uy =
m

U1
(z11 − α11(z12 + α11z11)− α12z12 + ẍ11), (28)

where
z1 = x1d − x1,
z2 = x2 − ẋ1d − α1z1,
z3 = x3d − x3,
z4 = x4 − ẋ3d − α3z3,
z5 = x5d − x5,
z6 = x6 − ẋ5d − α5z5,
z7 = x7d − x7,
z8 = x8 − ẋ7d − α7z7,
z9 = x9d − x9,
z10 = x10 − ẋ9d − α9z9,
z11 = x11d − x11,
z12 = x12 − ẋ11d − α11z11.

(29)
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Communication in a multi-agent topology can be represented directly or indirectly
by a graph, where each node is an agent and the edges are the communication media
that exist between them [11]. A group of 5 quadcopters (Eq.(5)) is considered, one of
which is the master quadrotor (M) and the rest are slave quadrotors (S1, S2, S3, S4). The
network of quadrotors can be represented by the following graph shown in Figure 4.

M

S1

S2

S3

S4

Figure 4: Connection graph of 5 quadrotors.

The corresponding adjacency matrix associated with this graph is

A(G) =


0 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

 . (30)

The network synchronization was achieved through the variables zi of the control law,
given by Eq. (29), so each slave quadrotor Si, i = 1, 2, 3, 4, follows the master quadrotor
M, and their states will have to follow the states of the master quadrotor. The auxiliary
variables for each quadrotor are given as follows:

z1Si = x1M − x1Si,
z2Si = x2Si − ẋ1M − α1Siz1Si,
z3Si = x3M − x3Si,
z4Si = x4Si − ẋ3M − α3Siz3Si,
z5Si = x5M − x5Si,
z6Si = x6Si − ẋ5M − α5Siz5Si,
z7Si = x7M − x7Si,
z8Si = x8Si − ẋ7M − α7Siz7Si,
z9Si = x9M − x9Si,
z10Si = x10Si − ẋ9M − α9Siz9Si,
z11Si = x11M − x11Si,
z12Si = x12Si − ẋ11M − α11Siz11Si.

(31)

When performing the calculations from Equation (5) to Equation (9), with the help
of the auxiliary variables (31), the following control inputs for network synchronization
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of the quadrotors in star connection are obtained:

U1l =
m

cosϕcosθ
(ẋ8 + g) +

m

cosϕcosθ

N=4∑
j=1

aij [(1 + α7α8)(x7j − x7i)

+ (α7 + α8)(x8j − x8i)],

(32)

uxl =
m

U1l
ẋ10 +

m

U1l

N=4∑
j=1

aij [(1 + α9α10)(x9j − x9i)

+ (α9 + α10)(x10j − x10i)],

(33)

uyl =
m

U1l
ẋ12 +

m

U1l

N=4∑
j=1

aij [(1 + α11α12)(x11j − x11i)

+ (α11 + α12)(x12j − x12i)],

(34)

where (l = 1, 2, 3, 4) is the i-th quadrotor, (ẋ8, ẋ10, ẋ12) are the states of the master
quadrotor M, aij are the entries of the adjacency matrix (30) associated with the graph
used for communication between the quadrotors.

In order to achieve quadrotor formation, the use of a vector ∆ with components
corresponding to each axis is proposed and then used in the controller of each slave
quadrotor (Si, i = 1, 2, 3, 4). This vector separates each slave from the master M by a
distance corresponding to each axis in the plane (x, y, z). The auxiliary variables for the
formation of each quadrotor respectively are given as follows:

z1Si = x1M − x1Si,
z2Si = x2Si − ẋ1M − α1Siz1Si,
z3Si = x3M − x3Si,
z4Si = x4Si − ẋ3M − α3Siz3Si,
z5Si = x5M − x5Si,
z6Si = x6Si − ẋ5M − α5Siz5Si,
z7Si = x7M − x7Si +∆zSi,
z8Si = x8Si − ẋ7M − α7Siz7Si,
z9Si = x9M − x9Si +∆xSi,
z10Si = x10Si − ẋ9M − α9Siz9Si,
z11Si = x11M − x11Si +∆ySi,
z12Si = x12Si − ẋ11M − α11Siz11Si.

(35)

5 Numerical Results

When considering a star-shaped topology connection between five quadrotors, a numer-
ical simulation is carried out, in which the group of quadrotors will follow a desired
circular trajectory with a radius of 3 meters at a height of 2 meters. These trajecto-
ries start after the quadrotors takes off. The initial conditions for the quadrotors are:
Master (x1(0), y1(0), z1(0)) = (0, 0, 0), slave 1 (x2(0), y2(0), z2(0)) = (0.5, 0, 0), slave 2
(x3(0), y3(0), z3(0)) = (−0.5, 0, 0), slave 3 (x4(0), y4(0), z4(0)) = (1.5, 0, 0), and slave 4
(x5(0), y5(0), z5(0)) = (−1.5, 0, 0). The physical parameters of the five quadrotors are
taken from Table 1 and the alphas are definitely positive with a value of 50.
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Figure 5: Synchronization of five quadrotors to a desired circular trajectory.

In Figure 5, it can be seen that the network of five quadrotors is synchronized in a
desired circular trajectory. Next, to achieve the network formation of five quadrotors,
we proceed to give a net constant separation between the master quadrotor M and the
slave quadrotors Si by using the vector ∆ for the separation. The initial conditions for
quadrotors are the same as considered in the previous simulation. The quadrotors are
separated by a distance ∆ on the x-axis for a horizontal line formation, where the slave
quadrotors S1 and S2 are desired to be separated by a distance D1 = 0.5 m from the
master M, while slave quadrotors S3 and S4 are separated from the master quadrotor M
by a distance D2 = 1 m. This can be seen in Figure 6.

M S1S2 S3S4

D1D1

D2D2

Figure 6: Separation ∆ for the formation of five quadrotors.
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Figure 7: Flight of the formation of five quadrotors describing a circular trajectory.

Figure 7 shows the five quadrotors are already in formation describing a circular
trajectory. Next, we will apply the formation of quadrotors to the search for an object
on a surface. For this, a rectangular search surface is considered, but it can be deduced
that using a circular trajectory to explore a rectangular surface would have a great
disadvantage since there are unexplored areas since the object, when placed randomly
on the surface, could not be detected. For this reason, it is decided to use the Lissajous
trajectories, of which the denser trajectory is used.

6 Application to Object Detection

The target of interest to be detected within the search area is a circle object, which
varies in size with respect to the total percentage of the search area. The tarjet to be
searched and detected is randomly placed within the exploration area. The target can be
considered detected by using the coordinates of the quadrotors and the coordinates where
the center of the target is located, considering the radius of the target. The detection of
the target is determined by using the coordinates of the trajectories of each quadrotor
and the coordinates of the center of the target calculating their distances by means of
the expression

d(A,B) = |
−−→
AB|. (36)

Substituting the coordinates of the center of the target and the trajectory of the
quadrotor, the elements of vector A and B are obtained. The distance is calculated as
follows:

d(A,B) = |
−−→
AB| =

√
(X2 −X1)2 + (Y2 − Y1)2, (37)

where X2 and Y2 are the quadrotor coordinates, and X1 and Y1 are the position of the
center of the target. The following Figure 8 shows how the detection is done.
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Quadrotor
trajectory

d(A,B)
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object

B (𝑋2,𝑌2)

A (𝑋1,𝑌1)

Figure 8: Target detection process.

For target detection, if any point of the trajectories of the quadrotors is within
the radius of the target, it indicates that this point is within the area of the target,
concluding that it was detected and, given that more than one quadrotor trajectory
passes through this area, we can determine which quadrotor passed first and met this
condition before the others.

Lissajous curves

The Lissajous curve, also known as the Lissajous figure or Bowditch curve, is the
graph of the parametric equation system corresponding to the superposition of two simple
harmonic motions in perpendicular directions [8], [16], [22] defined by

x = Asin(wxt+ α), y = Bsin(wyt+ β), δ = α− β. (38)

The Lissajous curves for different parameter values are shown in Figure 9.
Now, we will proceed to carry out some numerical simulations in MatLab, where

quadrotors formation explores a rectangular area. This search surface, or the area of
exploration, has a dimension of 8x6 m2, the Lissajous curve used has the parameter
values 5 : 6 and π

2 with the values of A = 3, B = 3, wx = 6, and wy = 5. Quadrotors will
be considered to start outside of this area. The search for the randomly placed target
will begin, and then the area of this target will be varied as shown in Table 2.

The first simulation is carried out with a target size of 10% with respect to the search
area and in the network, the quadrotors are separated by a distance ∆ on the x-axis for
a horizontal line formation, where the slave quadrotors S1 and S2 are desired to be sepa-
rated by a distance D1 = 0.5 m from the master M, while the slave quadrotors S3 and S4

are separated from the master quadrotor M by a distance D2 = 1 m, as shown in Figure
6. The initial conditions for the quadrotors are: Master (x1(0), y1(0), z1(0)) = (4.5, 0, 0),
slave 1 (x2(0), y2(0), z2(0)) = (4.5, 0.6, 0), slave 2 (x3(0), y3(0), z3(0)) = (4.5, 1.2, 0), slave
3 (x4(0), y4(0), z4(0)) = (4.5,−0.6, 0), and slave 4 (x5(0), y5(0), z5(0)) = (4.5,−1.2, 0).

As seen in Figure 10, several trajectories of the quadrotor formation pass over the
target, so it can be deduced that it was easily detected within the search surface. It can
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Figure 9: Lissajous curves described by (38) for different parameter values.

Surface percentage Object area Object radius
10 % 4.8 m2 1.23 m
7.5 % 3.6 m2 1.07 m
5 % 2.4 m2 0.87 m
1 % 0.48 m2 0.39 m
0.5 % 0.24 m2 0.27 m
0.3 % 0.144 m2 0.21 m
0.1 % 0.048 m2 0.12 m
0.01 % 0.0048 m2 0.039 m

Table 2: Object area table.

be considered that the searched target was detected due to its big size, so it is decided
to reduce it, according to Table 2. Next, a new numerical simulation is performed using
a target with a size of 1% with respect to the rectangular search surface. The initial
conditions for quadrotors are the same as considered in the previous simulation.

Figure 11 shows that the searched target was detected by at least two quadrotors.
Considering that its size makes it easier to be found, its dimensions can be reduced
further with respect to the rectangular search surface.

In addition, another simulation is performed now using a target sized 0.1% with
respect to the rectangular search surface. The initial conditions for quadrotors are the
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Figure 10: Search for a target sized 10% of the exploration area.

Figure 11: Search for a target sized 1% of the exploration area.

same as considered in the previous simlation.

Figure 12 shows that the target was detected by two of the slave quadrotors. In
addition, it can be considered that it already has a suitable size with respect to the
rectangular search surface, therefore we will use this target size. It was decided to use
this target size to run 10 tests, to determine if some of the quadrotors can detect it. The
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Figure 12: Search for a target sized 0.1% of the exploration area.

obtained numerical results are shown in Table 3.

Run Detection x-axis y-axis Target
Test time time position position detected by
1 0.622 s 966.648 s 2.439 m 2.334 m S1

2 0.624 s 389.48 s -2.891 m 2.334 m M
3 0.620 s 309.201 s 1.026 m -2.315 m M
4 0.620 s 309.201 s -1.717 m 0.269 m S3

5 0.631 s 958.754 s 3.546 m 2.674 m S1

6 0.626 s 147.690 s -2.654 m -2.707 m S2

7 0.629 s 250.066 s 2.328 m -2.060 m M
8 0.628 s 128.67 s -0.606 m 2.391 m S3

9 0.630 s 1047.094 s 2.265 m 2.643 m S2

10 0.736 s 72.773 s 1.207 m -2.670 m S3

Table 3: 10 tests to search for a target sized 0.1 % of the rectangular search area.

As shown in Table 3, the target was detected in each of the ten tests that were carried
out. However, considering the size of the target in Figure 12, it can be seen that there
are zones through which no trajectory passes and the target could be located in any of
them. For this reason, it was decided to combine some of the Lissajous curves of the
Figure 9 to get a suitable trajectory for the formation of quadrotors that do pass through
these zones.

6.1 Lissajous curves as desired trajectories

It is desired to explore most of the search area, for which some of the Lissajous curves
will be used. First, the curve with the parameters 2 : 3 and π

2 will be used. Taking
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into account that, due to the shape of the curve, there will be unexplored zones, it is
decided to combine it with another Lissajous curve with the parameters 3 : 4 and π

2 .
These curves can be seen in Figure 9.

Considering the combined trajectory 1 with two mentioned Lissajous curves, one after
another, we have

Trajectory1 =

{
t0 to t1; x = 3sin(2πt+ π), y = 3sin(3πt+ 0.5π),
t1 to t2; x = 3sin(4πt+ π), y = 3sin(3πt+ 0.5π).

(39)

To explore the rectangular search area with the combined trajectory1, the final tra-
jectory is taken into consideration. With the combination of both trajectories, a target
with the size 0.1 % of the total search area will be detected. This is shown in Figure 13.

Figure 13: Target search with the combined trajectory 1 for the target sized 0.1% of the
rectangular search area.

Ten tests are performed with this combined trajectory 1 for target detection, the
numerical results are shown in Table 4.

According to the obtained results (Table 4), the target was also found with this
combined trajectory 1. However, the unexplored zones did not decrease. Therefore, it
was decided to use another combination of two other Lissajous curves.

We explore the search area again, making use of a different combination of the Lis-
sajous curves. The curve with the parameters 3 : 4 and π

2 will be first used, and then
another curve with parameters 6 : 5 and π

2 . These curves can be seen in Figure 9.
The resulting combined trajectory 2 is described as follows.

Trajectory2 =

{
t0 to t1; x = 3sin(4πt+ π), y = 3sin(3πt+ 0.5π),
t1 to t2; x = 3sin(6πt+ π), y = 3sin(5πt+ 0.5π).

(40)

The resulting search trajectory2 is shown in Figure 14.
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Run Detection x-axis y-axis Target
Test time time position position detected by
1 1.044 s 865.115 s 2.439 m 2.334 m S2

2 0.519 s 792.091 s -2.891 m 2.334 m M
3 0.157 s 1075.385 s 1.026 m -2.315 m S2

4 0.145 s 60.001 s -1.717 m 0.269 m S1

5 0.146 s 286.197 s 3.546 m 2.674 m S1

6 0.148 s 834.347 s -2.654 m -2.707 m S2

7 0.155 s 1142.108 s 2.328 m -2.060 m S3

8 0.136 s 888.934 s -0.606 m 2.391 m S3

9 0.141 s 2215.229 s 2.265 m 2.643 m S3

10 0.128 s 454.929 s 1.207 m -2.670 m S1

Table 4: Test results for combined trajectory 1 for the search of the target sized 0.1% of the
rectangular search area.

Figure 14: Target search with the combined trajectory 2 for a target sized 0.1% of the rectan-
gular search area.

We perform ten tests with this combination for target detection and the results are
shown in Table 5.

With the combined trajectory 2 of these two Lissajous curves, it is observed that
some of the trajectories pass through the zones that they did not pass before (Figure
12); and the target was successfully detected in all ten tests, as shown in Table 5.

In the last table, only 10 of the 100 tests that were carried out were recorded, of
which only in one case, the randomly placed target could not be detected.

The target search time is measured from the moment all five quadrotors start to fly
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Run Detection x-axis y-axis Target
Test time time position position detected by
1 0.472 s 865.11 s 2.439 m 2.334 m S2

2 0.293 s 792.091 s -2.891 m 2.334 m M
3 0.154 s 1075.385 s 1.026 m -2.315 m S2

4 0.140 s 60 s -1.717 m 0.269 m S1

5 0.155 s 286.197 s 3.546 m 2.674 m S1

6 0.139 s 834.347 s -2.654 m -2.707 m S2

7 0.138 s 1142.108 s 2.328 m -2.060 m S3

8 0.148 s 888.934 s -0.606 m 2.391 m S3

9 0.152 s 2215.229 s 2.265 m 2.643 m S3

10 0.173 s 189.443 s 1.207 m -2.670 m M

Table 5: Test results for combined trajectory 2 for the search of the target sized 0.1% of the
rectangular area.

and till the moment when any of them finds the object within the search area, as shown
in Figure 15.

Figure 15: Target search and detection time for the formation of quadrotors.

Figure 15 shows that the target was detected by a slave quadrotor within the rectan-
gular search area. The position of the center of the target was (x, y) = (−3.628 m, 0.659
m) and it was found in 12,877.043 seconds.
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Figure 16: Three targets detected by the formation of quadrotors.

6.2 Three targets detection

In Figure 16, the detection of three targets placed randomly within the rectangular
search surface is simulated and it is observed that at least one of the trajectories of the
quadrotors passes through any of them, so it is assumed that they were detected.

In order to determine the percentage of the exploration area that is covered by the
trajectories of the quadrotors formation, it is divided into 3136 squares of equal size
and those that are visited by some quadrotor are noted, see Figure 17. The size of each
square was determined to be smaller than the target to be detected. Using this method
for both combinations of trajectories, a percentage of 84.27% of the covered area was
obtained for the first case, and 92.12% for the second, demonstrating that the latter is
more suitable for finding targets. With these results, it is concluded that the trajectories
could easily find almost any targets in the rectangular search area, including small ones.

6.3 Discussion

The used exploration area is a rectangle which is 6 meters wide and 8 meters long. It
is explored with the formation of five quadrotors. At first, they formed a vertical line
and followed a desired circular trajectory, where it was observed that there were large
unexplored zones. If none of the trajectories of the quadrotors passes over that zone,
it is considered as not explored. Approximately 48% of the total search area remained
unexplored, predominantly the central zone.
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Figure 17: Quadcopters formation training trajectories coverage: a) by combined trajectory 1
and b) by combined trajectory 2.

Some tests were also carried out with other trajectories by using different parameters
for the Lissajous curves, and it was observed that the unexplored zones were reduced.
Different trajectories were made, taking the densest one, thus decreasing the unexplored
zones between the quadrotors, with 4 % of the total unexplored surface.

Various formations were applied in the search and detection of the target. The first
formation was a vertical line in which the slave quadrotors were observed to leave the
boundaries of the search surface. The “V” formation was also used and it was observed
that there were unexplored zones, mainly in the upper corners of the search surface.
Therefore it was decided to use the formation in a horizontal line to explore this surface.

Next, the search surface was explored by using now two combinations of the Lissajous
curves with different parameters. Ten tests for each combination were carried out.
Because the target was found every time, another 90 tests were made (100 in total for
each one). In the first case, comparing with the trajectory in Figure 13, an efficiency
of 96% was reached. Exploring the search surface with the second combination, an
efficiency of 99% was obtained.

7 Conclusions

In this paper, we have presented the formation problem of multiple UAVs for applications
to search and detection by tracking time-variable trajectories. The main contributions
of this work are: the mentioned formation was obtained by using complex systems
theory and backstepping nonlinear control. We made a comprehensive study of UAVs
formation coverage for search and detection of a random target within the search zone
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by tracking time-variable trajectories. The reported numerical results show that the
methodology employed meets the purpose of detecting the target within the search zone
and reducing the unexplored zones by the combination of time-varying trajectories.Thus,
in future work, we plan the physical implementation of the proposed formation scheme,
we will use switching trajectories and switching topology connection, as well as chaotic
trajectories.
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