
NONLINEAR DYNAMICS AND SYSTEMS THEORY
An International Journal of Research and Surveys

Volume 25                           Number 3                                 2025

   CONTENTS

© 2025,  InforMath Publishing Group                ISSN 1562-8353                    Printed in Ukraine
To receive contents and abstracts by e-mail, visit our Website at:   http://www.e-ndst.kiev.ua

Nonlinear Dynamics
and

Systems Theory
An International Journal of Research and Surveys

Volume 25, Number 3, 2025                                   ISSN   1562-8353

N
O

N
LIN

E
A

R
 D

Y
N

A
M

IC
S
 &

 S
Y
S
TE

M
S
 TH

E
O

R
Y
                                  V

o
lu

m
e 2

5
,   N

o
. 3

,   2
0

2
5

InforMath Publishing Group
http://www.e-ndst.kiev.ua

EDITOR-IN-CHIEF  A.A.MARTYNYUK 
S.P.Timoshenko Institute of Mechanics 

National Academy of Sciences of Ukraine, Kiev, Ukraine

MANAGING EDITOR  I.P.STAVROULAKIS
Department of Mathematics, University of Ioannina, Greece

REGIONAL EDITORS

S.G. GEORGIEV, Paris, France
A.OKNIŃSKI, Kielce, Poland

Europe

M.BOHNER, Rolla, USA
HAO WANG, Edmonton, Canada

USA and Canada 

, Ensenada, MexicoC.CRUZ-HERNANDEZ
Central and South America

 M.ALQURAN, Irbid, Jordan
Jordan and Middle East

T.HERLAMBANG, Surabaya, Indonesia
Indonesia and New Zealand

A Primal-Dual IPM Algorithm for LO Problem Based on a New Kernel Function with 
a Logarithmic Barrier Term ..................................................................................................... 231 

 Abderrahim Guemmaz, Bachir Bounibane and El Amir Djeffal 

 

A Note on Linear Matrix Functions and Applications ............................................................. 243 

 Sihem Guerarra, Souad Allihoum and Shubham Kumar 

 

Analysis and Existence of Optimal Control in Industrial Economic Growth with 
Investment Using the Ramsey-Cass-Koopmans Model ........................................................... 255 

 Alvian Alif Hidayatullah, Subchan Subchan and Devi Try Lestari 

 

Modified Parameter of the Dai–Liao Conjugacy Condition of the Conjugate Gradient 
Method with Some Applications .............................................................................................. 266 

A. Jaradat, S. Masmali, A. Alhawarat, R. Sabra, S. Ismail 
and A. S. Al-Jawarneh 

 

A New Memristor-Based 4D Hyperchaotic System with Seven Terms and No Equilibrium 
Points ........................................................................................................................................ 288 

 M. I. Kopp 

 

Exponential Decay of Timoshenko System with Fractional Delays and Source Terms .......... 299 

 C. Messikh, N. Bellal, S. Labidi and Kh. Zennir 

 

Formation Flight of UAVs for Search and Detection Missions by Tracking Time-Variable 

Trajectories ............................................................................................................................... 315 

Rolando Díaz-Castillo, Rosa Martha Lopéz-Gutiérrez, Juan José Cetina-Denis 
and César Cruz-Hernández 

 

Estimation of Pitch Angle and Heave Position of Remotely Operated Vehicle Using 
Linear Quadratic Gaussian ....................................................................................................... 338 

A. Suryowinoto, T. Herlambang, P. Triwinanto, Y. A. Prabowo, D. Rahmalia 
and M. S. Baital 

 



(1) General. Nonlinear Dynamics and Systems Theory (ND&ST) is an international journal 
devoted to publishing peer-refereed, high quality, original papers, brief notes and review 
articles focusing on nonlinear dynamics and systems theory and their practical applications in 
engineering, physical and life sciences. Submission of a manuscript is a representation that the 
submission has been approved by all of the authors and by the institution where the work was 
carried out. It also represents that the manuscript has not been previously published, has not 
been copyrighted, is not being submitted for publication elsewhere, and that the authors have 
agreed that the copyright in the article shall be assigned exclusively to InforMath Publishing 
Group by signing a transfer of copyright form. Before submission, the authors should visit the 
website:  

http://www.e-ndst.kiev.ua 
for information on the preparation of accepted manuscripts. Please download the archive 
Sample_NDST.zip  containing example of article file (you can edit only the file 
Samplefilename.tex).  
(2) Manuscript and Correspondence. Manuscripts should be in English and must meet 
common standards of usage and grammar. To submit a paper, send by e-mail a file in PDF 
format directly to 

Professor A.A. Martynyuk, Institute of Mechanics,  
Nesterov str.3, 03057, Kiev-57, Ukraine 

e-mail:  journalndst@gmail.com 
or to one of the Regional Editors or to a member of the Editorial Board. Final version of the 
manuscript must typeset using LaTex program which is prepared in accordance with the style 
file of the Journal. Manuscript texts should contain the title of the article, name(s) of the 
author(s) and complete affiliations. Each article requires an abstract not exceeding 150 words. 
Formulas and citations should not be included in the abstract. AMS subject classifications and 
key words must be included in all accepted papers. Each article requires a running head 
(abbreviated form of the title) of no more than 30 characters. The sizes for regular papers, 
survey articles, brief notes, letters to editors and book reviews are: (i) 10-14 pages for regular 
papers, (ii) up to 24 pages for survey articles, and (iii) 2-3 pages for brief notes, letters to the 
editor and book reviews. 
(3)  Tables, Graphs and Illustrations. Each figure must be of a quality suitable for direct 
reproduction and must include a caption. Drawings should include all relevant details and 
should be drawn professionally in black ink on plain white drawing paper. In addition to a 
hard copy of the artwork, it is necessary to attach the electronic file of the artwork (preferably 
in PCX format). 
(4)  References. Each entry must be cited in the text by author(s) and number or by number 
alone. All references should be listed in their alphabetic order. Use please the following style: 

Journal: [1] H. Poincare, Title of the article. Title of the Journal volume  
(issue) (year) pages. [Language] 

Book: [2] A.M. Lyapunov, Title of the Book. Name of the Publishers, Town, year. 

Proceeding: [3] R. Bellman, Title of the article. In: Title of the Book. (Eds.).  
Name of the Publishers, Town, year, pages. [Language] 

(5)  Proofs and Sample Copy. Proofs sent to authors should be returned to the Editorial 
Office with corrections within three days after receipt. The corresponding author will receive 
a sample copy of the issue of the Journal for which his/her paper is published. 
(6)  Editorial Policy. Every submission will undergo a stringent peer review process. An 
editor will be assigned to handle the review process of the paper. He/she will secure at least 
two reviewers’ reports. The decision on acceptance, rejection or acceptance subject to revision 
will be made based on these reviewers’ reports and the editor’s own reading of the paper.   

INSTRUCTIONS FOR CONTRIBUTORS

© 2025,  InforMath Publishing Group, ISSN 1562-8353 print, ISSN 1813-7385 online, Printed in Ukraine
No  part  of  this  Journal  may  be  reproduced  or  transmitted  in  any  form  or  by  any  means  without 
permission from InforMath Publishing Group.

Nonlinear Dynamics and Systems Theory
An International Journal of Research and Surveys

 EDITOR-IN-CHIEF    A.A.MARTYNYUK 
The S.P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, 

Nesterov Str. 3, 03057, Kyiv-57, UKRAINE / e-mail: journalndst@gmail.com

MANAGING EDITOR    I.P.STAVROULAKIS 
Department of Mathematics, University of Ioannina 

451 10 Ioannina, HELLAS (GREECE) / e-mail: ipstav@cc.uoi.gr 

ADVISORY EDITOR    A.G.MAZKO,
Institute of Mathematics of NAS of Ukraine, Kiev (Ukraine) 

e-mail: mazko@imath.kiev.ua 

REGIONAL  EDITORS
S.G. GEORGIEV, France, e-mail: svetlingeorgiev1@gmail.com

 A. OKNINSKI, Poland, e-mail: fizao@tu.kielce.pl
M. BOHNER, USA, e-mail: bohner@mst.edu

HAO WANG, Edmonton, Canada, e-mail: hao8@ualberta.ca
C. CRUZ-HERNANDEZ, Mexico, e-mail: ccruz@cicese.mx

M. ALQURAN, Jordan, e-mail: marwan04@just.edu.jo
T. HERLAMBANG, Indonesia, e-mail: teguh@unusa.ac.id

EDITORIAL BOARD

ADVISORY  COMPUTER  SCIENCE  EDITORS
A.N.CHERNIENKO and A.S.KHOROSHUN,  Kiev, Ukraine

ADVISORY  LINGUISTIC  EDITOR
S.N.RASSHYVALOVA,  Kiev, Ukraine

Adzkiya, D. (Indonesia)
Artstein, Z. (Israel)
Awrejcewicz, J. (Poland)
Braiek, N. B. (Tunisia)
Chen Ye-Hwa (USA)
Dashkovskiy, S.N. (Germany)
De Angelis, M. (Italy)
Denton, Z. (USA)
Djemai, M. (France)
Dshalalow, J. H. (USA)
Gajic Z. (USA)
Georgiou, G. (Cyprus)
Honglei Xu (Australia)
Jafari, H. (South African Republic)

Khusainov, D. Ya. (Ukraine)
Kloeden, P. (Germany)
Kokologiannaki, C. (Greece)
Kouzou A. (Algeria)
Krishnan, E. V. (Oman)
Kryzhevich, S. (Poland)
Lopez Gutierrez R. M. (Mexico)
Lozi, R. (France)
Peterson, A. (USA)
Radziszewski, B. (Poland)
Shi Yan (Japan)
Sivasundaram, S. (USA)
Staicu V. (Portugal)
Vatsala, A. (USA)



NONLINEAR DYNAMICS AND SYSTEMS THEORY
An International Journal of Research and Surveys

Published by InforMath Publishing Group since 2001

Volume 25 Number 3 2025

CONTENTS

A Primal-Dual IPM Algorithm for LO Problem Based on a New Kernel Function with
a Logarithmic Barrier Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Abderrahim Guemmaz, Bachir Bounibane and El Amir Djeffal

A Note on Linear Matrix Functions and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Sihem Guerarra, Souad Allihoum and Shubham Kumar

Analysis and Existence of Optimal Control in Industrial Economic Growth with
Investment Using the Ramsey-Cass-Koopmans Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

Alvian Alif Hidayatullah, Subchan Subchan and Devi Try Lestari

Modified Parameter of the Dai–Liao Conjugacy Condition of the Conjugate Gradient
Method with Some Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

A. Jaradat, S. Masmali, A. Alhawarat, R. Sabra, S. Ismail
and A. S. Al-Jawarneh

A New Memristor-Based 4D Hyperchaotic System with Seven Terms and No Equilibrium
Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

M. I. Kopp

Exponential Decay of Timoshenko System with Fractional Delays and Source Terms . . . . . 299
C. Messikh, N. Bellal, S. Labidi and Kh. Zennir

Formation Flight of UAVs for Search and Detection Missions by Tracking Time-Variable
Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

Rolando Dı́az-Castillo, Rosa Martha Lopéz-Gutiérrez, Juan José Cetina-Denis
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A Primal-Dual IPM Algorithm for LO Problem Based

on a New Kernel Function with a Logarithmic Barrier

Term
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Abstract: In this paper, we consider a primal-dual Interior Point Method (IPM) for
the linear optimization(LO) problem, based on a new kernel function with a logarith-
mic barrier term, which plays an important role for developing a new design of primal-
dual IPM algorithms. New search directions and proximity functions are proposed

based on this kernel function. We proved that our algorithm hasO
(
qSn

Sq+1
2Sq log

(
n
ϵ

))
iteration bound for large-update methods.

Keywords: primal-dual interior point algorithm; kernel function; linear optimiza-
tion problem; iteration bound; complexity.

Mathematics Subject Classification (2020): 90C51, 49N15, 90C05, 68Q25.

1 Introduction

In this paper we deal with primal-dual IPMs for solving the standard linear optimization
(LO) problem

(P ) min
{
cTx : Ax = b, x ≥ 0

}
,

and the dual problem of (P ) is given by

(D) max
{
bT y + s = c, s ≥ 0

}
,

where A ∈ Rm×n, x, s, c ∈ Rn, and y, b ∈ Rm.

∗ Corresponding author: mailto:abderrahim.guemmaz@cu-barika.dz
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In 1984, Karmarkar [8] proposed a new polynomial-time method for solving linear
programs. This method and its variants that were developed subsequently are now called
IPMs, and they have become the most effective methods for solving LO problems. The
new efficient algorithms of the interior-point methods (IPMs) have generated increased
interest both in the application and the research of LO. In this paper, we deal with
the so-called primal-dual IPMs. It is generally agreed that these IPMs are most efficient
from a computational point of view [7]. Many researchers have designed different types of
primal-dual interior-point methods. Among them, IPMs based on kernel functions have
been designed. Several kernel functions have been introduced, including the so-called self-
regular kernel functions [2,4] and the non-self-regular kernel functions [2,11]. In principle,
a kernel function offers a search direction and hence the development of a primal-dual
interior point method. Until now, all primal-dual IPMs have used the Newton direction
as the search direction [6]; this direction is closely related to the well-known primal-dual
logarithmic barrier function. In this paper, we consider the new kernel function with a
logarithmic Barrier Term (1.1) from [11] as follows:

ψS(t) =

(
t2 − 1

)
2

− log(t)

2
− 1

2S

S∑
j=1

t1−jq − 1

1− jq
, q > 1, S ∈ N\{0}. (1)

We will formulate an interior-point algorithm for LO by using a new proximity func-
tion and give its complexity analysis, and then we will show that the iteration bounds

are O
(
qSn

Sq+1
2Sq log

(
n
ϵ

))
and O

(
q2S2

√
n log

(
n
ϵ

))
for large and small-update methods,

respectively.
The remainder of this paper is organized as follows. First, in Section (2), we define

the central path and the new search direction determined by Kernel Functions for LO,
then we present the generic primal-dual IPM algorithm. The new kernel function and
its properties are presented in Section (3). In Section (4), we analyse the algorithm and
derive the complexity bound for LO. Finally, some concluding remarks follow in Section
(5).

Some notations used throughout the paper are as follows. Let Rn be the n-dimensional
Euclidean space with the inner product ⟨., .⟩, and ∥.∥ denote the 2-norm. Rn

+ and Rn
++

denote the set of n-dimensional nonnegative vectors and positive vectors, respectively.
For x, s ∈ Rn, xmin and xs denote the smallest component of the vector x, and the
componentwise product of the vector x and s, respectively. We denote by X = diag(x)
the n × n diagonal matrix with the components of vector x ∈ Rn being the diagonal
entries, e denotes the n-dimensional vector, where each coordinate takes the value 1. For
two real-valued functions f(x), g(x) : R++ −→ R++, f (x) = O (g (x)) if f(x) ≤ cg(x)
for some positive c, and f (x) = Θ (g (x)) if c1g(x) ≤ f(x) ≤ c2g(x) for some positive
constants c1 and c2.

2 Preliminaries

It is well known that the optimality condition for (P ) and (D) is equivalent to solving
the following nonlinear system: Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,
xs = 0.

(2)
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The basic idea of primal-dual IPMs for LO problems is to replace the third equation in
(2), which is known as a complementarity condition for (P ) and (D), by the parameterized
equation xs = µe, with µ > 0. Thus, the system (2) becomes Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,
xs = µe.

(3)

Due to the last equation, any solution (x, y, s) of (3) will satisfy x > 0 and s > 0. So,
a solution exists only if (P ) and (D) satisfy the interior-point condition (IPC) [5], i.e.,
there exists (x0, y0, s0) such that{

Ax0 = b, x0 > 0,
AT y0 + s0 = c, s0 > 0.

So, if the IPC is satisfied, the system (3) has only one solution (x(µ), y (µ) , s(µ)) for
every µ > 0 (see Lemma 4.3 in [13]), x(µ) is called the µ-center of (P ) , and (y (µ) , s(µ))
is the µ-center of (D). The set of µ-centers is called the central path of (P ) and (D) . If
µ −→ 0, then the limit of the central path exists, and since the limit points satisfy the
complementarity condition, the limit yields optimal solutions for (P ) and (D) [5].

Let µ > 0 be fixed. A direct application of the Newton method to (3) provides the
following system for ∆x,∆y and ∆s: A∆x = 0,

AT∆y +∆s = 0,
x∆s+ s∆x = µe− sx.

(4)

Since A has full row rank, the system (4) has a unique solution (∆x,∆y,∆s) which
is called the search direction (see [5, 9]). By taking a step along the search direction
(∆x,∆y,∆s), one constructs a new positive iterate (x+, y+, s+) with

x+ := x+ α∆x, y+ := y + α∆y, s+ := s+ α∆s,

where α satisfies 0 < α ≤ 1.
Now, we introduce the scaled vector v and the scaled search directions dx and ds as

follows:

v :=

√
xs

µ
, dx :=

v∆x

x
, ds :=

v∆s

s
. (5)

The system (4) can be rewritten as follows:
Adx = 0,

A
T
∆y + ds = 0,

dx + ds = v−1 − v,

(6)

where A :=
1

µ
AV −1X,V := diag (v) and X := diag (x) .

Note that

dx = ds = 0 ⇔ v−1 − v = 0 ⇔ v = e⇐⇒ x = x(µ), s = s(µ).
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A useful observation is that the right-hand side of the third equation in (6) equals to
the minus gradient of the following proximity function:

Φ(v) = Φ(x, s;µ) =

n∑
i=1

ψ(vi) =

n∑
i=1

(
v2i − 1

2
− log vi

)
, vi > 0.

Here, ψ is the so-called kernel function of Φ. And therefore, dx + ds = −∇Φ(v). We
can rewrite the system (6) as


Adx = 0,

A
T
∆y + ds = 0,

dx + ds = −∇Φ(v).

(7)

It is easy to notice that ∇Φ(v) = 0, therefore Φ(v) reaches its minimum value at
v = e, with Φ(v) = 0.

In order to measure the distance between the µ-center and the current iterate, we
resort to using Φ(v), and this is for a given τ > 0.

Now, we introduce a norm-based proximity measure δ(v) : Rn
++ → R+ in accordance

with

δ(v) =
1

2
||∇Φ(v)|| = 1

2
||dx + ds||, (8)

in terms of ψ(vi). Then we have ψ(vi) = 0 ⇔ δ(v) = 0 ⇔ v = e.

Using (5) and (8), we can write the system (4) in the form of a modified Newton
system. We get the following:

 A∆x = 0,
AT∆y +∆s = 0,
x∆s+ s∆x = −µv∇Φ(v).

(9)

In this paper, we replace ψ(t) by a new kernel function ψS(t), and Φ(v) by a new
barrier function ΦS(v), which will be defined in Section (3).

The new interior-point algorithm works as follows. Assume that we are given a
strictly feasible point (x; y; s) which is in a τ -neighbourhood of the given µ-centre. Then
we decrease µ to µ+ = (1 − θ)µ for some fixed θ ∈ (0, 1), and then solve the Newton
system (4) to obtain the unique search direction. The positivity of a new iterate is
ensured by an appropriate choice of the step size α which is defined by some line search
rule. This procedure is repeated until we find a new iterate (x+, y+, s+) that is in a
τ -neighbourhood of the µ+-centre, and then we let µ := µ+ and (x; y; s) := (x+, y+, s+) .
Then µ is again reduced by the factor (1− θ) and we solve the Newton system targeting
at the new µ+-centre, and so on. This process is repeated until µ is small enough, say
until nµ < ϵ. The generic form of the algorithm is shown in Fig.1.
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Generic Primal-Dual Algorithm for LO
Input:
a proximity function Φs(v); a threshold parameter τ > 0;
an accuracy parameter ϵ > 0; a fixed barrier update parameter θ, 0 < θ < 1;
(x0, s0) and µ0 := 1 such that Φs(x

0, s0, µ0) ≤ τ .
begin
x := x0; s := s0;µ := µ0;
while nµ ≥ ϵ do
begin (outer iteration)

µ := (1− θ)µ; v :=

√
xs

µ
;

while Φs(v) > τ do
begin (inner iteration)
Solve the system (9) for (∆x,∆y,∆s) ;
Determine a step size α;

x := x+ α∆x; y := y + α∆y; s := s+ α∆s; v :=

√
xs

µ
;

end (inner iteration)
end (outer iteration)

end

Fig. 1 Generic algorithm.

We want to ”optimize” the algorithm by minimizing the number of iterates in the
algorithm. To do this, we must carefully choose the parameters τ , θ, and the step size
α. Choosing the barrier update parameter θ is very important in application and theory.
If θ is a constant number which is independent of the dimension n of the problem, i.e.,
θ = Θ(1), then the algorithm is called a large update method. If θ depends on the
dimension n of the problem, then we call the algorithm a small update method. In this

case, θ is usually chosen as follows: θ = Θ
(

1√
n

)
.

Choosing the step size, α > 0, is another key step in obtaining good convergence
properties of the algorithm. It must be set in such a way that the closeness of the
iterates to the current µ-center improves by a sufficient amount.

In this paper, we define a new kernel function and propose primal-dual in-
terior point methods which improve all the results of the complexity bound for
large-update methods based on a logarithmic kernel function for LO. More pre-
cisely, based on the proposed kernel function, we prove that the corresponding al-

gorithm has O
(
qSn

Sq+1
2Sq log

(
n
ϵ

))
complexity bound for the large-update method, and

O
(
q2S2

√
n log

(
n
ϵ

))
for the small-update method. Another interesting choice is q depen-

dences with n and S, which minimizes the iteration complexity bound. In fact, if we
take q = logn

2S , we obtain the best known complexity bound for large-update methods,
namely, O

(√
n log n log n

ε

)
. This bound improves the so far obtained complexity results

for large-update methods based on a logarithmic kernel function given by El Ghami et
al. [10].
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3 The Properties of the New Kernel Function

We will now address a new kernel function with its properties being provided. Let the
new univariate function be defined in [11].

ψS(t) =

(
t2 − 1

)
2

− log(t)

2
− 1

2S

S∑
j=1

t1−jq − 1

1− jq
, q > 1, S ∈ N\{0}.

It is easy to observe that as t→ 0 or t→ ∞, then ψ(t) → ∞. So, ψS(t) is without a
doubt a kernel function.

We will need the first three derivatives of ψS(t), we provide them as follows:

ψ
′

S(t) = t− 1

2t
− 1

2S

S∑
j=1

t−jq, (10)

ψ
′′

S(t) = 1 +
1

2t2
+

1

2S

S∑
j=1

qjt−jq−1, (11)

ψ
′′′

S (t) = − 1

t3
− 1

2S

S∑
j=1

jq(jq + 1)t−jq−2. (12)

If S = 1, we obtain the kernel function (12) given by Bouaafia et al. [10].
The following lemma establishes the efficiency of the new kernel function (1).

Lemma 3.1 Let ψS(t) be as defined in (1) and t > 0. Then

ψ
′′

S(t) > 1, (13)

ψ
′′′

S (t) < 0, (14)

tψ
′′

S(t)− ψ
′

S(t) > 0, (15)

tψ
′′

S(t) + ψ
′

S(t) > 0. (16)

The last property (16) in Lemma 3.1 is equivalent to the convexity of composed
functions t → ψS(e

t) and this holds if and only if ψS(
√
t1t2) ≤ 1

2 (ψS(t1) + ψS(t2)) for
any t1, t2 ≥ 0. This property is well-known in the literature, and numerous researchers
have demonstrated it (see [3, 12]).

We provide some technical findings of the new kernel function in preparation for
further.

Lemma 3.2 For ψS(t), we get

1

2
(t− 1)2 ≤ ψS(t) ≤

1

2

[
ψ

′

S(t)
]2

, t > 0. (17)

ψS(t) ≤
[
6 + q(S + 1)

8

]
(t− 1)2, t > 1. (18)

Proof. For (17), use (13). For (18), use Taylor’s Theorem.
Let σ : [0,∞[ → [1,+∞[ be the inverse function of ψS(t) for t ≥ 1 and ρ : [0,∞[ →

]0, 1] be the inverse function of − 1
2ψ

′

S(t) for all t ∈ ]0, 1]. Then we have the following
lemma.
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Lemma 3.3 [Lemma 3.3 from [11]] For ψS(t), we have

1 +

√
8s

6 + q(S + 1)
≤ σ(s) ≤ 1 +

√
2s, s ≥ 0. (19)

ρ(z) >

[
1

4z + 2

] 1
Sq

, z > 0. (20)

Lemma 3.4 Let σ : [0,∞[ → [1,+∞[ be the inverse of ψS(t). We have

ΦS(βv) ≤ nψS

(
βσ

(
ΦS(v)

n

))
, v ∈ R∗, β ≥ 1.

Proof. Using (14) and (15), and Lemma 2.4 from [1], we can obtain the result. This
completes the proof.

Lemma 3.5 [Lemma 3.5 from [11]] Let 0 ≤ θ < 1, v+ = v√
1−θ

. If ΦS(v) ≤ τ , then

we have

ΦS(v+) ≤
θn+ 2τ + 2

√
2τn

2(1− θ)
.

Denote

(ΦS)0 =
θn+ 2τ + 2

√
2τn

2(1− θ)
= L (n, θ, τ) .

So, during the algorithm’s execution, (ΦS)0 is the upper bound of ΦS(v+).

4 Complexity Analysis

In the next subsection, we compute a default step size α and the resulting decrease
in the barrier function.

4.1 An estimation of the step size

We devoted this section to calculating a default step size α and the consequent decrease
in the barrier function. And after the damping step, we obtain

x+ = x+ α∆x, y+ = y + α∆y, s+ = s+ α∆s.

By using (5), we get that

x+ = x

(
e+ α

∆x

x

)
= x

(
e+ α

dx
v

)
=
x

v
(v + αdx) ,

s+ = s

(
e+ α

∆s

s

)
= s

(
e+ α

ds
v

)
=
s

v
(v + αds) .

Hence, v+ =

√
x+s+
µ

=
√
(v + αdx) (v + αds). Define for α > 0,

f(α) = ΦS(v+)− ΦS(v). (21)
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Therefore, f(α) represents the difference in proximities between a new iterate and a
current iterate for a given value of µ . By (5), we can get

ΦS(v+) = ΦS

(√
(v + αdx) (v + αds)

)
≤ 1

2
(ΦS((v + αdx)) + ΦS((v + αds))) .

Thus, we have f(α) ≤ f1(α) such that

f1(α) =
1

2
(ΦS((v + αdx)) + ΦS((v + αds)))− ΦS(v). (22)

Clearly, f(0) = f1(0) = 0. We calculate f
′

1(α) and f
′′

1 (α), we find

f
′

1(α) =
1

2

n∑
i=1

(
ψ

′

S(vi + αdxi
)dxi

+ ψ
′

S(vi + αdsi)dsi

)
,

f
′′

1 (α) =
1

2

n∑
i=1

(
ψ

′′

S(vi + αdxi)d
2
xi

+ ψ
′′

S(vi + αdsi)d
2
si

)
.

By using (5) and (8), we conclude that

f
′

1(0) =
1

2
< ∇ΦS(v), (dx + ds) >= −1

2
< ∇ΦS(v),∇ΦS(v) >= −2δ(v)2.

We denote v1 = min(v), δ = δ(v), ΦS = ΦS(v).

Lemma 4.1 Let δ(v) be defined in (8). Then

δ(v) ≥
√

ΦS(v)

2
. (23)

Proof. Using (17), we have

ΦS(v) =

n∑
i=1

ψS(vi) ≤
n∑

i=1

1

2

[
ψ

′

S(vi)
]2

=
1

2
||∇ΦS(v)||2 = 2δ(v)2.

Hence, δ(v) ≥
√

1
2ΦS(v). This completes the proof.

Remark 4.1 Throughout the paper, we assume that ΦS(v) ≥ τ ≥ 1, and we have
δ(v) ≥ 1

2 .

According to Lemmas 4.1-4.4 in [1], we get the following Lemmas 4.2 and 4.5 since
ψS(t) is a kernel function, and ψ

′′

S(t) decreases monotonically.

Lemma 4.2 [Bai et al. [1]] Let f1(α) be as defined in (21) and δ(v) be as defined in
(8). Then we have f

′′

1 (α) ≤ 2δ2ψ
′′

S(vmin − 2αδ). Because of the convexity of f1(α), we

will have f
′

1(α) ≤ 0 for any α less than or equal to the minimum value of f1(α), and vice
versa.

The following three Lemmas result from the preceding Lemma.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 25 (3) (2025) 231–242 239

Lemma 4.3 [Bai et al. [1]] f
′

1(α) ≤ 0 certainly holds if α satisfies the inequality

ψ
′

S(vmin)− ψ
′

S(vmin − 2αδ) ≤ 2δ. (24)

Lemma 4.4 [Bai et al. [1]] The largest step size α satisfying (24) is given by

α =
ρ(δ)− ρ(2δ)

2δ
.

Lemma 4.5 [Bai et al. [1]] Let α be as defined in Lemma 4.4. Then

α ≥ 1

ψ
′′
S (ρ(2δ))

.

We are able to demonstrate the following Lemma.

Lemma 4.6 [Lemma 4.6 from [11]] Let ρ and α be as determined in Lemma 4.5. If
ΦS(v) ≥ τ ≥ 1, then we have

α ≥ 2S

2S + S (4δ + 2)
2
Sq + q

∑S
j=1 j (4δ + 2)

jq+1
Sq

.

Denoting

α̃ =
2S

2S + S (4δ + 2)
2
Sq + q

∑S
j=1 j (4δ + 2)

jq+1
Sq

, (25)

we have α̃ is the default step size, and α̃ ≤ α.

Lemma 4.7 [Lemma 3.12 from [3]] Let h be a convex and twice differentiable func-
tion with h(0) = 0, h

′
(0) < 0, which reaches its minimum at t∗ > 0. If h

′′
is increasing

for t ∈ [0, t∗], then

h(t) ≤ th
′
(0)

2
, 0 ≤ t ≤ t∗.

The following result is of great importance.

Lemma 4.8 [Lemma 4.5 from [1]] If the step size α satisfies α ≤ α, then

f(α) ≤ −αδ2.

Lemma 4.9 Let ΦS(v) ≥ 1 and let α̃ be the default step size as defined in (25). Then
we have

f(α̃) ≤ − 2S

8
√
2(S + 8) (1 + 4qS)

[ΦS(v)]
Sq−1
2Sq . (26)

Proof. Since ΦS(v) ≥ 1, from (23), we have

δ ≥
√

1

2
ΦS(v) ≥

√
1

2
.

Due to Lemma 4.8, with α = α̃ and (25), this completes the proof.
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4.2 Iteration bound

Following the updating of µ to (1− θ)µ, we obtain

ΦS(v+) ≤ (ΦS)0 =
θn+ 2τ + 2

√
2τn

2(1− θ)
= L (n, θ, τ) .

After µ-update to (1 − θ)µ, it is necessary to count how many inner iterations are
required to come back to the situation where ΦS(v+) ≤ τ . We declare the value of
ΦS(v) after the updating of µ as (ΦS)0 and we denote by (ΦS)k , k = 1, 2, ...,K, the
subsequent values in the same outer iteration such that K represents the total number
of inner iterations per the outer iteration.

Lemma 4.10 [Lemma 14 from [3]] Let t0, t1, ..., tk be a sequence of positive numbers
such that

tk+1 ≤ tk − βt1−γ
k , k = 0, 1, ...,K − 1,

where β > 0 and 0 < γ ≤ 1, then K ≤
[
tγ0
βγ

]
.

Thus, it follows that

(ΦS)k+1 ≤ (ΦS)k − k (ΦS)
1−γ

, k = 0, 1, ...,K − 1,

with

κ =
2S

8
√
2(S + 8) (1 + 4qS)

, γ = 1− Sq − 1

2Sq
=
Sq + 1

2Sq
.

Lemma 4.11 Let K be the total number of inner iterations in the outer iteration.
Then we have

K ≤ 8
√
2q(S + 8) (1 + 4qS)

1 + Sq
[(ΦS)0]

Sq+1
2Sq .

Proof. By Lemma 1.3.2 from [3], we have

K ≤ [(ΦS)0]
γ

κγ = 8
√
2q(S+8)(1+4qS)

Sq+1 [(ΦS)0]
Sq+1
2Sq . This completes the proof.

Now, we estimate the total number of iterations of our algorithm.

We recall that the number of outer iterations is limited from above by
log
(
n
ϵ

)
θ

(see

Lemma II.17, page 116 in [5]). We can establish an upper bound on the total number of
iterations by multiplying the number of outer iterations by the number of inner iterations
such as

8
√
2q(S + 8) (1 + 4qS)

Sq + 1
[(ΦS)0]

Sq+1
2Sq

log
(
n
ϵ

)
θ

. (27)

In the methods of large-update with τ = O(n) and θ = Θ(1), we have

O
(
qSn

Sq+1
2Sq log

(n
ϵ

))
iterations complexity.

This is the best well-known complexity result for large-update methods.
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In the methods of small-update, the replacement of τ = O(1) and θ = Θ
(

1√
n

)
in

(27) does not provide the best possible bound. The best bound is obtained as follows.

By (18), with ψS(t) ≤
[
6+q(S+1)

8

]
(t− 1)2, t > 1, we have

ΦS(V+) ≤ nψS

(
1√
1− θ

σ

(
ΦS(V )

n

))
≤ n

[
6 + q(S + 1)

8

](
1√
1− θ

σ

(
ΦS(V )

n

)
− 1

)2

=
n (6 + q(S + 1))

8(1− θ)

(
σ

(
ΦS(V )

n

)
−
√
1− θ

)2

.

Using (19), we have

n (6+q(S+1))

8(1−θ)

(
σ

(
ΦS(V )

n

)
−
√
1−θ

)2

≤ n (6+q(S+1))

8(1−θ)

((
1+

√
2
ΦS(V )

n

)
−
√
1−θ

)2

=
n (6+q(S+1))

8(1−θ)

((
1−

√
1− θ

)
+

√
2
ΦS(V )

n

)2

≤ n (6 + q(S + 1))

8(1− θ)

(
θ+

√
2
τ

n

)2

=
(6+q(S+1))

8(1−θ)

(
θ
√
n+

√
2τ
)2

= (ΦS)0 ,

where we also use 1−
√
1− θ = θ

1+θ ≤ θ and ΦS(v) ≤ τ , utilizing this upper bound for
(ΦS)0, we obtain the following iteration bound:

8
√
2q(S + 8) (1 + 4qS)

Sq + 1
[(ΦS)0]

Sq+1
2Sq

log
(
n
ϵ

)
θ

.

Note now that (ΦS)0 = O(qS), and the iteration bound is given as follows:

O
(
q2S2

√
n log

(n
ϵ

))
iterations complexity.

5 Conclusion

In this work, we have improved the algorithmic complexity of IPM methods for LO
problems by a new kernel function. More specifically, we have proved the large-update
and small-update versions of the primal-dual algorithm based on a new kernel function
with a logarithmic barrier term defined by (1). This new kernel function has never been
mentioned before, and the resulting analysis is also different from others. Moreover, we
intend to extend this work in the future to semi-definite linear complementarity problems
(SDLCPs) based on this kernel function.
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Abstract: This paper focuses on some algebraic characterizations between linear
matrix functions (LMFs) and their domains defined over the field of complex numbers
C. We discuss the intersection, as well as the inclusion of two domains of some LMFs.
By applying specific algebraic methods on ranks and ranges, we consider certain forms
of LMFs, where the general solutions can be expressed via specific explicit LMFs
to establish some relationships between their domains. As a consequence, we have
obtained a well-known result of Lin and Wang.
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1 Introduction

In this work, we use the notation Cn×m to represent the set of all n × m complex
matrices. The symbols A∗, R (A), r (A) and In denote the conjugate transpose, the
range, the rank of the matrix A and the identity matrix of order n, respectively. The
Moore-Penrose inverse of a matrix A ∈ Cn×m is defined as the unique m × n complex
matrix denoted by A+ satisfying the following four equations:

AA+A = A, A+AA+ = A+,
(
AA+

)∗
= AA+,

(
A+A

)∗
= A+A. (1)
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Extensive studies and results regarding the Moore-Penrose inverse can be found in [3,4,
10]. Additionally, we introduce two orthogonal projectors induced by A ∈ Cm×n, namely
FA = In −A+A and EA = Im −AA+.

A linear matrix function

Y = f (X1, X2, ..., Xp) ,

where X1, X2, ..., Xp are the variables over the field of complex numbers C and Y is the
matrix value associated with the matrix function corresponding to X1, X2, . . . , Xp. In
addition, we define the domain of the function f mentioned above as

S = {Y | Y = f (X1, X2, ..., Xp)} .

The majority of problems with linear or nonlinear matrix functions should be under-
stood in terms of their analytic or algebraic aspects and behaviors, and used to solve
matrix function-related problems in both computational and pure mathematics. Fur-
ther, matrix equations play an important role in nonlinear dynamics, control engineer-
ing, mathematical models, for a variety of reasons, including the analysis, modeling, and
simulation of complex systems to linearize nonlinear systems for local analysis, determine
stability through eigenvalue analysis, analyze normal modes in oscillatory systems, their
use ranges from fundamental stability analysis to advanced control and bifurcation stud-
ies. For instance, Baddi et al. [1] studied the stabilization problem of inhomogeneous
semilinear control systems; they established the existence and uniqueness of solutions
of the system using the semigroup theory. By algebraic method, Tian and Yuan [17]
studied and suggested connections between specific LMFs, then explored some specific
subjects about the algebraic relationships between the reduced equations and solutions
of a certain linear matrix problems. Guerarra [5] investigated the inclusion relationships
between the set of persymmetric solutions and the set of minimal rank persymmetric
solutions of the quaternion matrix equation AXA(∗) = B. Özgüler and Akar [9] pro-
vided equivalent conditions for the existence of a common solution to a pair of linear
matrix equations over a principal ideal domain. Jiang et al. [6] studied the relationships
between the set of solutions to AXB = C and the set of solutions of its reduced equa-
tions. Therefore, all matrix functions possess a class of fundamental types called LMFs,
and they can be defined consistently using matrix additions and multiplications. On the
other hand, nonlinear matrix functions have been studied in many works, one may refer
to [15,16] and references therein.

Here, we just provide a common illustration of an LMF

f (X1, X2, . . . , Xp) = A+B1X1C1 +B2X2C2 + · · ·+BpXpCp,

where A ∈ Cm×n, Bi ∈ Cm×li , Ci ∈ Cni×n are given, and Xi ∈ Cli×ni are matrices with
variable entries, where i = 1, 2, . . . , p. Hence, its domain is given as

S =
{
Y = A+B1X1C1 +B2X2C2 + ...+BpXpCp | Xi ∈ Cli×ni , i = 1, 2, . . . , p

}
.

The rank of a matrix is one of the most basic quantities and useful methods and
tools that are widely used in linear algebra, specifically in matrix theory. This finite
nonnegative integer can be used to represent many properties of matrices such as
singularity or nonsingularity of a matrix, identification of matrices, consistency of a
matrix equation, etc. For further details, see [2, 10, 12, 13]. The rank of matrices or
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partitioned matrices was first studied by Matsaglia and Styan [8], where they provided
various formulas that simplify complicated matrix expressions or equalities.

Based on the results of Tian and Yuan [17], this work aims to explore and suggest
some basic aspects concerning the domains of some specific examples of LMF using the
matrix rank method. Because of this fact, we will consider the following new domains of
LMFs:

S1 =
{
A1 +B1X1C1 | X1 ∈ Cp1×n1

}
, (2)

S2 =
{
A2 +B2X2C2 +B3X3C3 | X2 ∈ Cp2×n2 , X3 ∈ Cp3×n3

}
, (3)

where A1, A2 ∈ Cl×n, Bi ∈ Cl×pi , Ci ∈ Cni×n, for i = 1, 3, are given. This paper is
organized as follows. In Section 2, we recall some results. In Section 3, we establish the
necessary and sufficient conditions for the two relations S1∩S2 ̸= ∅, S1 ⊆ S2 to hold. As
a consequence, we give conditions for some matrix equations to have common solutions.
We conclude our discussion in Section 4.

2 Preliminaries

To advance this objective, we require the following basic lemmas.

Lemma 1 [8] Let A ∈ Cl×n, D ∈ Cl×k, and C ∈ Cp×n. Then

r
[
A D

]
− r(EAD) = r(A), r

[
A D

]
− r(EDA) = r(D), (4)

r

[
A
C

]
− r(CFA) = r(A), r

[
A
C

]
− r(AFC) = r(C), (5)

r

[
A D
C 0

]
− r(EDAFC) = r(D) + r(C), (6)

from (4)-(6), it follows

r

[
A BFP

EQC 0

]
= r

A B 0
C 0 Q
0 P 0

− r(P )− r(Q),

r

[
EB1AFC1 EB1B
CFC1 0

]
= r

A B B1

C 0 0
C1 0 0

− r(B1)− r(C1).

Lemma 2 [10] Consider the matrix equation

AXB = D, (7)

where A ∈ Cl×n, B ∈ Cp×q, and D ∈ Cl×q are given, and X ∈ Cn×p is an unknown
matrix. Then the following are equivalent:
(i) Eq (7) is consistent.
(ii) AA+DB+B = D.

(iii) r
[
A D

]
= r(A) and r

[
B
D

]
= r(B).

(iv) R(D) ⊆ R (A) and R(D∗) ⊆ R(B∗).
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In this case, the general solution can be expressed as

X = A+DB+ + FAV + UEB ,

where V , U are arbitrary with appropriate sizes. In particular, Eq (7) holds for matrix
X ∈ Cn×p if and only if [

A D
]
= 0 or

[
B
D

]
= 0.

Lemma 3 [9] The matrix equation

A1X1B1 +A2X2B2 = D (8)

is solvable for X1 and X2 of suitable sizes if and only if all the following equalities

r
[
D A1 A2

]
= r

[
A1 A2

]
, r

[
D A1

B2 0

]
= r(A1) + r(B2),

r

[
D A2

B1 0

]
= r(A2) + r(B1), r

D
B1

B2

 = r

[
B1

B2

]

hold, or, equivalently,

EAD = 0, EA1DFB2 = 0, EA2DFB1 = 0, DFB = 0 hold,

where A =
[
A1 A2

]
and B =

[
B1

B2

]
.

Lemma 4 [12] Eq (8) holds for all X1 and X2 of suitable sizes if and only if any one
of the following equalities

[
D A1 A2

]
= 0,

[
D A1

B2 0

]
= 0,

[
D A2

B1 0

]
= 0,

D
B1

B2

 = 0

holds.

Lemma 5 [11] The matrix equation

A1X1B1 +A2X2B2 +A3X3B3 = C (9)

is solvable for X1, X2 and X3 of suitable sizes if and only if all the following equalities
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hold

r
[
A1 A2 A3 C

]
= r

[
A1 A2 A3

]
, r


B1

B2

B3

C

 = r

B1

B2

B3

 ,

r

[
C A1 A2

B3 0 0

]
= r

[
A1 A2

]
+ r(B3), r

[
C A1 A3

B2 0 0

]
= r

[
A1 A3

]
+ r(B2),

r

[
C A2 A3

B1 0 0

]
= r

[
A2 A3

]
+ r(B1), r

C A3

B1 0
B2 0

 = r

[
B1

B2

]
+ r(A3),

r

C A2

B1 0
B3 0

 = r

[
B1

B3

]
+ r(A2), r

C A1

B2 0
B3 0

 = r

[
B2

B3

]
+ r(A1),

r


C 0 A1 0 A3

0 −C 0 A2 A3

B2 0 0 0 0
0 B1 0 0 0
B3 B3 0 0 0

 = r

B2 0
0 B1

B3 B3

+ r

[
A1 0 A3

0 A2 A3

]
.

Lemma 6 [18] Let T ∈ Cl×n, N ∈ Cl×p, B ∈ Cp×k and D ∈ Cn×k be given. Then the
system of matrix equations TX = N and XB = D has a solution if and only if

TT+N = N , DB+B = D and TD = NB.

In this case, the general solution can be written as

X = T+N + FTDB+ + FTV EB,

where V ∈ Cn×p is arbitrary.

Lemma 7 [14] Define two domains as

Γ1 =
{
D1 +B1X1C1 | X1 ∈ Cs1×t1

}
and Γ2 =

{
D2 +B2X2C2 | X2 ∈ Cs2×t2

}
,

where Di ∈ Cl×n, Bi ∈ Cl×si , and Ci ∈ Cti×n are given, and Xi ∈ Csi×ti are variable
for i = 1, 2. Then
(a) Γ1 ∩ Γ2 ̸= ∅ if and only if all the following conditions hold:

R(D1 −D2) ⊆ R
[
B1 B2

]
, R(D∗

1 −D∗
2) ⊆ R

[
C∗

1 C∗
2

]
,

r

[
D1 −D2 B1

C2 0

]
= r(B1) + r(C2), r

[
D1 −D2 B2

C1 0

]
= r(B2) + r(C1).

(b) Γ1 ⊆ Γ2 if and only if

R
[
D1 −D2 B1

]
⊆ R(B2) and R

[
D∗

1 −D∗
2 C∗

1

]
⊆ R(C∗

2 ).

(c) Γ1 = Γ2 if and only if

R(D1 −D2) ⊆ R(B1) = R(B2) and R(D∗
1 −D∗

2) ⊆ R(C∗
1 ) = R(C∗

2 ).
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3 Relationship between Linear Matrix Functions

In this section, we consider two domains given in (2) and (3), we discuss the necessary
and sufficient conditions for two relations S1 ∩S2 ̸= ∅, S1 ⊆ S2 to hold. We also present
connections between two domains of some well known linear matrix functions.

Theorem 8 Let S1 and S2 be as given in (2) and (3), respectively. Then
(a) S1 ∩ S2 ̸= ∅ if and only if all the following equalities hold:

r
[
A2 −A1 B1 B2 B3

]
= r

[
B1 B2 B3

]
, r


A2 −A1

C1

C2

C3

 = r

C1

C2

C3

 ,

r

[
A2 −A1 B1 B2

C3 0 0

]
= r

[
B1 B2

]
+ r(C3),

r

[
A2 −A1 B1 B3

C2 0 0

]
= r

[
B1 B3

]
+ r(C2),

r

[
A2 −A1 B2 B3

C1 0 0

]
= r

[
B2 B3

]
+ r(C1),

r

A2 −A1 B3

C1 0
C2 0

 = r

[
C1

C2

]
+ r(B3), r

A2 −A1 B2

C1 0
C3 0

 = r

[
C1

C3

]
+ r(B2),

r

A2 −A1 B1

C2 0
C3 0

 = r

[
C2

C3

]
+ r(B1),

r


A2 −A1 0 B1 0 B3

0 A1 −A2 0 B2 B3

C2 0 0 0 0
0 C1 0 0 0
C3 C3 0 0 0

 = r

C2 0
0 C1

C3 C3

+ r

[
B1 0 B3

0 B2 B3

]
.

(b) S1 ⊆ S2 if and only if any one of the following equalities holds:

r
[
B2 B3

]
= l or r

[
A2 −A1 B1 B2 B3

]
= r

[
B2 B3

]
,

or r

[
A2 −A1 B2 B3

C1 0 0

]
= r

[
B2 B3

]
,

(10)

r (B2) = l or r

[
A2 −A1 B1 B2

C3 0 0

]
= r (B2) + r (C3) ,

or r

 A2 −A1 B2

C1 0
C3 0

 = r (C3) + r (B2) or r (C3) = n,

(11)

r (B3) = l or r

[
A2 −A1 B1 B3

C2 0 0

]
= r (B3) + r (C2) ,

or r

 A2 −A1 B3

C1 0
C2 0

 = r (C2) + r (B3) or r (C2) = n,

(12)
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r

 A2 −A1 B1

C2 0
C3 0

 = r

[
C2

C3

]
or r


A2 −A1

C1

C2

C3

 = r

[
C2

C3

]
or r

[
C2

C3

]
= n.

(13)

Proof. (a) The intersection S1 ∩ S2 ̸= ∅ is obviously equivalent to

A1 +B1X1C1 = A2 +B2X2C2 +B3X3C3. (14)

Eq (14) can be written as

B1X1C1 −B2X2C2 −B3X3C3 = A2 −A1. (15)

By applying Lemma 5 to the Eq (15), we get (a).

(b) Eq (14) can be written as

B2X2C2 +B3X3C3 = A1 −A2 +B1X1C1. (16)

From Lemma 3, Eq (16) holds for two matrices X2 and X3 if and only if all the following
four conditions hold:

E[B2,B3](A1 −A2 +B1X1C1) = 0, (17)

EB2(A1 −A2 +B1X1C1)FC3 = 0, (18)

EB3(A1 −A2 +B1X1C1)FC2 = 0, (19)

((A1 −A2) +B1X1C1)FZ = 0, (20)

where Z =

[
C2

C3

]
. By Lemma 2, Eq (17) holds for all X1 if and only if

E[B2,B3] = 0 or
[
E[B2,B3]B1 E[B2,B3](A2 −A1)

]
= 0 or

[
C1

E[B2,B3](A2 −A1)

]
= 0,

which are equivalent, respectively, to

r
[
B2 B3

]
= l or r

[
A2 −A1 B1 B2 B3

]
= r

[
B2 B3

]
,

or r

[
A2 −A1 B2 B3

C1 0 0

]
= r

[
B2 B3

]
.

This proves (10). Eq (18) holds for all X1 if and only if

EB2
= 0 or

[
EB2B1 EB2(A2 −A1)FC3

]
= 0 or

[
C1FC3

EB2
(A2 −A1)FC3

]
or FC3

= 0,

which, in consequence, is equivalent to

r (B2) = l or r

[
A2 −A1 B1 B2

C3 0 0

]
= r (B2) + r (C3) ,

or r

 A2 −A1 B2

C1 0
C3 0

 = r (C3) + r (B2) or r (C3) = n.
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Then (11) holds. Similarly, Eq (19) holds for all X1 if and only if

r (B3) = l or r

[
A2 −A1 B1 B3

C2 0 0

]
= r (B3) + r (C2) ,

or r

 A2 −A1 B3

C1 0
C2 0

 = r (C2) + r (B3) or r (C2) = n.

Then we get (12). Eq (20) holds for all X1 if and only if[
B1 (A2 −A1)FZ

]
= 0 or

[
C1FZ

(A2 −A1)FZ

]
= 0 or FZ = 0,

which then is equivalent to

r

 A2 −A1 B1

C2 0
C3 0

 = r

[
C2

C3

]
or r


A2 −A1

C1

C2

C3

 = r

[
C2

C3

]
or r

[
C2

C3

]
= n,

which proves (13). Hence we establish (b).

Setting B3 = Ip, C2 = In in Theorem 8, we get the following result.

Corollary 9 Consider two domains of two linear matrix functions

S1 =
{
A1 +B1X1C1 | X1 ∈ Cp1×n1

}
,

S2 =
{
A2 +B2X2 +X3C3 | X2 ∈ Cp2×n, X3 ∈ Cl×p3

}
,

where A1, A2 ∈ Cl×n, B1 ∈ Cl×p1 , B2 ∈ Cl×p2and C1 ∈ Cn1×n, C3 ∈ Cp3×nare known
matrices. Then

(a) S1 ∩ S2 ̸= ∅ if and only if the following rank equalities hold:

r

[
A2 −A1 B1 B2

C3 0 0

]
= r

[
B1 B2

]
+ r(C3),

r

A2 −A1 B2

C1 0
C3 0

 = r

[
C1

C3

]
+ r(B2),

r

A2 −A1 B1 B2

C1 0 0
C3 0 0

 = r

[
C1

C3

]
+ r

[
B1 B2

]
.

(b) S1 ⊆ S2 if and only if

r (B2) = l or r

[
A2 −A1 B1 B2

C3 0 0

]
= r (B2) + (C3)

or r

 A2 −A1 B2

C1 0
C3 0

 = r (C3) + r (B2) or r (C3) = n.
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From Colrollary 9, we can deduce the following result.

Corollary 10 Let A4 ∈ Cl×n, B4 ∈ Cp×s, C4 ∈ Cl×p, D4 ∈ Cn×s, A5 ∈ Ck×t, B5 ∈
Ck×n, C5 ∈ Cp×tbe given, X4, X5 ∈ Cn×p be unknown matrices, and assume that the
system A4X = C4, XB4 = D4, and the matrix equation B5XC5 = A5 are solvable for
X4 and X5, respectively. Denote

S1 =
{
X4 ∈ Cn×p | A4X4 = C4, X4B4 = D4

}
, (21)

S2 =
{
X5 ∈ Cn×p | B5X5C5 = A5

}
. (22)

Then

(a) S1 ∩ S2 ̸= ∅, that is, the system A4X4 = C4, X4B4 = D4 and B5X5C5 = A5 have a
common solution if and only if

r

[
A4 C4C5

B5 A5

]
= r

[
A4

B5

]
,

r

[
B4 C5

B5D4 A5

]
= r

[
B4 C5

]
,

r

 0 B4 C5

A4 −C4B4 0
B5 0 A5

 = r
[
B4 C5

]
+ r

[
A4

B5

]
.

(b) S1 ⊆ S2, that is, all solutions of A4X4 = C4, X4B4 = D4 are solutions of B5X5C5 =
A5 if and only if

r

[
A4 C4C5

B5 A5

]
= r(A4) or r

[
B4 C5

B5D4 A5

]
= r(B4).

Proof. It follows from Lemmas 6 and 2 that, the solutions of system A4X4 = C4,
X4B4 = D4 and equation B5X5C5 = A5 can be expressed, respectively, as

X4 = A+
4 C4 + FA4D4B

+
4 + FA4V EB4 ,

X5 = B+
5 A5C

+
5 + FB5

U +WEC5
,

where V , U and W are arbitrary. So, two sets in (21) and (22) can be represented,
respectively, as

S1 =
{
A+

4 C4 + FA4
D4B

+
4 + FA4

V EB4

}
,

S2 =
{
B+

5 A5C
+
5 + FB5U +WEC5

}
.

From Corollary 9, the relation S1 ∩ S2 ̸= ∅ holds if and only if the following equalities
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hold:

r

[
B+

5 A5C
+
5 −A+

4 C4 − FA4
D4B

+
4 FA4

FB5

EC5
0 0

]
= r

[
FA4

FB5

]
+ r(EC5

), (23)

r

B+
5 A5C

+
5 −A+

4 C4 − FA4
D4B

+
4 FB5

EB4
0

EC5
0

 = r

[
EB4

EC5

]
+ r(FB5), (24)

r

B+
5 A5C

+
5 −A+

4 C4 − FA4
D4B

+
4 FA4

FB5

EB4
0 0

EC5 0 0

 = r

[
EB4

EC5

]
+ r

[
FA4

FB5

]
. (25)

By Lemma 1, and simplifying by C4B4 = A4D4, A4A
+
4 C4 = C4, D4B

+
4 B4 = D4,

B5B
+
5 A5 = A5, A5C

+
5 C5 = A5, we find that the rank equalities in (23)-(25) are equiva-

lent, respectively, to

r

[
A4 C4C5

B5 A5

]
= r

[
A4

B5

]
,

r

[
B4 C5

B5D4 A5

]
= r

[
B4 C5

]
,

r

 0 B4 C5

A4 −C4B4 0
B5 0 A5

 = r
[
B4 C5

]
+ r

[
A4

B5

]
.

Thus (a) is proved.

(b) S1 ⊆ S2 holds if and only if

r

[
B+

5 A5C
+
5 −A+

4 C4 − FA4
D4B

+
4 FA4

FB5

EC5
0 0

]
= r(FB5

) + r(EC5
),

or r

B+
5 A5C

+
5 −A+

4 C4 − FA4
D4B

+
4 FB5

EB4
0

EC5
0

 = r(EC5) + r(FB5),

which then is equivalent to

r

[
A4 C4C5

B5 A5

]
= r(A4) or r

[
B4 C5

B5D4 A5

]
= r(B4).

Then we establish (b).

Remark 3.1 Result (a) of Corollary 10 is the same as in [7, Theorem 2.4].

4 Conclusion

In this study, we discussed and examined some fundamental questions associated with
the connections between two domains of linear matrix functions and specific types of
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linear matrix equations. The general solutions can be expressed via particular explicit
linear matrix functions to establish some connections between their domains through the
methodical application of various established or well-known relations to ranks and ranges
of matrices. Thus, they show that a variety of matrix equality and matrix set inclusion
problems may be solved with the help of the matrix rank and range method.
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[9] A. Özgüler Bülent and Akar, Nail. A common solution to a pair of linear matrix equations
over a principal ideal domain. Linear Algebra & Appl. 144 (1991) 85–99.

[10] R. Penrose. A generalized inverse for matrices. Mathematical proceedings of the Cambridge
philosophical society 51 (3) (1955) 406–413.

[11] Y. Tian. The solvability of two linear matrix equations. Linear Multilinear Algebra 48 (2)
(2000) 123–147.

[12] Y. Tian. Upper and lower bounds for ranks of matrix expressions using generalized inverses.
Linear Algebra & Appl. 355 (1-3) (2002) 187–214.

[13] Y. Tian. Equalities and inequalities for inertias of Hermitian matrices with applications.
Linear Algebra & Appl. 433 (1) (2010) 263–296.

[14] Y. Tian. Relations between matrix sets generated from linear matrix expressions and their
applications. Comput. Math. Appl. 61 (6) (2011) 1493–1501.

[15] Y. Tian. Formulas for calculating the extremum ranks and inertias of a four-term quadratic
matrix-valued function and their applications. Linear Algebra & Appl. 437 (3) (2012) 835–
859.



254 S. GUERARRA, S. ALLIHOUM AND S. KUMAR

[16] Y. Tian. Some optimization problems on ranks and inertias of matrix-valued functions
subject to linear matrix equation restrictions. Banach J. Math. Anal. 8 (1) (2014) 148–178.

[17] Y. Tian, Yongge and R. Yuan. Algebraic Characterizations of Relationships between Dif-
ferent Linear Matrix Functions. Mathematics 11 (3) (2023) 756.

[18] Q. W. Wang. The general solution to a system of real quaternion matrix equations. Comput.
Math. Appl. 49 (5-6) (2005) 665–675.



Nonlinear Dynamics and Systems Theory, 25 (3) (2025) 255–265

Analysis and Existence of Optimal Control in
Industrial Economic Growth with Investment Using

the Ramsey-Cass-Koopmans Model

Alvian Alif Hidayatullah, Subchan Subchan ∗ and Devi Try Lestari

Department of Mathematics, Faculty of Science and Data Analytics,
Institut Teknologi Sepuluh Nopember

Received: July 14, 2024; Revised: May 20, 2025

Abstract: Economic growth is associated with an increase in the production of
goods and services. Consumption and investment influence the increased production
of goods and services. Consumption parameters can be assessed based on utility,
while investments can be affected by the level of capital stock. This paper applies
a modification and analysis of the Ramsey-Cass-Koopmans model to the economic
growth of two industries, focusing on investment strategies to maximize consumption
utility. The analysis of the Ramsey-Cass-Koopmans model showed that the model is
valid as it has a positive and unique solution. This study performs optimal control
by maximizing the consumption utility of each industry, where the control is given
in the form of per capita consumption. In this paper, consumption control can be
interpreted as a form of savings. In addition, the existence of optimal control is
proven, indicating that the problem can be solved.

Keywords: Ramsey-Cass-Koopmans model; utility; optimal control; investment.

Mathematics Subject Classification (2020): 49J15, 49K15, 49L20, 93-10.

∗ Corresponding author: mailto:subchan@its.ac.id

© 2025 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua255

mailto: subchan@its.ac.id
http://e-ndst.kiev.ua


256 ALVIAN ALIF HIDAYATULLAH, SUBCHAN SUBCHAN, AND DEVI TRY LESTARI

1 Introduction

A country’s development is determined by economic growth. This is demonstrated by
increasing a country’s ability to provide goods and services to its population [1]. Con-
sumption and investment drive the growth in the production of goods and services.
Consumption and investment factors cannot be separated. Therefore, consumption and
investment are interconnected and influence each other. Consumption allows firms to
generate the income needed to increase investment in the capital stock, while invest-
ment can increase production. Utility is the value or benefit obtained from consumption
activities or use of goods and services. Furthermore, utility is an essential factor that in-
fluences consumption. The importance of consumption utility lies in its ability to increase
productivity and efficiency in the production of goods and services [2]. One approach
to maximizing utility is modelling economic growth problems using the Ramsey model,
which can then be analyzed using optimal control theory.

Optimal control theory focuses on determining controls that influence processes while
adhering to specific constraints [3–5]. Optimal control theory also serves as an alternative
for solving economic growth problems, including those related to the Ramsey model.
The Ramsey model was first introduced in 1928 by Frank P. Ramsey [6]. The Ramsey
model is a neoclassical economic growth model that maximizes the utility of capital-
bound consumption under dynamic constraints. David Cass and Tjalling Koopmans
further developed this model in separate works, and it is now known as the Ramsey-
Cass-Koopmans model [7, 8]. In their developments, several previous studies have used
this model [9–13]. Olivia Bundau and Adina Juratoni [14] discussed the Ramsey growth
model in infinite and continuous time with the aim of maximizing global utility using the
Pontryagin Maximum Principle. Then Kajanovičová et al. [15] discussed optimal control
of the Ramsey-Cass-Koopmans economic growth model with non-constant population
growth using the Maximum Principle, which aims to maximize consumption utility with
control in the form of per capita consumption. Further research by Frerick et al. [16]
discussed the multi-object Ramsey-Cass-Koopmans model for Ramsey-type equilibrium
problems with heterogeneous agents.

This paper discusses a modification and analysis of the nonlinear dynamics of the
Ramsey-Cass-Koopmans model of the economic growth of two industries that are in-
terrelated by investment. The optimal control is aimed to maximize the utility of the
amount of consumed production. The analyses conducted in this study are the positivity
analysis, the uniqueness analysis, and the existence of optimal control [4]. Positivity
and uniqueness aim to validate the model, while the existence of optimal control verifies
whether a control that maximizes utility exists. The control variable for maximizing util-
ity is defined as per capita consumption. When consumption is controlled, consumption
expenditure is reduced, and the remaining production output can be reinvested or saved
as savings.

2 Mathematical Model of Economic Growth with Investment

The mathematical model of economic growth used in this paper is a modification of the
multi-object Ramsey-Cass-Koopmans model [16]. In this paper, it is assumed that the
second industry has a high demand for goods. Thus, the first industry provides some of
its capital by investing in the second industry. The investment return is assumed to be
a profit of 5% from the investment, and this problem can be illustrated as follows.
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Individual A owns and manages two industries in different regions, namely, the first
industry in region X and the second industry in region Y. In the first industry, consumer
demand for goods in region X is not too high; thus, the first industry can invest in the
second industry. While consumer demand for goods in region Y in the second industry
exceeds the demand for goods in the first industry in region X, the first industry helps
by providing capital or investing in the second industry. With this additional capital,
it is expected to maximize output or production results. For example, if individual A
owns and manages two industries and has problems in one industry, then individual A
can solve the problems in the first industry. This process aims to maximize consumption
utility and increase capital stock growth in both industries.

The relationship between the two industries can be formulated by the following math-
ematical model of economic growth:

dK1(t)
dt = F1(A1,K1(t), L1(t))− δ1K1(t) + δ2K2(t)− C1(t),

dK2(t)
dt = F2(A2,K2(t), L2(t)) + δ1K1(t)− δ2K2(t)− C2(t)

(1)

with

K1(t) : First industry capital stock at time t
K2(t) : Second industry capital stock at time t
L1(t) : Total labor of the first industry at time t
L2(t) : Total labor of the second industry at time t
C1(t) : Amount of production output consumed by the first

industry at time t
C2(t) : Amount of production output consumed by the second

industry at time t
δ1 : Investment rate
δ2 : Investment return rate
F1(A1,K1(t), L1(t)) : First industry output
F2(A2,K2(t), L2(t)) : Second industry output
A : Technological advancement factor.

K(t) and C(t) are continuous functions, and the production function F used in the model
is the Cobb-Douglas production function

F (A,K(t), L(t)) = AK(t)αL(t)1−α (2)

with A > 0 being a constant. The production output (F ) describes the relationship be-
tween the technological advancement factor (A), the capital stock (K), and the amount of
labor (L) with L̇(t) = nL(t), where L(t) experiences exponential growth with a constant
growth rate of the amount of labor (n).

In economic analysis, to enable more accurate and fair comparisons between groups
with different populations, it is necessary to convert the Equation (1) into per capita
model:

• Capital stock per capita (k):

k(t) =
K(t)

L(t)
,

K(t) = k(t)L(t).
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Then

K̇(t) = k̇(t)L(t) + k(t)L̇(t),

K̇(t) = k̇(t)L(t) + k(t)nL(t).

• Amount of production output consumed per capita (c):

c(t) =
C(t)

L(t)
.

• Production output per capita (f):

f(t) =
F (t)

L(t)
,

where F is

F (t) = AK(t)αL(t)1−α

= Ak(t)αL(t)αL(t)1−α

= Ak(t)αL(t).

Therefore, the output of per capita production is

f(t) =
F (t)

L(t)
=

Ak(t)αL(t)

L(t)
= Ak(t)α.

Furthermore, assume labor L(t) = L1(t) = L2(t), then Equation (1) becomes:
1. The capital stock of the first industry (k1) can be given as follows:

(k̇1(t) + k1(t)n1)L(t) = (f1(t)− δ1k1(t) + δ2k2(t)− c1(t))L(t).

Then, simplify both segments by multiplying by 1
L(t) :

k̇1(t) = f1(t)− δ1k1(t) + δ2k2(t)− k1(t)n1 − c1(t).

Substitute f1(t) = A1k1(t)
α1 so that

k̇1(t) = A1k1(t)
α1 − δ1k1(t) + δ2k2(t)− k1(t)n1 − c1(t).

2. The capital stock of the second industry (k2) can be given as follows:

(k̇2(t) + k2(t)n2)L(t) = (f2(t) + δ1k1(t)− δ2k2(t)− c2(t))L(t).

Then, simplify both segments by multiplying by 1
L(t) :

k̇2(t) = f2(t) + δ1k1 − δ2k2(t)− k2(t)n2 − c2(t).

Substitute f2(t) = A2k2(t)
α2 so that

k̇2(t) = A2k2(t)
α2 + δ1k1(t)− δ2k2 − k2(t)n2 − c2(t).

Thus, Equation (1) can be expressed as

k̇1(t) = A1k1(t)
α1 − δ1k1(t) + δ2k2(t)− n1k1(t)− c1(t),

k̇2(t) = A2k2(t)
α2 + δ1k1(t)− δ2k2(t)− n2k2(t)− c2(t)

(3)

for ki(0) = ki0, i = 1, 2.
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3 Positive and Unique Solution

It can be seen from Equation (3) that the model is considered valid if it has a positive
solution at any time t. It means that if the model has initial conditions k1(t0) > 0 and
k2(t0) > 0, then k1(t) > 0 and k2(t) > 0 for every t > t0. First, it will be shown that
Equation (3) is valid. Suppose X is the set of all x(t) = (k1, k2) for each time t as the
solution of a controlled model with the initial conditions x(t0) = (k1(t0), k2(t0)) and the
set

Ω(k1(t0),k2(t0)) := {k1(t), k2(t)|t0 ≤ t ≤ tf , 0 < k1(t), k2(t)} . (4)

If the initial conditions in the Equation (3) satisfy k1(t0 = 0) > 0 and k2(t0 = 0) > 0,
then it can be said that the Equation (3) is valid if the set Ω(k1(t0),k2(t0)) is a positive
invariant set. The definition of a positive invariant set can be given as follows.

Definition 3.1 (Positively invariant set). Let ẋ̇ẋx = fff(t,xxx) be a dynamic system with
the initial conditions xxx0 = xxx(t0). Suppose Ω is a subset of Rn. Then Ω is said to be a
positive invariant set if xxx0 ∈ Ω implies xxx(t, x0) ∈ Ω for every t ≥ t0.

The positive invariant set of (4) can be proven by the following theorem.

Theorem 3.1 Let

Ω(k1(t0),k2(t0)) := {k1(t), k2(t)|t0 ≤ t ≤ tf , 0 < k1(t), k2(t)}

be a subset of all solutions of the Equation (3) with the initial conditions k1(t0 =
0), k2(t0 = 0). If k1(t0), k2(t0) > 0, then Ω(k1(t0),k1(t0)) is a positive invariant set.

Proof. Define the functions k̇1(t) and k̇2(t) as follows:

k̇1(t) = f1(t)− δ1k1(t) + δ2k2(t)− n1k1(t)− c1(t)

= f1(t)− c1(t)− δ1k1(t) + δ2k2(t)− n1k1(t),
(5)

k̇2(t) = f2(t) + δ1k1(t)− δ2k2(t)− n2k2(t)− c2(t)

= f2(t)− c2(t) + δ1k1(t)− δ2k2(t)− n2k2(t).
(6)

Based on Krasovskii et al. [13], the consumption function is defined as

C(t) = (1− s(t))F (t),

c(t)L(t) = (1− s(t))f(t)L(t).

Both segments are multiplied by 1
L(t) :

c(t) = (1− s(t))f(t),

c(t) = f(t)− s(t)f(t),

s(t)f(t) = f(t)− c(t),

where s(t) represents the investment of current savings invested in capital growth at time
t with s(t) < 1. Thus, the Equations (5) – (6) can be written as

k̇1(t) = f1(t)− c1(t)− δ1k1(t) + δ2k2(t)− n1k1(t)

= s1(t)f1(t)− δ1k1(t) + δ2k2(t)− n1k1(t)

= s1(t)A1k1(t)
α1 − δ1k1(t) + δ2k2(t)− n1k1(t),
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k̇2(t) = f2(t)− c2(t) + δ1k1(t)− δ2k2(t)− n2k2(t)

= s2(t)f2(t) + δ1k1(t)− δ2k2(t)− n2k2(t)

= s2(t)A2k2(t)
α2 + δ1k1(t)− δ2k2(t)− n2k2(t).

Assume that there exists t ∈ (0, tf ] such that k1(t) ≤ 0 or k2(t) ≤ 0. First, suppose
k1(t) ≤ 0 and k1∗ = {t ∈ (0, tf ] | k1(t) ≤ 0}, then let t∗ = inf k1∗. It can be seen that
t∗ ̸= 0, so there exists k1(t) > 0,∀t ∈ [0, t∗) and

k̇2(t) = s2(t)A2k2(t)
α2 + δ1k1(t)− δ2k2(t)− n2k2(t),

k̇2(t) > −δ2k2(t)− n2k2(t), ∀t ∈ [0, tf ),

k̇2(t) + δ2k2(t) + n2k2(t) > 0.

Assume that there exists t ∈ (0, t∗) such that k2(t) ≤ 0. Then suppose k2∗ = {t ∈
(0, t∗) | k2(t) ≤ 0} and t∗k2

= inf k2∗. It can be seen that t∗k2
̸= 0. Then there exists

k2(t) > 0,∀t ∈ [0, t∗k2
) and

k̇2(t) + δ2k2(t) + n2k2(t) > 0, ∀t ∈ [0, t∗k2
),

k̇2(t) + (δ2 + n2)k2(t) > 0,

e(δ2+n2)tk̇2(t) + e(δ2+n2)t(δ2 + n2)k2(t) > 0,

d

dt

(
e(δ2+n2)tk2(t)

)
> 0,∫ t∗k2

0

d

dt

(
e(δ2+n2)tk2(t)

)
dt > 0,

e(δ2+n2)t
∗
k2k2(t)− k2(0) > 0,

k2(t
∗
k2
) > k2(0)e

−(δ2+n2)t
∗
k2 .

We obtain that k2(t∗k2
) > k2(0)e

−(δ2+n2)t
∗
k2 > 0. However, this contradicts the statement

k2(t
∗
k2
) ≤ 0. Therefore, it can be concluded that k2(t) > 0 for any t ∈ [0, t∗). It means

that

k̇1(t) = s1(t)A1k1(t)
α1 − δ1k1(t) + δ2k2(t)− n1k1(t),

k̇1(t) > −δ1k1(t)− n1k1(t), ∀t ∈ [0, t∗),

k̇1(t) + δ1k1(t) + n1k1(t) > 0,

k̇1(t) + (δ1 + n1)k1(t) > 0,

e(δ1+n1)tk̇1(t) + e(δ1+n1)t(δ1 + n1)k1(t) > 0,

d

dt

(
e(δ1+n1)t

∗
k1k1(t)

)
> 0,∫ t∗

0

d

dt

(
e(δ1+n1)tk1(t)

)
dt > 0,

e(δ1+n1)t
∗
k1(t)− k1(0) > 0,

k1(t
∗) > k1(0)e

−(δ1+n1)t
∗

so that k1(t
∗) > k1(0)e

−(δ1+n1)t
∗
> 0 holds. However, this contradicts the statement

k1(t
∗) ≤ 0. Therefore, it can be concluded that k1(t) > 0 for any t ∈ [0, tf ]. Furthermore,

in the same way, for k2(t), it is obtained that k2(t) > 0 for every t ≥ t0.
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It has been proved that the set Ω(k1(t0),k2(t0)) defined in Equation (4) is a positive in-
variant set. It means that if the initial condition in Equation (3) with control is positive,
then the solution of the model is positive for any time t. However, it is not guaranteed
that this model has a unique solution for a given initial condition.

Now, to guarantee that the solution of Equation (3) exists and is unique, we can
use the concept of the Lipschitz condition in Equation (3) [17]. For that, we prove that
Equation (3) satisfies the Lipschitz condition for α1 = α2 = 1 as given in the following
theorem.

Theorem 3.2 The mathematical model (3) that satisfies a given initial condition
k1(t0), k2(t0) > 0, has a unique solution.

Proof. Let X = (k1, k2) and

φ(X) =

dk1

dt

dk2

dt

 .

The Ramsey-Cass-Koopmans model with investment can be written as

φ(X) =

A1k1 − δ1k1 + δ2k2 − n1k1 − c1

A2k2 + δ1k1 − δ2k2 − n2k2 − c2

 .

Note that for Xa = (k1a, k2a) and Xb = (k1b, k2b),

φ(Xa)− φ(Xb) =

(A1 − δ1 − n1)(k1a − k1b) + δ2(k2a − k2b)

(A2 − δ2 − n2)(k2a − k2b) + δ1(k1a − k1b)

 .

Furthermore, by using the Euclidean norm of R2 and based on the triangle inequality,
we obtain

∥ φ(Xa)− φ(Xb) ∥≤

∥∥∥∥∥∥
(A1 − δ1 − n1)(k1a − k1b)

(A2 − δ2 − n2)(k2a − k2b)

∥∥∥∥∥∥+

∥∥∥∥∥∥
δ2(k2a − k2b)

δ1(k1a − k1b)

∥∥∥∥∥∥ .
Since A1,A2, δ1, δ2, n1, n2 are constant, then there exists M > 0 such that

|A1 − δ1 − n1| , |A2 − δ2 − n2| , |δ1| , |δ2| ≤ M.

Then

∥ φ(Xa)− φ(Xb) ∥ ≤ M

∥∥∥∥∥∥
k1a − k1b

k2a − k2b

∥∥∥∥∥∥+M

∥∥∥∥∥∥
k2a − k2b

k1a − k1b

∥∥∥∥∥∥
= M

∥∥∥∥∥∥
k1a − k1b

k2a − k2b

∥∥∥∥∥∥+M

∥∥∥∥∥∥
k2a − k2b

k1a − k1b

∥∥∥∥∥∥
= M ∥ Xa −Xb ∥ +M ∥ Xa −Xb ∥
= 2M ∥ Xa −Xb ∥
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so that φ(X) is a Lipschitz function. It means that we obtain

X(t) = X(t0) +

∫ t

t0

φ(X) dt.

It is proved that X has a unique solution for the initial condition ki(t0) > 0, i = 1, 2.

4 The Existence of Optimal Control

In this paper, the objective function aims to maximize consumption utility through per
capita consumption control. This approach is generally used when utility is directly based
on consumption level. Consumption level is considered as the main factor affecting the
consumption utility. The utility used is the logarithmic utility function, that is,

u(c(t)) = ln c(t).

Then the objective function based on the Ramsey-Cass-Koopman model can be defined
as follows:

J = max
c1(t)∈U1

∫ ∞

0

ln c1(t)e
−ρtdt+ max

c2(t)∈U2

∫ ∞

0

ln c2(t)e
−ρtdt (7)

for the discount factor ρ adjusts future consumption utility values according to individual
time preferences, with constraints based on Equation (3). From Equation (7), we obtain
that this statement is equivalent to

J = max
(c1(t),c2(t))∈U

∫ ∞

0

(ln c1(t) + ln c2(t))e
−ρtdt (8)

for U = (U1, U2). Furthermore, by considering the equation

c(t) = (1− s(t))f(t) = (1− s(t))Ak(t),

we can represent the objective function (7) as

J = max

∫ ∞

0

(ln(1− s1(t))Ak1(t) + ln(1− s2(t))Ak2(t))e
−ρtdt, (9)

where s1(t) and s2(t) denote investment in the form of a portion of current output saved
and invested in capital growth at time t with s(t) < 1 in the first and second industries,
respectively.

We have shown in Section 3 that the Equation (3) has a unique and positive solution.
Using the result from Fleming and Rishel [18]) we prove the existence of the optimal
control by checking the following points.

1. The set S defined as

S = {(s1(t), s2(t)) | 0 ≤ s1(t), s2(t) ≤ g,∀t ∈ [0, tf ]}

is a nonempty set. This can be seen from Theorems 3.1 and 3.2, where every control
s ∈ S has a unique and positive solution.
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2. The set S is a closed convex set.
Let s1(t), s2(t) ∈ S. It can be easily seen that 0 ≤ s1(t), s2(t) ≤ g for every
t ∈ [0, tf ]; so, with every λ ∈ [0, 1], we obtain

0 ≤ λs1(t) + (1− λ) s2(t) ≤ g, t ∈ [0, tf ].

Therefore
λs1(t) + (1− λ) s2(t) ∈ S.

This shows that S is a convex set. Now, we show that S is a closed set. It is enough
to show that for every convergent sequence (sn(t))n∈N = (s1n(t), s2n(t)) ⊆ S,
limn→∞ sn(t) ∈ S. It means that for sn(t) → (s1(t), s2(t)) with s1(t) =
limn→∞ s1n(t) and s2 = limn→∞ s2n(t) , we obtain (s1(t), s2(t)) ∈ S. Now we
define

∥ u− v ∥:= sup{|u (t)− v (t) | | t ∈ [0, tf ]} .

Then we know that sn(t) is a convergent sequence such that for every ε > 0, there
exists K(ε) ∈ N that satisfies

∥ s1n(t)− s1(t) ∥< ε

and
∥ s2n(t)− s2(t) ∥< ε

for every n ≥ K(ε). Therefore, we obtain

∥ sin(t)− si(t) ∥< ε
(⇒) |sin(t)− si(t)| < sup{|sin(t)− si(t)| | t ∈ [0, tf ]} < ε
(⇒) −ε < si(t)− sin(t) < ε
(⇒) −ε ≤ sin(t)− ε < si(t) < ε+ sin(t) ≤ ε+ g
(⇒) −ε < si(t) < g + ε

for i = 1, 2. Since it holds for every ε > 0, we obtain 0 ≤ s1(t), s2(t) ≤ g and
(s1(t), s2(t)) ∈ S. Consequently, we show that S is a closed set. Furthermore, it
can be proven that S is a closed convex set.

3. Note that the dynamic Equation (3) can be expressed as

k̇1(t) = s1(t)A1k1(t)− δ1k1(t) + δ2k2(t)− n1k1(t),

k̇2(t) = s2(t)A2k2(t) + δ1k1(t)− δ2k2(t)− n2k2(t).
(10)

It can be seen that the right-hand side of equation (10) is a linear function in the
state and control variables. Then we know that ki(t) is continuous in the interval
[0, tf ] and si(t) is a bounded function with 0 ≤ si(t) ≤ g for i = 1, 2. So we prove
that the Equation (10) is bounded.

4. Let
U(s1(t), s2(t)) = e−ρt ln((1− s1(t))Ak1(t)) + ln((1− s2(t))Ak2(t))

and we know that s1(t), s2(t), k1(t) and k2(t) are bounded functions on [0, tf ].
It means that U(s1(t), s2(t)) is a bounded function. Suppose that U1(s1(t) =
ln((1− s1(t))Ak1(t)) and U2(s2(t) = ln((1− s2(t))Ak2(t)). Then we obtain

∂2U1

∂s21
= − 1

(1− s1(t))2
Ak1(t) < 0
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and
∂2U2

d∂s22
= − 1

(1− s2(t))2
Ak2(t) < 0.

It means that U1 and U2 are concave functions. Thus, we prove that U is a concave
function.

5 Conclusion

The dynamic model of industrial economic growth with investment, as developed in this
paper, extends the Ramsey-Cass-Koopmans model by incorporating a strategy focused on
maximizing consumption utility. Specifically, the model is adapted to two industries, with
investment flowing from the first industry to the second to achieve optimal consumption
utility across both sectors. Control variables are introduced in the form of per capita
consumption in the first industry (c1) and the second industry (c2) to maximize utility
in both industries. In this context, control through per capita consumption can be
interpreted as control through savings, represented by s1 and s2, which denote savings
in the first and second industries, respectively. Analytically, the model is valid and has a
unique solution, as demonstrated through the concept of positive invariant sets and the
Lipschitz continuity of the model. The positivity of the resulting solution ensures that
the capital stocks in both industries, K1 and K2, remain non-negative. This paper also
analyzes the existence of optimal control, establishing that any introduced control leads
to a positive solution and confirming the existence of optimal control for maximizing
consumption utility.
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1 Introduction

Conjugate gradient (CG) methods have been widely used for solving nonlinear uncon-
strained optimization problems due to their low memory requirements for implementa-
tion. Moreover, CG methods have been used in many applications such as regression
analysis, image restoration, electrical circuits, and many others.

The CG method is used to determine optimal solutions for the following optimization
problem:

min f(x), x ∈ Rn,

where f : Rn → R is a continuously differentiable function, and its gradient ∇f(xk) =
gk = g(xk) should exist. From the starting point (arbitrary or standard) x1 ∈ Rn, the
CG method generates a sequence of vectors xk by the iterative rule

xk+1 = xk + αkdk, k = 1, 2, . . . , (1)

in which xk represents the present iteration and αk > 0 represents a step size obtained
from the exact line search or an inexact line search. The search direction dk of the CG
method is defined by

dk =

{
−gk if k = 1,

−gk + βkdk−1 if k ≥ 2,
(2)

where βk is the update parameter. The following exact line search can be utilized to
obtain the step size αk:

f(xk + αkdk) = min
α

f (xk + αdk). (3)

However, Eq.(3) is computationally expensive because it requires unidimensional opti-
mization to achieve the step size and many iterations to reach convergence. To avoid
this problem, the inexact line search is a dominant approach in computing the step size.
The most popular inexact line search is the strong Wolfe–Powell (SWP) line search [1,2],
which is defined as

f(xk + αkdk) ≤ f(xk) + δαkg
T
k dk, (4)

|g(xk + αkdk)
T dk| ≤ σ|gTk dk| (5)

so that 0 < δ < σ < 1.
A version of the Wolfe–Powell line search is the weak Wolfe–Powell (WWP) line

search, which is defined by (4) and

g(xk + αkdk)
T dk ≥ σgTk dk.

The most famous classical formulae of the CG methods are the Hestenes–Stiefel (HS)
[3], Fletcher–Reeves (FR) [4], and Polak–Ribiere–Polyak (PRP) [5] methods, which are
defined by the following update parameters, respectively:

βHS
k =

gTk yk−1

dTk−1yk−1
, βFR

k =
∥gk∥2

∥gk−1∥2
, and

βPRP
k =

gTk yk−1

∥gk−1∥2
, where yk−1 = gk − gk−1.
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Powell in [6] provided a counterexample showing that there exists a non-convex func-
tion for which the PRP and HS methods fail to satisfy the convergence properties even if
the exact line search is employed. Powell recommended the use of nonnegative paremeters
βHS
k and βPRP

k to achieve the convergence properties of the CG method. Gilbert and No-
cedal [7] proved that the nonnegative PRP or HS method defined by βk = max{βPRP

k , 0},
is globally convergent with arbitrary line searches.

The descent condition (downhill condition) plays a crucial role in the convergence of
the CG method and its robustness, and it is defined by

gTk dk < 0. (6)

Al-Baali [8] proposed another version of the downhill condition called the sufficient
descent condition, which also plays a significant role in the convergence of the CGmethod.
Al-Baali proposed the condition

gTk dk ≤ −c∥gk∥2 ∀k ∈ N (7)

to establish the global convergence properties of βFR
k . More precisely, if there exists

a constant c > 0 satisfying (7), then the search direction dk guarantees the sufficient
descent condition.

Based on the quasi-Newton method, the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
method and the limited-memory BFGS (LBFGS) method, and using Eq.(2), Dai and
Liao [9] proposed the conjugacy condition

dTk yk−1 = −tgTk sk−1 (8)

such that sk−1 = xk − xk−1 and t ≥ 0. In the case of t = 0, Eq.(8) is considered as
the classical conjugacy condition. Using Eqs. (2) and (8), Dai and Liao [9] proposed the
following CG formula:

βDL
k =

gTk yk−1

dTk−1yk−1
− t

gTk sk−1

dTk−1yk−1
. (9)

However, βDL
k cannot satisfy the descent condition and convergence properties similar

to βPRP
k and βHS

k because βDL
k is not nonnegative in general. Thus, Dai and Liao [9]

replaced the formula (9) by

βDL+
k = max{βHS

k , 0} − t
gTk sk−1

dTk−1yk−1
. (10)

However, βDL+
k cannot satisfy the descent property in some cases. Therefore, Dai and

Liao [9] restarted (10) using a negative gradient (steepest descent) when βDL+
k fails

to satisfy inequality (7). Another method for determining the optimal parameter t was
proposed by Babaie-Kafaki and Ghanbari [10,11], where they rewrote the search direction
(Eq.(2)) with βDL

k , and based on Perry [12], as follows: dk+1 = −Qk+1gk+1, where

Qk+1 = I − sky
T
k

sTk yk
+ t

sks
T
k

sTk yk
. Babaie-Kafaki and Ghanbari [10] proposed the following

adaptive choices for t:

t =
sky

T
k

∥sk∥2
+
∥yk∥
∥sk∥

and t =
∥yk∥
∥sk∥

.
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Andrei in [13] proposed a CG method with the parameter

βDL∗
k = max

{
yTk gk
yTk sk

, 0

}
− t∗k

sTk gk+1

yTk sk
,

where t∗k =
yT
k sk

∥sk∥2 . Hager and Zhang [14, 15] presented a modified CG parameter that

satisfies the descent property for any inexact line search with gTk dk ≤ −(7/8)∥gk∥2. This
new version of the CG method is globally convergent whenever the line search satisfies
the WWP line search. This formula is expressed by

βHZ
k = max{βN

k , ηk},

where βN
k = 1

dT
k yk

(
yk − 2dk

∥yk∥2

dT
k yk

)T
gk, ηk = − 1

∥dk∥min{η,∥gk∥} , and η > 0 is a constant.

Note that, if t = 2∥yk∥2

sTk yk
, then βN

k = βDL
k . Zhang et al. [16] proposed a new parameter

for Eq.(9) as follows:

t =
∥yk∥2

sTk yk
− 1

4

sTk yk
∥sk∥2

.

Yao et al. [2] proposed three terms of CG with a new choice of t as follows:

dk+1 = −gk+1 +

(
gTk yk − tkg

T
k+1sk

yTk dk

)
dk +

gTk+1dk

yTk dk
yk.

Based on the SWP line search, Yao et al. [2] selected tk to satisfy the descent condition

tk >
∥yk∥2

yTk sk
.

Yao et al. [2] also proposed a theorem stating that if tk is close to ∥yk∥2

yT
k sk

, then the

search direction results in a zigzag search path. Therefore, they selected the following
choice for tk:

tk = 1 + 2
∥yk∥2

yTk sk
.

Al-Baali et al. [17] proposed a new CG version called the G3TCG that offers many
selections of CG parameters. They found that the G3TCG method is more efficient than
βHZ
k in some cases and competitive in some other cases.

In this research, we propose a new CG iterative formula based on a modified parame-
ter of the Dai–Liao conjugacy condition of the CG method with the restart property. The
convergence of the proposed modified CG method is analyzed under standard assump-
tions. Numerical experiments are performed to illustrate the superiority of the proposed
method.

The highlighted results are achieved in the subsequent sections organized in the fol-
lowing manner. A novel CG formula is proposed in Section 2, as well as underlying
motivation. The convergence analysis of the modified CG method is presented in Section
3. Section 4 includes the results of numerical experiments and their discussion.
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2 Proposed CG Formula and Its Motivation

The CG method with βDL
k cannot satisfy the descent condition, but βDL

k inherits the
conjugacy condition. To improve the properties of βDL

k , we used βAZPRP
k as presented

by Alhawarat et al. [23] to propose a new nonnegative CG method that can satisfy the
sufficient descent condition and global convergence properties with the SWP line search
as follows:

βAZPRP
k =


∥gk∥

2−µk|gT
k gk−1|

∥gk−1∥2 , ∥gk∥2 > µk

∣∣gTk gk−1

∣∣ ,
0, otherwise.

The proposed CG update parameter is a modification of βDL
k and βHS

k , with the
restart criterion depending on the Lipschitz constant used in the study conducted by
Alhawarat et al. [23]. The modified formula is expressed as

βAZHS
k =


∥gk∥2−µk|gT

k gk−1|
dT
k−1yk−1

− 1
αk

µk
gT
k sk−1

dT
k−1yk−1

, ∥gk∥2 > µk

∣∣gTk gk−1

∣∣ ,
− 1

αk
µk

gT
k sk−1

dT
k−1yk−1

, otherwise,
(11)

where ∥·∥ represents the Euclidean norm and µk is defined as follows:

µk =
∥sk−1∥
∥yk−1∥

.

In the first case of the equality (11), we can note that

βAZHS
k ≤ ∥gk∥2

dTk−1yk−1
− 1

αk
µk

gTk sk−1

dTk−1yk−1
. (12)

It is worth noting that the formula (11) inherits the advantages of βDL
k , βHS

k , and
βAZPRP
k . Moreover, as we will see in the next sections, the new formula satisfies the

descent condition and the global convergence properties. The usage of the proposed
parameter βAZHS

k in (11) leads to the novel CG method described in Algorithm 2.1.

Algorithm 2.1 CG method based on βAZHS
k .

Step 1 Set a starting point x1. The initial point can be arbitrary or standard for
scientific functions. The initial search direction is the negative gradient, i.e., d1 =
−g1. Let k ← 1.

Step 2 If the stopping condition is satisfied, then stop.

Step 3 Compute the search direction dk based on Eq.(2) using Eq.(11).

Step 4 Compute the step size αk using Eqs.(4) and (5).

Step 5 Update xk+1 based on Eq.(1).

Step 6 Set k ← k + 1 and go to Step 2.
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3 Convergence Analysis of βAZHS
k

To perform the convergence analysis of the modified CG method, we consider the follow-
ing assumptions.

Assumption 1
A. The level set Φ = {x|f(x) ≤ f(x1)} is bounded. In other words, a positive

constant B exists so that

∥x∥ ≤ B, ∀x ∈ Φ.

B. In some neighborhood P of Φ, f is continuously differentiable, and its gradient is
Lipschitz continuous. In other words, ∀x, y ∈ P,∃L > 0 so that

∥g(x)− g(y)∥ ≤ L ∥x− y∥ .

This assumption implies that there exists a positive constant γ̂ such that

∥g(x)∥ ≤ γ̂, ∀x ∈ P.

Theorem 3.1 Let the sequences {gk} and {dk} be obtained using Eqs.(1) and (2), and
βAZHS
k , where αk is computed using the SWP line search in Eqs.(4) and (5). If σ ∈

(0, 0.5), then the descent condition provided in (7) holds.

Proof. The proof is carried out for two cases.
Case 1: ∥gk∥2 > µk

∣∣gTk gk−1

∣∣.
This assumption implies

βAZHS
k =

∥gk∥2 − µk

∣∣gTk gk−1

∣∣
dTk−1yk−1

− 1

αk
µk

gTk sk−1

dTk−1yk−1
.

Multiplying (2) by gTk , we can conclude that

gTk dk = gTk (−gk + βkdk−1) = −∥gk∥2 + βkg
T
k dk−1

≤ −∥gk∥2 +
∥gk∥2∣∣dTk−1yk−1

∣∣ ∣∣gTk dk−1

∣∣− µk

∥∥gTk dk−1

∥∥2
dTk−1yk−1

.

The usage of the SWP line search leads to the inequality∣∣gTk dk−1

∣∣∣∣dTk−1yk−1

∣∣ ≤ σ

1− σ
.

Thus,

gTk dk ≤ −∥gk∥
2
+

σ∥gk∥2

(1− σ)
= −∥gk∥2

(
1− σ

1− σ

)
= −c∥gk∥2.

Case 2: ∥gk∥2≤µk

∣∣gTk gk−1

∣∣.
This assumption implies

βAZHS
k = − 1

αk
µk

gTk sk−1

dTk−1yk−1
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and further
gTk dk = gTk (−gk + βkdk−1) = −∥gk∥2 + βkg

T
k dk−1

≤ −∥gk∥2 +

(
− µk

αk−1

gTk sk−1

dTk−1yk−1

)
gTk dk−1

= −∥gk∥2 − µk

∥∥gTk dk−1

∥∥2
dTk−1yk−1

.

Since the SWP line search is used, it follows that dTk−1yk−1 > 0, and further

gTk dk ≤ −c∥gk∥
2
,

which completes the proof.

Lemma 3.1 shows that if L > 1, then equation (13) holds. Note that if L ≪ 1, then

∥gk∥2 > µk

∣∣gTk gk−1

∣∣ can not be satisfied.

Lemma 3.1 If ∥gk∥2 > µk

∣∣gTk gk−1

∣∣ and L > 1, then

∥gk∥2 −
1

L

∣∣gTk gk−1

∣∣ ≤ L
∣∣∣∥gk∥2 − ∣∣gTk gk−1

∣∣∣∣∣ . (13)

Proof. The proof is performed using contradiction. Suppose

∥gk∥2 −
1

L

∣∣gTk gk−1

∣∣ > L
∣∣∣∥gk∥2 − ∣∣gTk gk−1

∣∣∣∣∣ ,
and divide both sides by L:

∥gk∥2

L
− 1

L2

∣∣gTk gk−1

∣∣ > ∣∣∣∥gk∥2 − ∣∣gTk gk−1

∣∣∣∣∣ . (14)

Using Assumption 1, the following relationship is derived:

∥gk∥2 > µk

∣∣gTk gk−1

∣∣ > 1

L

∣∣gTk gk−1

∣∣ .
If L > 1, we conclude that inequality (14) is not true, which results in a contradiction.
Thus, inequality (13) holds.

The following Lemma 3.2 indicates the step length always has a lower bound.

Lemma 3.2 [25]. Suppose that the objective function satisfies Assumption 1. If the step
length αk fulfills the SWP line search conditions (4) and (5), then

αk ≥
(1− σ)

∣∣gTk dk∣∣
L∥dk∥2

.

Lemma 3.3 Let Assumption 1 hold. Consider any form of Eqs.(1) and (2) with the
step size αk satisfying the SWP line search, where the search direction dk is descent.
The following inequality is obtained:

∞∑
k=0

(gTk dk)
2

∥dk∥2
<∞. (15)
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The condition presented in inequality (15) is called the Zoutendijk condition [25] and
plays an important role in proving the convergence properties of the CG method. We
use the contradiction technique with (15) to prove lim inf

k→∞
∥gk∥ = 0.

Moreover, (15) holds for the exact and SWP line searches. By substituting (7) into
(15), we obtain

∞∑
k=0

∥gk∥4

∥dk∥2
<∞. (16)

Lemma 3.4 If ∥gk∥2 > µk

∣∣gTk gk−1

∣∣ is satisfied, then µk = ∥sk−1∥
∥yk−1∥ is bounded above and

below.

Proof. Since ∥gk∥2 > µk

∣∣gTk gk−1

∣∣ > 1
L

∣∣gTk gk−1

∣∣, based on Assumption 1, it follows
that 0 < µk ≤ E, where E denotes a positive constant. Moreover, if yk+1 = 0, this
means xk+1 = xk and it is known that xk+1 = xk + αkdk. Thus, αkdk = 0. However, by
Lemma 3.2, we conclude that αk > 0. This means that dk = 0. The usage of Theorem
3.1 and Lemma 3.3 leads to a contradiction.

Dai et al. [26] presented the following Theorem 3.2, which is also useful for proving
the global convergence properties of CG methods.

Theorem 3.2 Suppose that Assumption 1 holds. Consider any CG method in the form
of Eqs.(1) and (2), where dk is a descent direction and αk is obtained using the SWP
line search. If

∞∑
k≥1

1

∥dk∥2
=∞,

then
lim inf
k→∞

∥gk∥ = 0.

Global convergence properties for the convex functions

In the following theorem, if f(x) is a uniformly convex function, then the CG method
satisfies βAZHS

k strong global convergence properties.

Theorem 3.3 Suppose that Assumption 1 holds. Consider the CG method in the form
of Eqs.(1) and (2) with βAZHS

k , L > 1, and dk as a descent direction, where αk

is obtained using the SWP line search. If f(x) is a uniformly convex function, then
lim infk→∞ ∥gk∥ = 0.

Proof. Since the function f(x) is uniformly convex, there exists a positive constant
ϖ satisfying

ϖ∥x− y∥2 ≤ (∇f(x)−∇f(y))T (x− y)

for all x, y ∈ P. Thus,
dk−1yk−1 ≥ ϖαk−1∥dk−1∥2 (17)

and

βAZHS
k =

∥gk∥2 − µk

∣∣gTk gk−1

∣∣
dTk−1yk−1

− µk

αk−1

gTk sk−1

dTk−1yk−1

≤
∥gk∥2 − 1

L

∣∣gTk gk−1

∣∣
dTk−1yk−1

− µk

αk−1

gTk sk−1

dTk−1yk−1
.
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An application of inequalities (17) and (13) gives

βAZHS
k ≤ L ∥gk∥ (∥gk − gk−1∥)

ϖαk−1∥dk−1∥2
+ E

∣∣gTk sk−1

∣∣
ϖα2

k−1∥dk−1∥2

≤ L ∥gk∥ ∥gk − gk−1∥
ϖαk−1∥dk−1∥2

+ E
∥gk∥ ∥sk−1∥

ϖα2
k−1∥dk−1∥2

.

Applying Assumption 1, we obtain

βAZHS
k ≤ L2 ∥gk∥αk−1 ∥dk−1∥

ϖαk−1∥dk−1∥2
+ E

∥gk∥ ∥dk−1∥
ϖαk−1∥dk−1∥2

≤ L2 ∥gk∥
ϖ ∥dk−1∥

+ E
∥gk∥

ϖαk−1 ∥dk−1∥
.

Based on Eq.(2), it can be obtained that

∥dk∥ ≤ ∥gk∥+ |βk| ∥dk−1∥

≤ ∥gk∥+
∥gk∥
∥dk−1∥

(
L2

ϖ
+

E

ϖαk−1

)
∥dk−1∥

≤ γ̂

(
1 +

(
L2

ϖ
+

E

ϖαk−1

))
.

Thus, Theorem 3.2 leads to the conclusion

lim inf
k→∞

∥gk∥ = 0

and completes the proof.

Global convergence for βAZHS
k with the SWP line search for general functions

Using Property(*) and some lemmas, Gilbert and Nocedal [7] proved the global conver-
gence of nonnegative PRP and HS methods. Because our modification is nonnegative
and satisfies Property(*), by using the other lemmas presented below, we perform our
proof in the same way as in [7]. This property is defined as follows.
Property(*)
Consider any CG method in the form of Eqs.(1) and (2). Assume

0 < γ ≤ ∥gk∥ ≤ γ̂ (18)

for all k ≥ 1. The CG method then inherits Property(*) if for ∀k, there exist constants
b > 1 and λ > 0 such that |βk| ≤ b and ∥sk∥ ≤ λ, which implies that |βk| ≤ 1

2b .
Lemma 3.5 shows that βAZHS

k satisfies Property(*).

Lemma 3.5 Consider a CG method in the form of Eqs.(1) and (2) using βAZHS
k with

L > 1. Lemma 3.1 holds true, then βAZHS
k satisfies Property(*).

Proof. Let b = 2Lαk−1γ̂
2+Bγ̂

αk−1L(1−σ)cγ2 ≥ 1, and let λ ≤ (1−σ)cγ2

2(L2+ E
αk−1

)γ̂b
. Then the following

inequality holds:

βAZHS
k ≤

∥gk∥2 − µk

∣∣gTk gk−1

∣∣
dTk−1yk−1

− µk

αk−1

gTk sk−1

dTk−1yk−1
.
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Inequalities (13) and (18) are a basis for the inequalities

βAZHS
k ≤

∥gk∥2 +
∣∣gTk gk−1

∣∣
dTk−1yk−1

+
E

αk−1

∣∣gTk sk−1

∣∣
dTk−1yk−1

≤ 2γ̂2

(1− σ)cγ2
+

EBγ̂

αk−1L(1− σ)cγ2
=

2Lαk−1γ̂
2 + EBγ̂

αk−1(1− σ)cγ2

= b > 1.

Further, ∥sk∥ ≤ λ gives

βAZHS
k ≤

∥gk∥2 − µk

∣∣gTk gk−1

∣∣
dTk−1yk−1

− µk

αk−1

gTk sk−1

dTk−1yk−1

≤ L ∥gk∥ ∥gk − gk−1∥
dTk−1yk−1

+
E

αk−1

∥gk∥ ∥sk−1∥
dTk−1yk−1

≤ L2 ∥gk∥ ∥sk−1∥
dTk−1yk−1

+
E

αk−1

∥gk∥ ∥sk−1∥
dTk−1yk−1

≤
(L2 + E

αk−1
) ∥gk∥ ∥sk−1∥

dTk−1yk−1

≤
(L2 + E

αk−1
)γ̂λ

(1− σ)cγ2
=

1

2b
.

Thus, the proof is complete.

Lemma 3.6 and Lemma 3.7 are similar to Lemma 4.1 and Lemma 4.2 presented by
Gilbert and Nocedal in [7].

Lemma 3.6 Assume that Assumption 1 holds and the sequences {gk} and {dk} are
generated using Algorithm 1, where the step size αk is computed via the SWP line search
so that the sufficient descent condition holds. If βk ≥ 0, there exists a constant γ > 0
such that ∥gk∥ > γ for all k ≥ 1. Then dk ̸= 0 and

∞∑
k=0

∥uk+1 − uk∥2 <∞,

where uk = dk

∥dk∥ .

Proof. The assumption dk = 0, based on the sufficient descent condition, leads to
gk = 0. So, dk ̸= 0 as well as

∥gk∥ ≥ γ, where γ > 0. (19)

Eq.(11) can be divided into two parts as follows:

β
(1)
k =

∥gk∥2 − µk

∣∣gTk gk−1

∣∣
dTk−1yk−1

, β
(2)
k = − µk

αk−1

gTk sk−1

dTk−1yk−1
.
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Then the following values can be defined:

ξ =

∥∥∥−gk + β
(2)
k dk−1

∥∥∥
∥dk∥

, ζ =
β
(1)
k ∥dk−1∥
∥dk∥

.

From the definition of uk, it can be derived that

uk =
dk
∥dk∥

=
−gk + (β

(1)
k + β

(2)
k )dk−1

∥dk∥
= ξ + ζ

dk−1

∥dk∥
= ξ + ζuk−1.

Since uk is a unit vector, it follows that ∥ξ∥ = ∥uk − ζuk−1∥ = ∥ζuk − uk−1∥ .
By using the triangle inequality and ζ > 0, one concludes

∥uk − uk−1∥ = 2 ∥ξ∥ . (20)

Using the definition of ξ, we obtain

∥ξ∥ ∥dk∥ =
∥∥∥−gk + β

(2)
k−1dk−1

∥∥∥ ≤ ∥gk∥+ ∥∥∥β(2)
k−1

∥∥∥ ∥dk−1∥ . (21)

By using the equations of SWP (Eq.(5)) and line search (Eq.(6)), one gets

dTk−1yk−1 ≥ (σ − 1)gTk−1dk−1,

∣∣∣∣∣ gTk dk−1

dTk−1yk−1

∣∣∣∣∣ ≤
(

σ

1− σ

)
.

Thus,

β
(2)
k = − µk

αk−1

gTk sk−1

dTk−1yk−1
≤ E

αk−1

∣∣gTk sk−1

∣∣
dTk−1yk−1

≤ E

αk−1

∥gk∥ ∥sk−1∥
dTk−1yk−1

.

By using Eq.(21), we obtain the following:

∥ξ∥ ∥dk∥ =
∥∥∥−gk + β

(2)
k−1dk−1

∥∥∥ ≤ ∥gk∥+ E

αk−1

∣∣∣∣∣ gTk dk−1

dTk−1yk−1

∣∣∣∣∣ ∥sk−1∥

≤ γ +
E

αk−1

(
σ

1− σ

)
B.

The application of Eq.(20) leads to

∥uk − uk−1∥ = 2 ∥ξ∥ = 2
γ + E

αk−1

(
σ

1−σ

)
B

∥dk∥
,

∥uk − uk−1∥2 = 4

(
γ + E

αk−1

(
σ

1−σ

)
B
)2

∥dk∥2
.

Utilizing Eq.(19), we obtain the following:

∞∑
k=1

1

∥dk∥2
≤ ∞,

which completes the proof.
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Lemma 3.7 Assume that Assumption 1 holds and the sequences {gk} and {dk} are
generated using Algorithm 1, where αk is computed via the WWP line search so that the
sufficient descent condition given in Eq.(7) holds and consider that the method satisfies
Property(*). Suppose also that Eq.(19) holds. Then there exists a constant λ > 0 so that
for any ∆ ∈ N and any index k0, there exists an index k > k0 that satisfies the following
inequality: ∣∣κλ

k,∆

∣∣ > λ

2
,

where κλ
k,∆ = {i ∈ N : k ≤ i ≤ k+∆−1, ∥si∥ > λ}, N denotes the set of positive integers,

and
∣∣∣κλ

k,∆

∣∣∣ denotes the number of elements in κλ
k,∆.

From Lemmas 3.5, 3.6 and 3.7, the convergence properties of Algorithm 1 with the
SWP line search can be satisfied in a manner similar to that used in Theorem 3.6 pre-
sented by Gilbert and Nocedal [7]. Therefore, the proof of the following theorem is
omitted.

Theorem 3.4 Assume that the sequences {gk} and {dk} are generated using Eqs.(1)
and (2) with the CG formula βAZHS

k , and let the step length satisfy Eqs.(4) and (5). If
Lemmas 3.5, 3.6, and 3.7 are true, then lim infk→∞∥gk∥ = 0.

Note that if Lemma 3.1 does not hold true, then it is enough to show that

βAZHS
k =

∥gk∥2 − µk

∣∣gTk gk−1

∣∣
dTk−1yk−1

satisfies Property (*) similar to Lemma 3.3 in [23].
The following theorem shows that if the second case of equation (11) holds, i.e.,

βAZHS
k = − 1

αk
µk

gTk sk−1

dTk−1yk−1
, (22)

then we will obtain the result stated in Theorem 3.6.

Theorem 3.5 Assume that Assumption 1 holds. Consider the conjugate gradient
method in (1) and (2) with equation (22), where dk is a descent direction and αk is
obtained by the strong Wolfe line search. Then lim infk→∞∥gk∥ = 0.

Proof. We will prove this theorem by contradiction. Suppose Theorem 3.5 is not
true. Then equation (19) holds and

∥dk∥2 = ∥gk∥2 − 2βkg
T
k dk−1 + β2

k∥dk−1∥2

≤ ∥gk∥2 + 2 |βk|
∣∣gTk dk−1

∣∣+ β2
k∥dk−1∥2

≤ ∥gk∥2 +
2E

αk

∥gk∥ ∥sk−1∥
(1− σ)

∣∣gTk−1dk−1

∣∣ (σ) ∣∣gTk−1dk−1

∣∣+ E2

α2
k

(σgTk−1dk−1)
2 ∥sk−1∥2

(1− σ)2
∣∣gTk−1dk−1

∣∣2
≤ ∥gk∥2 +

2E

αk

∥gk∥ ∥sk−1∥
(1− σ)

σ +
E2

α2
k

σ2 ∥sk−1∥2

(1− σ)2
.
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Further calculation gives

∥dk∥2

∥gk∥4
≤ ∥gk∥

2

∥gk∥4
+

2E

αk

∥gk∥ ∥sk−1∥
(1− σ)∥gk∥4

σ +
E

α2
k

σ2 ∥sk−1∥2

(1− σ)2∥gk∥4

≤ 1

∥gk∥2
+

2E

αk

∥sk−1∥
(1− σ)∥gk∥3

σ +
E2

α2
k

σ2 ∥sk−1∥2

(1− σ)2∥gk∥4

≤ 1

∥gk∥2
+

2E

αk

∥sk−1∥
(1− σ)∥gk∥3

σ +
E2

α2
k

σ2 ∥sk−1∥2

(1− σ)2∥gk∥4
.

If
∥gk∥m = min

{
∥gk∥2, ∥gk∥3, ∥gk∥4

}
, m ∈ N,

then it follows that

∥dk∥2

∥gk∥4
≤ 1

∥gk∥m
(
1 +

2E

αk

λ

(1− σ)
σ +

E2

α2
k

σ2λ2

(1− σ)2

)
.

Also,

R =

(
1 +

2E

αk
λσ +

E2

α2
k

σ2λ2

(1− σ)2

)
initiates

∥dk∥2

∥gk∥4
≤ R

∥gk∥m
≤ R

k∑
i=1

1

∥gi∥m
and

∥gk∥4

∥dk∥2
≥ ϵm

kR
.

Therefore,
∞∑
k=0

∥gk∥4

∥dk∥2
=∞.

This result contradicts (15). Therefore, lim infk→∞ ∥gk∥ = 0, completing the
proof.

4 Numerical Results and Discussion

To analyze the efficiency of the proposed method, we use more than 200 standard test
functions presented in Table 1. These test functions are available from the CUTEst
library [28] with the CUTEr/st test functions and SIF extension available on the website

http://www.cuter.rl.ac.uk/Problems/mastsif.shtml

The numerical results of CG Descent 5.3 were obtained by running the code provided
by Hager and Zhang [29] with memory set to 0. The numerical results of AZHS are
obtained using a modified CG Descent code with the SWP line search, employing σ = 0.1

and δ = 0.01. If µk > 1, then we conclude that L < 1 and ∥gk∥2

|gT
k gk−1| > 1. Thus, it is

reasonable to modify Eq.(11) as follows:

βAZHS
k =


∥gk∥2−|gT

k gk−1|
dT
k−1yk−1

, if ∥gk∥2 >
∣∣gTk gk−1

∣∣ ,
∥gk∥2−µk|gT

k gk−1|
dT
k−1yk−1

− 1
αk

µk
gT
k sk−1

dT
k−1yk−1

, if ∥gk∥2 > µk

∣∣gTk gk−1

∣∣ ,
− 1

αk
µk

gT
k sk−1

dT
k−1yk−1

, otherwise.

http://www.cuter.rl.ac.uk/Problems/mastsif.shtml
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Note that if βAZHS
k =

∥gk∥2−|gT
k gk−1|

dT
k−1yk−1

, then βAZHS
k ≤ βHS

k , thus the proof will be

similar to that presented in [7].
The host computer used was an AMD A4-7210 APU with AMD Radeon R3 Graphics,

4 GB RAM, and a 64-bit operating system. The graphs on the following results were
obtained using SigmaPlot, a performance measure introduced by Dolan and Moré [30].

This performance measure compares the performance of a set of solvers S on a set of
problems ρ. For ns solvers and np problems in S and ρ, respectively, the measure tp,s is
the computation time (e.g., the number of iterations or CPU time) required for solver s
to solve problem p.

To establish a baseline for comparison, the performance of solver s on problem p is
scaled relative to the best performance of any solver in S on that problem, yielding the
ratio

rp,s =
tp,s

min{tp,s : s ∈ S}
.

A parameter rM ≥ rp,s for all p, s is selected such that rp,s = rM if and only if solver
s cannot solve problem p. To obtain an overall assessment of the performance of each
solver, we define the measure

Ps(t) =
1

np
size{p ∈ ρ : rp,s ≤ t}.

Ps(t) is the probability for solver s ∈ S that the performance ratio rp,s will be within
a factor t ∈ R of the best possible ratio. If we denote the cumulative distribution function
of the performance ratio as ps, then the performance measure ps : R→ [0, 1] for a given
solver is non-decreasing and piecewise continuous from the right. The value of ps(1) is
the probability that the solver will achieve the best performance among all solvers. In
general, a solver with higher values of Ps(t), which will lie closer to the upper right corner
of the figure, is preferable.

The numerical results are shown in Figures 1, 2, 3 and 4. Figure 1 depicts the number
of iterations, showing that the new modification significantly outperforms CG Descent
5.3. Figure 2 illustrates that the new modification, AZHS, outperforms CG Descent 5.3
in the number of function evaluations. Figures 3 and 4 show the performance based
on the number of gradient evaluations and CPU time, respectively. It is observed that
AZHS outperforms CG Descent 5.3 in CPU time and is significantly competitive with
CG Descent 5.3 in the number of function evaluations and gradient evaluations as the
latter used an approximate Wolfe line search with σ = 0.9 and δ = 0.1. Thus, we can
conclude that βAZHS

k outperforms CG Descent 5.3 in all figures.

5 Application to Heat Conduction Problem [32]

Suppose a rectangular flat plate with dimensions of 5 × 4 units generates heat [33].
Suppose the thermal conductivity k is fixed, and the heat production per unit area f is
a nonlinear function of the temperature M . Our objective is to define the temperature
of the slab such that the temperature outside the perimeter of the slab is zero. Poisson’s
equation classifies the temperature distribution within this region as follows:

k

[
∂2M

∂x2
+

∂2M

∂y2

]
+ f(M) = 0.
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Figure 1: Performance measure based on the number of iterations.

Figure 2: Performance measure based on the function evaluation.

Figure 3: Performance measure based on the gradient evaluation.
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Function Dim Function Dim Function Dim

AKIVA 2 FBRAIN2LS 4 OSCIPATH 10
ALLINITU 4 FLETCBV2 5000 PALMER1C 8
ARGLINB 200 FLETCHCR 1000 PALMER1D 7
ARGLINC 200 FMINSRF2 5625 PALMER2C 8
ARWHEAD 5000 FMINSURF 5625 PALMER3C 8
BARD 3 GENHUMPS 5000 PALMER4C 8
BDEXP 5000 GROWTHLS 3 PALMER5C 6
BDQRTIC 5000 GULF 3 PALMER6C 8
BEALE 2 HAHN1LS 7 PALMER7C 8
BIGGS3 6 HAIRY 2 PALMER8C 8
BIGGS5 6 HATFLDD 3 PARKCH 15
BIGGS6 6 HATFLDE 3 PENALTY1 1000
BIGGSB1 5000 HATFLDFL 3 PENALTY2 200
BOX2 3 HATFLDFLS 3 PENALTY3 200
BOX3 3 HEART6LS 6 PENALTY3 200
BOX 10000 HEART8LS 8 POWELLBSLS 2
BRKMCC 2 HELIX 3 POWELLSG 5000
BROYDNBDLS 10 HIELOW 3 POWER 10000
BROWNAL 200 HILBERTA 2 POWERSUM 4
BROWNBS 2 HILBERTB 10 PRICE3 2
BROWNDEN 4 HIMMELBB 2 PRICE4 2
BROYDN7D 5000 HIMMELBF 4 QING 100
BRYBND 5000 HIMMELBG 2 QUARTC 5000
CAMEL6 2 HIMMELBH 2 RAT43LS 4
CHNROSNB 50 HUMPS 2 RECIPELS 3
CLIFF 2 HYDCAR6LS 29 ROSENBR 2
COSINE 10000 INDEF 5000 ROSENBRTU 2
CUBE 2 INDEFM 100000 S308 2
CURLY10 10000 INTEQNELS 12 SCHMVETT 5000
CURLY20 10000 JENSMP 2 SENSORS 100
CURLY30 10000 JIMACK 3549 SINEVAL 2
DENSCHNA 2 JUDGE 2 SINQUAD 5000
DENSCHNB 2 KOWOSB 4 SISSER 2
DENSCHNC 2 KSSLS 1000 SNAIL 2
DENSCHND 3 LANCZOS1LS 6 SPMSRTLS 4999
DENSCHNE 3 LANCZOS2LS 6 SROSENBR 5000
DENSCHNF 2 LANCZOS3LS 6 SSCOSINE 5000
DIXMAANA 3000 LIARWHD 5000 SSI 3
DIXMAANB 3000 LOGHAIRY 2 STREG 4
DIXMAANC 3000 LSC1LS 3 STRATEC 10
DIXMAAND 3000 LSC2LS 3 STRTCHDV 10
DIXMAANE 3000 LUKSAN11LS 100 TESTQUAD 5000
DIXMAANF 3000 LUKSAN12LS 98 THURBERLS 7
DIXMAANG 3000 LUKSAN13LS 98 TOINTGOR 50
DIXMAANH 3000 LUKSAN14LS 98 TOINTGSS 5000
DIXMAANI 3000 LUKSAN15LS 100 TOINTPSP 50
DIXMAANJ 3000 LUKSAN16LS 100 TOINTQOR 50
DIXMAANK 3000 MANCINO 100 TQUARTIC 5000
DIXMAANL 3000 MARATOSB 2 TRIDIA 5000
DIXMAANP 3000 MEXHAT 2 TRIGON1 10
DIXON3DQ 10000 MEYER3 3 TRIGON2 10
DJTL 2 MGH09LS 4 VANDANMSLS 22
DMN15332LS 66 MGH10LS 3 VARDIM 200
DQDRTIC 5000 MGH10SLS 3 VAREIGVL 50
ECKERLE4LS 3 MGH17LS 5 VESUVIALS 8
EDENSCH 2000 MISRA1BLS 2 VESUVIOULS 8
EGGCRATE 2 MISRA1CLS 2 VIBRBEAM 8
EG2 1000 MISRA1DLS 2 WAYSEA1 2
EIGENALS 2550 MODBEALE 20000 WAYSEA2 2
EIGENBLS 2550 MOREBV 5000 WOODS 4000
EIGENCLS 2652 MSQRTALS 1024 YATP1CLS 123200
ELATVIDU 2 MSQRTBLS 1024 YATP2CLS 123200
ENGVAL1 5000 NCB20 5010 YFITU 3
ENGVAL2 3 NELSONLS 3 ZANGWIL2 2
ENSOLS 9 NONCVXU2 5000
EXPFIT 2 NONDIA 5000

Table 1: Test functions.
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Figure 4: Performance measure based on the CPU time.

If k = 2 and f(M) = 20− 3
2M + 1

20M
2, there are 12 mesh points in total. Symmetry

reduces the problem to only four distinct temperatures.

2(M2 +M3 − 4M1) = −20 +
3

2
M1 −

1

20
M2

1 ,

2(M3 +M1 +M4 − 4M3) = −20 +
3

2
M3 −

1

20
M2

3 ,

2(M1 +M4 + 4M2) = −20 +
3

2
M2 −

1

20
M2

2 ,

2(2M3 +M2 − 3M4) = −20 +
3

2
M4 −

1

20
M2

4 .

These equations, expressed in powers of M1, are as follows:(
M2

1 − 190M1

)
+ 40 (M2 +M3 + 10) = 0,

M1 +
M2

3 − 150M3 + 400

40
+M4 = 0,

2M1 +
M2

2 − 190M2 + 400

40
+M4 = 0,(

M2
4 − 150M4

)
+ 40M2 + 80M3 + 400 = 0.

The objective function f is constructed by summing the squares of the functions
connected with each nonlinear equation as follows:

f(M1,M2,M3,M4, H1, H2, H3, H4, H5, H6) = Q1 +Q2 +Q3 +Q4,

where
Q1 = Q2

5, Q2 = Q2
6, Q3 = Q2

7, Q4 = Q2
8,

Q5 =
1

20

[
M2

1 +H1M1 +H2 (M2 +M3 +H3)
]
,

Q6 = 2

[
M1 +

M2
3 +H4M3

H2
+H5 +M4

]
,
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Q7 = 2

[
H6M1 +

M2
2 +H1M2

H2
+H5 +M4

]
,

Q8 =
1

20

[
M2

4 +H4M4 +H2M2 +H2H6M3 +H2H5

]
.

If

H1 = −190, H2 = 40, H3 = 10, H4 = −150, H5 = 10, H6 = 2,

let
M1 = x1, M2 = x2, M3 = x3, M4 = x4.

Then, we obtain the following function:

f(x1, x2, x3, x4) =

(
2(x2 + x3 − 4x1) + 20− 1.5x1 +

x2
1

20

)2

+

(
2(x1 − 3x3 + x4) + 20− 1.5x3 +

x2
3

20

)2

+

(
2(2x1 + x4 − 4x2) + 20− 1.5x2 +

x2
2

20

)2

+

(
2(x2 + 2x3 − 3x4) + 20− 1.5x4 +

x2
4

20

)2

.

We say that f(x1, x2, x3, x4) is the Heat Conduction Problem function. By using
Algorithm 1, we can find the values of x1, x2, x3, x4 as follows:

x1 = 4.8521, x2 = 6.0545, x3 = 6.4042, x4 = 8.1383.

The function value is 1.9631× 10−7.

6 Application to Image Restoration

Restoring damaged images is one of the most important applications of the CG method.
In this study, we applied Gaussian noise with a standard deviation of 25% to the original
images in Table 3. After that, we used Algorithm 1 to restore these images. To express
the efficiency of the proposed method, we made a comparison between Algorithm 1,
CG-Descent5.3, and DL+ in terms of the number of iterations, CPU time, and root-
mean-square error (RMSE).

We utilized the RMSE between the restored image and the original true image to
calculate the quality of the restored image:

RMSE =
∥ν − νk∥2
∥ν∥

.

The restored image is denoted by νk and the true image by ν. The RMSE determines
the quality of the restored image, in which lower values correspond to higher quality.
The results in Table 2 show that the new search direction outperforms CG-Descent5.3
and DL+ in terms of the number of iterations, CPU time, and the RMSE value. The
criteria for stopping is

∥xk+1 − xk∥2
∥xk∥2

< ε.

In this context, ϵ = 10−3. Note that if ϵ = 10−4 or ϵ = 10−6, then the RMSE remains
fixed, meaning that a fixed RMSE can have a variation in the number of iterations.

Table 3 below shows the outcomes of restoring the destroyed images using Algorithm
1, indicating that it can be regarded as an efficient approach.
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Image Algorithm Number of Iteration CPU Time (s) RMSE

Mandi 128 pixels DL+ 127 1.724e+000 0.1003
AZHS 126 1.663e+000 0.1002
CG-Descent5.3 134 1.825e-001 0.1004

Coins 128 pixels DL+ 135 1.542e+000 0.0832
AZHS 130 1.491e+000 0.0824
CG-Descent5.3 133 1.491e+000 0.0831

Mandi 256 pixels DL+ 120 1.856e+001 0.0519
AZHS 111 1.545e+001 0.0510
CG-Descent5.3 119 1.656e+001 0.0991

Coins 256 pixels DL+ 134 1.447e+001 0.0506
AZHS 120 1.164e+001 0.0501
CG-Descent5.3 130 1.564e+001 0.0508

Mandi 512 pixels DL+ 114 7.981e+001 0.0371
AZHS 105 6.755e+001 0.0360
CG-Descent5.3 116 7.314e+001 0.0472

Kids 512 pixels DL+ 57 6.955e+001 0.0377
AZHS 56 5.325e+001 0.0384
CG-Descent5.3 55 5.634e+001 0.0395

Coins 512 pixels DL+ 129 7.323e+001 0.0326
AZHS 128 5.248e+001 0.0324
CG-Descent5.3 127 6.323e+001 0.0503

Coins 1024 pixels DL+ 128 3.441e+002 0.0326
AZHS 110 2.549e+002 0.0172
CG-Descent5.3 124 2.897e+002 0.0289

Table 2: Numerical outcomes from the images with Gaussian noise with a 25% standard
deviation added to the original images using the Dai-Liao CG method, AZHS, as well as CG-
Descent5.3.

7 Conclusion

In this study, we investigate a modified Hestenes–Stiefel (HS) conjugate gradient (CG)
method based on the Dai–Liao conjugacy parameter, with the restart property depending
on L. The newly modified CG method inherits global convergence properties and a
sufficient descent condition through the SWP line search. Moreover, the numerical results
are efficient and competitive with CG Descent5.3. Applications to solving the Heat
Conduction Problem and image restoration are presented. In future studies, we will
focus on the Lipschitz constant because it plays an essential role in the efficiency and
robustness of the CG method.

Acknowledgment

We would like to thank Prof. William W. Hager for publishing his code in the imple-
mentation of the CG method. Additionally, we extend our gratitude to the editor and
the reviewers for their valuable feedback and suggestions.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 25 (3) (2025) 266–287 285

Image Original Image Image with Gaussian Noise Restored Image

Mandi (128 pixels)

Mandi (256 pixels)

Coins (256 pixels)

Kids (512 pixels)

M.83 (1024 pixels)

Table 3: Restoration of the destroyed images of Mandi, Coins, Kids, as well as M.83 by reducing
z via Algorithm 1.
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Abstract: The most pressing challenge in the practical application of chaotic sys-
tems is the development of methods for encrypting information. This paper presents
a new 4-dimensional (4D) memristive system that is simple, consisting of only seven
terms and lacking equilibrium points, which allows it to generate hidden attractors.
The paper thoroughly analyzes the system’s dynamic properties, including bifurca-
tion diagrams, Lyapunov exponents, Kaplan-York dimensions, and offset boosting
analysis. Additionally, the theoretical model is validated through electronic simula-
tion of the new two-winged chaotic system using Multisim.
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1 Introduction

A rapidly expanding area within nonlinear circuit theory is the development of chaos
generators utilizing memristors. First introduced by Chua [1], the memristor is a device
that links electric charge and magnetic flux, functioning as a resistor with memory. Since
then, the concept has evolved to include a broader spectrum of memristive systems. HP
Laboratories achieved the first successful implementation of a memristor, using a metal-
dielectric-metal structure [2]. However, significant technological challenges in memristor
fabrication have led to a considerable gap between theoretical models and experimental
studies. Memristors have found extensive applications in fields such as image encryption,
signal processing, biosystems, and neural networks, particularly in complex neural net-
works [3]. Their popularity is largely due to the complex dynamics achievable in chaotic
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systems based on memristors. Numerous chaotic and hyperchaotic systems have been de-
veloped with memristors serving as nonlinear elements. Furthermore, various equivalent
circuits for modeling memristor emulators have been proposed in the literature [4]. This
brief literature review focuses on 4D chaotic systems that integrate memristors. Chaotic
dynamical systems can be categorized into two types: those with self-excited attractors
and those with hidden attractors. A self-excited attractor has a basin of attraction that
intersects with the vicinity of an equilibrium point, whereas a hidden attractor’s basin
does not intersect with any equilibrium point’s neighborhood. The concept of hidden at-
tractors, first introduced in [5], has since sparked ongoing research in nonlinear science.
As noted in [6], hidden attractors in dynamical systems are currently classified into five
categories: 1) systems without equilibria, 2) equilibrium curves, 3) planes of curves, 4)
equilibrium lines, and 5) stable equilibrium points.

Recently, a new 4D hyperchaos system without equilibrium point was proposed in [7].
Several researchers have developed memristor-based 4D hyperchaotic systems character-
ized by the absence of equilibrium points. In [8], a 4D memristive system is introduced,
consisting of 12 terms, 5 of which are nonlinear. This model notably lacks equilibrium
points and exhibits periodic, chaotic, and hyperchaotic behavior within specific param-
eter ranges. In [9], a 4D memristive system is presented that can display either no
equilibrium points or an equilibrium line, depending on the control parameter. The
study shows that by adjusting this parameter, the system can transition between chaotic
and hyperchaotic dynamics. This nonlinear system comprises 11 terms, including 5 non-
linear ones. A simpler 4D chaotic memristor-based system, consisting of 9 terms with 2
nonlinearities and no equilibrium points, is described in [10]. An even more streamlined
4D memristive two-scroll chaotic system, containing only 7 terms and 3 nonlinearities,
is introduced in [11]. This system demonstrates various complex dynamics such as off-
set boosting, remerging period-doubling bifurcations, and hidden extreme multistability.
Furthermore, a 4D hyperchaotic hyperjerk system with a line equilibrium, composed of
7 algebraic terms and a single nonlinearity, is proposed in [12]. Interestingly, the system
in [12] is based on intrinsic memristive nonlinearity, a type of nonlinearity that arises
naturally from the memristor itself.

In this paper, we present a new hyperchaotic dynamical system (not a jerk system)
developed by introducing nonlinearity via a memristor. Our primary motivation is to
design a novel 4D hyperchaotic memristor-based system with the fewest possible terms.

2 Derivation and Key Properties of a Novel 4D Memristive Hyperchaotic
System

In this section, we introduce a novel 4D memristive two-wing chaotic system comprising
only seven terms. This system is based on the one introduced in [13] and is defined as
follows: 

dx1

dt
= a(−x1 + x2),

dx2

dt
= −x3sgn(x1),

dx3

dt
= |x1| − 1,

(1)

where |x| is the absolute value function and the signum function sgn(x) of a real number x
is a piecewise function. Figure 1 displays typical two-wing butterfly attractors in various
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Figure 1: Plots depict the two-wing butterfly attractors of system (1) in the phase planes
x1x3, x2x3, and x1x2, respectively.

Figure 2: Simulation results of the hysteresis loop for the memductance function W (φ) =
1 + 0.5|φ|: a) different values of amplitude A; b) different values of frequency f .

phase planes for system (1), with parameter set at a = 0.6 and the initial conditions
x1(0) = x2(0) = x3(0) = 1. Using the methodology of Binouse et al. [14], we can
compute all LEs:

LE1 = 0.191212, LE2 ≈ 0, LE3 = −0.799337,

and the corresponding Kaplan-Yorke (or Lyapunov) dimension DKY ≈ 2.239. We see
that system (1) demonstrates chaotic behavior with one positive exponent LE1 > 0.

To achieve hyperchaotic behavior, system (1) is extended to 4D by adding a state
variable linked to the original system through a memristor. We use the model of an
absolute memristor, specifically Bao’s magnetically controlled memristor [15], described
by the following equations: 

im = W (φ)um,
dφ
dt = um,

W (φ) = α+ β|φ|.
(2)

In the equations (2), the symbols um, im, and φ represent the input, output, and state
variables of the memory device, respectively. The function φ corresponds to the magnetic
flux, while α and β are constant coefficients, set to α = 1 and β = 0.5. The graph for
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Figure 3: Bifurcation diagrams for the components x1, x2, x3, x4 of the system (3).

system (2) displays a smooth quadratic nonlinear characteristic curve passing through
the origin. Driven by a sinusoidal AC voltage source um = A sin(2πft), where A is
the amplitude and f is the frequency, the memristor circuit simulation results, shown in
Figure 2, reveal a current-voltage characteristic forming a closed hysteresis loop. As the
frequency f increases, the area of the loop decreases, while increasing the amplitude A
causes its expansion, consistent with the fundamental properties of memristors.

Integrating the expressions from (2) into the nonlinear dynamic equations (1) yields
a novel set of memristor-based 4D equations:

dx1

dt
= ax2 − (α+ β|x4|)x1,

dx2

dt
= −x3sgn(x1),

dx3

dt
= |x1| − 1,

dx4

dt
= x1.

(3)

Here, instead of the notation of flux φ, we introduced a new dynamical variable x4. As
shown in (3), the system includes only seven terms. It represents the minimum number
of terms needed for chaotic dynamics in a four-dimensional autonomous system, making
it a rare configuration in the literature.

Let us outline some fundamental dynamic properties of the new 4D system. It is
readily verifiable that system (3) exhibits symmetry with respect to the x3-axis and
remains invariant under the transformation (x1, x2, x3, x4) → (−x1,−x2, x3,−x4). To
further characterize the system’s behavior, we calculate its divergence as follows:
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Figure 4: Lyapunov exponents for the system (3) for the parameter value a = 21 and initial
conditions (4).

∂ẋ1

∂x1
+

∂ẋ2

∂x2
+

∂ẋ3

∂x3
+

∂ẋ4

∂x4
= −(α+ β|x4|).

Thus, the system (3) is dissipative for all positive values of parameters. Setting the right-
hand side of system (3) to zero ẋ1 = ẋ2 = ẋ3 = ẋ4 = 0 yields x1 = 0 from the fourth
equation. Substituting this value into the third equation leads to the contradictory result
−1 = 0, indicating that no equilibrium points exist for the system. This implies that all
attractors generated by system (3) are hidden.

2.1 Bifurcation diagrams, Lyapunov exponents, and the calculation of
Kaplan-Yorke dimension

In dynamic analysis, a bifurcation diagram visually represents changes in the system’s
state variables. We use the NDSolve function in Mathematica to solve the equations in
(3) under the following initial conditions:

x1(0) = x2(0) = x3(0) = x4(0) = 1. (4)

In system (3), the parameter a varies while α = 1, β = 0.1 remain constant. The bi-
furcation diagrams in Figure 3 show the components as a ∈ [0, 25], highlighting stable
regions (distinct points), periodic, quasiperiodic, and chaotic behaviors. Examining the
Lyapunov exponents provides deeper insight into the system’s stability and chaotic char-
acteristics as a changes. The dynamical behaviors of system (3) can be classified into the
following categories, as detailed in Table 1. A positive LE indicates instability or chaos
within the system, while a negative LE suggests a tendency toward stable equilibrium.
Next, we focus on the hyperchaotic behavior of the system (3) at a = 21. The sum of all
Lyapunov exponents is negative, confirming the dissipative nature of the system. The
dynamics are illustrated in Figure 4. To assess the complexity of the attractor, we can
calculate the Lyapunov or Kaplan-Yorke dimension:

DKY = ξ +
1

|LEξ+1|

ξ∑
i=1

LEi = 3 +
1.0041

2.5617
≈ 3.3919, (5)
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a Lyapunov Exponents
(LE1, LE2, LE3, LE4)

Signs Behavior

a = 0.01 (0.0081,−0.0148,−0.0081,−11.0423) (0,−,−,−) Periodic
a = 0.45 (0.0053, -0.0012, -0.0043,−12.3353) (0, 0, 0,−) Quasi− periodic

3− torus
a = 1 (0.0201,0.0038,−0.0165,−8.3231) (0, 0,−,−) Quasi− periodic

2− torus
a = 1.85 (0.0881, -0.0057,−0.0140,−3.8193) (+, 0,−,−) Chaotic
a = 3 (0.0936,0.0080,0.0038,−3.8193) (+, 0, 0,−) Chaotic 2− torus
a = 4 (0.1471,0.0520,−0.0986,−1.9904) (+, 0,−,−) Chaotic
a = 15 (0.4646, 0.2873, -0.0077,−2.2215) (+,+, 0,−) Hyperchaotic
a = 21 (0.5702, 0.4303,0.0035,−2.5617) (+,+, 0,−) Hyperchaotic

Table 1: Lyapunov exponents for different values of the parameter a.

where ξ is determined from the conditions

ξ∑
i=1

LEi > 0 ⇒
3∑

i=1

LEi = 1.0041,

ξ+1∑
i=1

LEi < 0 ⇒
4∑

i=1

LEi = −1.5577 < 0.

Here, ξ denotes the number of first non-negative Lyapunov exponents. The Kaplan-Yorke
dimension DKY (5) is fractional and is found to be significantly higher for system (3)
than for the chaotic system (1), indicating greater dynamic complexity.

2.2 Phase portraits of hidden attractors and offset boosting control

We created phase portraits and time diagrams for the hyperchaotic system (3), shown
in Figure 5. Implementing system (3) in an electronic circuit is challenging because the
dynamic variable x4 exceeds the power supply limits of operational amplifiers. To address
this, we transform x4 to x4 = 20X4 and rename the other variables as x1 = X1, x2 = X2,
and x3 = X3. The transformed hyperchaotic system takes the form

dX1

dt
= 21X2 − (1 + 2|X4|)X1,

dX2

dt
= −X3sgn(X1),

dX3

dt
= |X1| − 1,

dX4

dt
= 0.05X1.

(6)

The transformed system (6) will be utilized to create an analog chaos generator circuit
in the following section.

The offset boosting control method is commonly used in hyperchaotic systems to
shift the attractor by introducing a bias. By adding a constant to specific variables,
chaotic signals can be manipulated within phase space. In system (3), x4 appears in
the first equation and x3 in the second. We can control these variables by replacing x4

with x4 +m and x3 with x3 + k, where m and k are constants. As shown in Figure 6,
modifying m transforms x4 from a bipolar to a unipolar signal and shifts the attractor
along the x4-axis. Similar effects for x3 are illustrated in Figure 7.
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Figure 5: The upper part of the figure displays the hidden attractors of the hyperchaotic system
(3) in various planes. In contrast, the lower part of the figure presents the time diagrams for
the variables x1, x2, x3, x4.

Figure 6: Signal x4 and phase portrait in the plane x1x4 for different values of the offset
boosting controller m: m = 0 (blue), m = 30 (green), m = −30 (red).
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Figure 7: Signal x3 and phase portrait in the plane x1x3 for different values of the offset
boosting controller k: k = 0 (blue), k = 10 (green), k = −10 (red).

3 Electronic Circuit Design and Multisim Simulation of the New Hyper-
chaotic System

Based on Kirchhoff’s law for electrical circuits, the electrical analog of the system (6)
can be expressed as follows:

dX̃1

dt
=

100k

R2
X̃2 −

(
100k

R1
+

100k

R3 · 10
|X̃4|

)
X̃1,

dX̃2

dt
= − 100k

R4 · 10
X̃3sgn(X̃1),

dX̃3

dt
=

100k

R5
|X̃1| −

100k

R6
Vb,

dX̃4

dt
=

100k

R7
X̃1,

(7)

where R1 = R5 = R6 = 100kΩ, R2 = 4.76kΩ, R3 = 20kΩ, R4 = 10kΩ, R7 = 2MΩ.
The analog circuit modules for the equations in system (7) are shown in Figure 8. These
circuits utilize standard components such as resistors (R), capacitors (C), diodes D1-
D2 (1N4001), multipliers M1-M2 (AD633), operational amplifiers A1-A21 (TL084ACN),
and a supply voltage of ±15V. The constant 1 is provided by a voltage source Vb = 1V .
Figures 8b and 8c illustrate modules that model the signum sgn(·) and absolute value | · |
functions. The phase portraits in Figure 10 reveal a remarkable similarity between the
Mathematica simulation results (Figure 5) and the Multisim simulation results.

4 Conclusions

In this paper, we obtained a new 4D dynamical system based on a memristor that
meets the known criteria for generating hyperchaos: a) it is dissipative; b) it has a four-
dimensional phase space; and c) it includes at least one nonlinear term. A new memristive
four-dimensional dynamic system, derived from the five-term Lorenz equations, contains
only 7 terms. This hyperchaotic system lacks equilibrium points, potentially leading to
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Figure 10: Phase portraits of the new 4D hyperchaotic system as generated in Multisim
oscilloscopes: a) X̃1X̃3, b) X̃2X̃3, c) X̃1X̃2, d) X̃1X̃4, e) X̃2X̃4, f) X̃3X̃4.

hidden attractors. With two positive Lyapunov exponents, it is classified as hyperchaotic,
and its Kaplan-Yorke dimension (DKY = 3.3919) highlights its complexity. Simulation
results from the electronic circuit of the proposed 4D system, designed in Multisim 14,
align well with those obtained in Mathematica.

The new system shows great potential for applications in encrypting and decrypting
information signals, images, data for the Internet of Things, and similar areas.
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Abstract: The objective of this paper is to analyse the asymptotic behavior of a
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1 Introduction

In this work, we study the following Timoshenko system with fractional delays:

ρ1φtt − k (φx + ψ)x + a1∂
α,β
t φ (t− s) + α1φt = |φ|p−2

φ,

ρ2ψtt − bψxx + k (φx + ψ) + a2∂
α,β
t ψ (t− s) + α2ψt = |ψ|q−2

ψ,
φ(x = 0, t) = ψ(x = 0, t) = φ(x = L, t) = ψ(x = L, t) = 0,
φ(x, t = 0) = φ0(x), ψ(x, t = 0) = ψ0(x),
φt(x, t = 0) = φ1(x), ψt (x, 0) = ψ1(x),
φt (x, t− s) = f0 (x, t− s) , t ∈ (0, s) ,
ψt (x, t− s) = g0 (x, t− s) , t ∈ (0, s) ,

(1)

where x ∈ Ω = (0, L) , L > 0, t ∈ R⋆
+, ρ1, ρ2, a1, a2, α1, α2, b and k are positive real

constants. The constant s > 0 is the time delay and the exponents p and q satisfy p > 2

∗ Corresponding author: mailto:chahrazed.messikh@univ-annaba.dz
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and q > 2. The functions φ0, φ1, ψ0, ψ1, f0, g0 are the initial data belonging to suitable
spaces. The well known notation ∂α,βt stands for the generalized Caputo’s fractional
derivative, see [17,18], it is defined as

∂α,βt u (t) =
1

Γ (1− α)

∫ t

0

(t− s)
−α

e−β(t−s) us (s) ds, 0 < α < 1, β > 0.

The problem (1) is considered without internal and external forces, this type of systems
has been introduced in [19]. It describes the transverse vibration of a thick beam of
length L, where φ is the transverse displacement of the beam, ψ is the rotation angle
of the filament of the beam, and ρ1, ρ2, k and b account for some physical properties of
the beam, see [11]. In our case, the Timoshenko beam is subject to internal forces given
by fractional delay terms and frictional damping, and to external forces represented by
source terms. Physically, the occurrence of fractional delay terms in many systems can
lead to undesirable dynamics such as degraded performance, reduced robustness, or even
instability. Generally, these harmful effects are controlled by various dissipation terms;
for more results, see [1, 2].

In the last decades, the study of the well-posedness and stability/instability of evolu-
tion equations with time delay has received considerable attention of researchers. Many
authors have shown that the time delay can be a source of instability that is asymptoti-
cally stable in the absence of time delay, see in this direction [3,15]. More results in this
context can be found in [4, 5, 8, 10,20].

For the Timoshenko system with time delay, we mention the work [7], in which the
following problem is considered:{

ρ1φtt (x, t)− k (φx + ψ)x (x, t) + a1φ (x, t− τ1) + α1φt (x, t) = 0,
ρ2ψtt (x, t)− bψxx (x, t) + k (φx + ψ) (x, t) + a2ψ (x, t− τ2) + α2ψt (x, t) = 0.

(2)

The authors obtained the exponential decay rate when the weights of time delays are
smaller than the corresponding damping. By adopting the spectral analysis approach,
A. Adnane et al. [1] showed the same result by considering the time delay of fractional
type rather than the time delay in the system (2) without sources.

In the absence of delay, the problem of existence and energy decay for a single wave
equation with damping and/or source terms has been extensively studied by several
authors. They showed the damping term assures global existence in the absence of
source term, whereas without the damping term, the source term causes finite time blow-
up of the solution. Hence, it is valuable to study the asymptotic behavior of a single
wave equation with terms having opposite effects, see [6, 12, 13]. For more results about
systems with various other damping and source terms, we refer the reader to [9, 14,16].

The purpose of this paper is to analyse the influence of the damping terms, delay
terms and source terms on the solutions to (1). Under suitable assumptions, we establish
local existence, global existence and asymptotic behavior of solutions to (1). As far as
we know, this type of problems has never been considered before in the literature.

This paper is structured as follows. In Section 2, we state some assumptions, the
augmented problem (8), and lemmas for this analysis. Section 3 is devoted to the proof
of the local and global existence results by using the semi-group approach. In Section 4,
we state and prove the exponential decay rate result by using the multiplier method and
appropriate Lyapunov functional.
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2 Preliminaries and Tools

Here, we shall reformulate the initial problem (1) into the augmented system (8). To
this end, we need the following results.

Lemma 2.1 (see [2], p. 286) Let ϖ be a function defined for α ∈ (0, 1) as

ϖ (ν) = |ν|
2α−1

2 , ν ∈ R.

Then the relationship between the ”input” U and ”output” O of the system
ϕt (x, ν, t) +

(
ν2 + β

)
ϕ (x, ν, t)− U (x, t)ϖ (ν) = 0,

ϕ(x, ν, t = 0) = 0,

O(t) = (π)
−1

sin (απ)
∫ +∞
−∞ ϕ (x, ν, t)ϖ (ν) dν,

(3)

where ν ∈ R, t > 0, β > 0, is given by

O = I1−α,βU,

here,

Iα,βw(t) =
1

Γ (α)

∫ t

0

(t− τ)
α−1

e−β(t−τ)w (τ) dτ.

Lemma 2.2 ( [2], p. 286) If

λ ∈ Dβ = C \ ]−∞,−β[ ,
then ∫ +∞

−∞

ϖ2 (ν)

λ+ β + ν2
dν =

π

sin (απ)
(λ+ β)

α−1
.

The constants ai, αi are supposed to satisfy

aiβ
α−1 < αi for i = 1, 2. (4)

As in ([1], p. 1063), we can introduce new variables

z1 (x, ρ, t) = φt (x, t− sρ) , ρ ∈ (0, 1) , t > 0, (5)

z2 (x, ρ, t) = ψt (x, t− sρ) , ρ ∈ (0, 1) , t > 0. (6)

Then

zit (x, ρ, t) =
−1

s
ziρ (x, ρ, t) , ρ ∈ (0, 1) , t > 0, (7)

with i = 1, 2. For ν ∈ R, ρ ∈ (0, 1), we denote zit =
∂
∂t (zi) and ziρ = ∂

∂ρ (zi) , then by

(7) and Lemma 2.1, the initial system (1) is equivalent to

ρ1φtt − k (φx + ψ)x + b1ϕ1 ∗ϖ + α1φt = |φ|p−2φ,
ρ2ψtt − bψxx + k (φx + ψ) + b2ϕ2 ∗ϖ + α2ψt = |ψ|p−2ψ,
ϕ1t (x, ν, t) +

(
ν2 + β

)
ϕ1 (x, ν, t)− z1 (x, 1, t)ϖ (ν) = 0,

sz1t (x, ρ, t) + z1ρ (x, ρ, t) = 0,
ϕ2t (x, ν, t) +

(
ν2 + β

)
ϕ2 (x, ν, t)− z2 (x, 1, t)ϖ (ν) = 0,

sz2t (x, ρ, t) + z2ρ (x, ρ, t) = 0,
φ(x = L, t) = φ(x = 0, t) = ψ(x = L, t) = ψ(x = 0, t) = 0,
z1 (x, ρ = 0, t) = φt (x, t) , z2 (x, ρ = 0, t) = ψt (x, t) ,
φ(x, t = 0) = φ0, φt(x, t = 0) = φ1,
ψ(x, t = 0) = ψ0, ψt(x, t = 0) = ψ1,
z1 (x, ρ, 0) = f0 (x,−sρ) , z2 (x, ρ, 0) = g0 (x,−sρ) ,
ϕ1(x, ν, t = 0) = ϕ2(x, ν, t = 0) = 0,

(8)
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where ν ∈ R and

ϕi ∗ϖ =

∫ +∞

−∞
ϕi (x, ν, t)ϖ (ν) dν,

and
bi = (π)

−1
sin (απ) ai, i = 1, 2.

To prove the dissipativity of the energy E , we need the following lemma.

Lemma 2.3 (See [2], p. 286) For z ∈ L2 (Ω) and νϕ ∈ L2 (Ω× (−∞,+∞)) , we
have∣∣∣∫Ω z (x, ρ, t) ∫ +∞

−∞ ϖ (ν)ϕ (x, ν, t) dν dx
∣∣∣ ≤ A0

∫
Ω
|z (x, ρ, t)|2 dx

+ 1
4

∫
Ω

∫ +∞
−∞

(
ν2 + β

)
|ϕ (x, ν, t)|2 dν dx,

where

A0 =

∫ +∞

−∞

ϖ2(ν)

ν2 + β
dν.

The energy associated to (8) is defined by

E(t) = 1
2

[
ρ1∥φt∥2 + k∥φx + ψ∥2 + ρ2∥ψt∥2 + b∥ψx∥2

]
+

2∑
i=1

bi
2

∫ L

0

∫ +∞
−∞ |ϕi (x, ν, t)|2 dν dx+

2∑
i=1

vis
∫ L

0

∫ 1

0
|zi (x, ρ, t)|2 dρ dx

− 1
p∥φ∥

p − 1
q∥ψ∥

q,

(9)

where vi satisfies
A0bi < vi < αi − biA0, i = 1, 2. (10)

Lemma 2.4 Let (4) hold. Then the energy (9) satisfies

dE(t)
dt ≤ −C

2∑
i=1

∫
Ω

(
|zi (x, 1, t)|2 + |zi (x, 0, t)|2

)
dx

−
2∑

i=1

bi
2

∫ L

0

∫ +∞
−∞

(
ν2 + β

)
|ϕi (x, ν, t)|2 dν dx ≤ 0

(11)

for C > 0 and bi = (π)
−1

sin (απ) ai, i = 1, 2.

Proof. By multiplying (8)1 by φt and integrating over (0, L), integrating by parts
and using the boundary conditions, we find

d
dt

[
ρ1

2 ∥φt∥2 − 1
p∥φ∥

p
]
+ k

∫ L

0
(φx + ψ)φxt dx+ α1∥φt∥2

+b1
∫ L

0

(∫ +∞
−∞ ϕ1 (x, ν, t)ϖ (s) dν

)
φt dx = 0.

(12)

Multiplying (8)2 by ψt and integrating over (0, L), we have

d
dt

[
ρ2

2 ∥ψt∥2 + b
2∥ψx∥2 − 1

q∥ψ∥
q
]
+ α2∥ψt∥2 + k

∫ L

0
(φx + ψ)ψt dx

+b2
∫ L

0

(∫ +∞
−∞ ϕ2 (x, ν, t)ϖ (ν) dν

)
ψt dx = 0.

(13)
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Multiplying (8)j by biϕi with (i, j) = (1, 3), respectively (i, j) = (2, 5), and integrating
over (0, L)× R, we obtain

bi

∫ L

0

∫ +∞

−∞

(
d

2dt
|ϕi (x, ν, t)|2 +

(
ν2 + β

)
|ϕi (x, ν, t)|2

)
dν dx

−bi
∫ L

0

zi (x, 1, t)

∫ +∞

−∞
ϖ (ν)ϕi (x, ν, t) dν dx = 0.

(14)

Multiplying (8)j by 2vizi with (i, j) = (1, 4), respectively (i, j) = (2, 6), and integrating
over (0, L)× (0, 1), we have

d

dt

{
svi

∫ L

0

∫ 1

0

|zi (x, ρ, t)|2 dρ dx

}
+vi

∫ L

0

[
|zi (x, 1, t)|2 − |zi (x, 0, t)|2

]
dx = 0.

(15)

Summing (12), (13), (14) and (15) and due to the fact that φt (x, t) = z1 (x, 0, t),
ψt (x, t) = z2 (x, 0, t) , we have

dE(t)
dt = −

2∑
i=1

(αi − vi)
∫ L

0
|zi (x, 0, t)|2 dt

−
2∑

i=1

bi
∫ L

0
zi (x, 0, t)

∫ +∞
−∞ ϕi (x, ν, t)ϖ (ν) dν dx

−
2∑

i=1

bi
∫ L

0

∫ +∞
−∞

(
ν2 + β

)
|ϕi (ν)|2 dν dx

+
2∑

i=1

bi
∫ L

0
zi (x, 1, t)

∫ +∞
−∞ ϕi (x, ν, t)ϖ (ν) dν dx

−
2∑

i=1

vi
∫ L

0
|zi (x, 1, t)|2 dx.

Thanks to Lemma 2.2 and putting C = mini=1,2 (vi −A0bi, αi − vi − biA0) > 0, i = 1, 2,
the estimate (11) is established.

3 Unique Local and Global Weak Solution

Set u = φt and v = ψt and denote U = (φ, u, ψ, v, ϕ1, ϕ2, z1, z2)
T
, then (8) takes the

abstract form{
Ut(t) = AU(t) + F (U(t)) ,

U0 = (φ0, φ1, ψ0, ψ1, 0, 0, f0 (−ρs) , g0 (−ρs))T , for ρ ∈ (0, 1) ,
(16)

where the operator A is defined by

AU =

(
u,

k

ρ1
(φx + ψ)x − b1

ρ1
ϕ1 ⋆ ϖ −α1

ρ1
u, v,

b

ρ2
ψxx − k

ρ2
(φx + ψ)− b2

ρ2
ϕ2 ⋆ ϖ − α2

ρ2
v,

−
(
ν2+β

)
ϕ1+z1 (x, 1)ϖ (ν) ,−

(
ν2 + β

)
ϕ2+z2 (x, 1)ϖ (ν) ,−1

s
z1ρ (x, ρ) ,−

1

s
z2ρ (x, ρ)

)T

,

where

ϕi ⋆ ϖ =

∫ +∞

−∞
ϕi (x, ν)ϖ (ν) dν, i = 1, 2,



304 C. MESSIKH, N. BELLAL, S. LABIDI AND KH. ZENNIR

for i = 1, 2, the domain is given by

D (A) =


U ∈ H : (φ,ψ) ∈

(
H2 (Ω)

)2
, (u, v) ∈

(
H1

0 (Ω)
)2
,

zi ∈ L2
(
Ω×H1 (0, 1)

)
for i = 1, 2, u = z1 (., 0) , v = z2 (., 0) ,

νϕi ∈ L2 (Ω× (−∞,+∞)) for i = 1, 2,(
ν2 + β

)
ϕi − zi (x, 1)ϖ (ν) ∈ L2 (Ω× (−∞,+∞)) ,


where H is given as

H =
(
H1

0 (Ω)× L2 (Ω)
)2 × (L2 (Ω× (−∞,+∞))

)2 × (L2 (Ω× (0, 1))
)2

and equipped with the inner product〈
U, Ū

〉
H = k

∫
Ω
(φx + ψ)

(
φ̄x + ψ̄

)
dx+ b

∫
Ω
ψxψ̄x dx+ ρ1

∫
Ω
uū+ ρ2

∫
Ω
vv̄ dx

+
2∑

i=1

bi
∫
Ω

∫ +∞
−∞ ϕi (x, ν) ϕ̄i (x, ν) dν dx+ 2

2∑
i=1

vis
∫
Ω

∫ 1

0
zi (x, ρ) z̄i (x, ρ) dρ dx,

for all Ū =
(
φ̄, ū, ψ̄, v̄, ϕ̄1, ϕ̄2, z̄1, z̄2

)
.

Theorem 3.1 (Unique local weak solution) Assume that p > 2 and q > 2. Let (10)
hold. Then, for any U0 ∈ H, the system (16) has a unique local weak solution

U ∈ C ([0, T ] ,H) .

Moreover, if U0 ∈ D (A), then

U ∈ C ([0, T ] , D (A)) ∩C1 ([0, T ] ,H) .

Proof. It will be proved that A is a maximal dissipative operator. We have

dE(t)
dt = 1

2
d
dt∥U∥2 = ⟨AU,U⟩ ≤ −C

2∑
i=1

∫
Ω
|zi (x, 1, t)|2 dx− C

2∑
i=1

∫
Ω
|zi (x, 0, t)|2 dx

−
2∑

i=1

bi
2

∫ L

0

∫ +∞
−∞

(
ν2 + β

)
|ϕi (x, ν, t)|2 dν dx ≤ 0,

therefore A is dissipative.
Now, it will be shown that I −A is surjective. Indeed, let

F = (f1, f2, f3, f4, f5, f6, f7, f8)
T ∈ H, and look for U ∈ D (A) such that (I −A)U = F.

This is equivalent to

φ− u = f1 (x) ,(
1 + α1

ρ1

)
u− k

ρ1
(φx + ψ)x + b1

ρ1
ϕ1 ⋆ ϖ = f2 (x) ,

ψ − v = f3 (x) ,(
1 + α2

ρ2

)
v − b

ρ2
ψxx + k

ρ2
(φx + ψ) + b2

ρ2
ϕ2 ⋆ ϖ = f4 (x) ,(

1 + ν2 + β
)
ϕ1 − z1 (x, 1)ϖ (ν) = f5 (x, ν) ,(

1 + ν2 + β
)
ϕ2 − z2 (x, 1)ϖ (ν) = f6 (x, ν) ,

z1 +
1
sz1ρ = f7 (x, ρ) ρ ∈ (0, 1) ,

z2 +
1
sz2ρ = f8 (x, ρ) ρ ∈ (0, 1) .

(17)

Suppose (φ,ψ) ∈
(
H1

0 (Ω)
)2
, then by (17)1 and (17)3, we obtain

u = φ− f1 ∈ H1
0 (Ω) , (18)
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v = ψ − f3 ∈ H1
0 (Ω) , (19)

and from (17)7,8, we get

z1 (x, ρ) = e−sρz1(x, 0) + se−sρ

∫ ρ

0

eτsf7 (x, τ) dτ, (20)

z2 (x, ρ) = e−sρz2(x, 0) + se−sρ

∫ ρ

0

eτsf8 (x, τ) dτ. (21)

Using (18) and (19), we have

u (x) = z1(x, 0) = φ− f1 (x) , (22)

v (x) = z2(x, 0) = ψ − f3 (x) . (23)

Substituting (22) and (23) respectively in (20) and (21), we get, for all x ∈ (Ω), ρ ∈ (0, 1) ,

z1 (x, ρ) = e−sρ [φ− f1 (x)] + se−sρ
∫ ρ

0
e−sτf7 (x, τ) dτ ∈ L2 (Ω× (0, 1)) ,

z2 (x, ρ) = e−sρ [ψ − f3 (x)] + se−sρ
∫ ρ

0
esτf8 (x, τ) dτ ∈ L2 (Ω× (0, 1)) .

(24)

Returning back to (17)7,8, we find that

z1ρ = sf7 (x, ρ)− sz1 ∈ L2 (Ω× (0, 1)) , z2ρ = sf8 (x, ρ)− sz2 ∈ L2 (Ω× (0, 1)) .

Using (17)5 and (17)6, we obtain

ϕ1 =
f5 + z1 (x, 1)ϖ (ν)

1 + ν2 + β
∈ L2 (Ω× (−∞,+∞)) , (25)

ϕ2 =
f6 + z2 (x, 1)ϖ (ν)

1 + ν2 + β
∈ L2 (Ω,× (−∞,+∞)) . (26)

Therefore

νϕ1 = ν
1+ν2+β [f5 + z1 (x, 1)ϖ (ν)] ∈ L2 ((0, L)× (−∞,+∞)) ,

νϕ2 = ν
1+ν2+β [f6 + z2 (x, 1)ϖ (ν)] ∈ L2 (Ω× (−∞,+∞)) .

Inserting (17)1 and (25) in (17)2, respectively (17)3, and (26) in (17)4, we have
(
1 + α1

ρ1

)
φ− k

ρ1
(φx + ψ)x = f2 − b1

ρ1

[
f5+z1(x,1)ϖ(ν)

1+ν2+β

]
⋆ ϖ +

(
1 + α1

ρ1

)
f1,(

1 + α2

ρ2

)
ψ − b

ρ2
ψxx + k

ρ2
(φx + ψ) = f4 − b2

ρ2

[
f6+z2(x,1)ϖ(ν)

1+ν2+β

]
⋆ ϖ

+
(
1 + α2

ρ2

)
f3.

(27)

By replacing (20) and (21) for ρ = 1 in (27), we get

(
1 + b11e

−s

ρ1
+ α1

ρ1

)
φ− k

ρ1
(φx + ψ)x = f2 +

(
1 + α1

ρ1

)
f1

− b1
ρ1

∫ +∞
−∞

ϖ(ν)f5(ν)
1+ν2+β dν,+ b1

ρ1
f1,7

∫ +∞
−∞

ϖ2(ν)
1+ν2+βdν,(

1 + b22
ρ2
e−s + α2

ρ2

)
ψ − b

ρ2
ψxx + k

ρ2
(φx + ψ) = f4 +

(
1 + α2

ρ2

)
f3

− b2
ρ2

∫ +∞
−∞

ϖ(ν)f6(ν)
1+ν2+β dν + b2

ρ2
f3,8

∫ +∞
−∞

ϖ2(ν)
1+ν2+βdν,

(28)
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where, for i=1, 2,

bii = bi

∫ +∞

−∞

ϖ2(ν)

1 + ν2 + β
dν, f1,7 = f1 − se−s

∫ 1

0

eτsf7 (x, τ) dτ,

and

f3,8 = f3 − se−s

∫ 1

0

eτsf8 (x, τ) dτ.

Let
(
φ̄, ψ̄

)
∈
(
H1

0 ((0, L))
)2
. Multiply (28)1 by ρ1φ̄ and (28)2 by ρ2ψ̄. Integrating by

parts, and summing the obtained result, we get

M
(
φ,ψ; φ̄, ψ̄

)
= L

(
φ̄, ψ̄

)
, (29)

here, the bilinear form

M :
(
H1

0 ((0, L))×H1
0 ((0, L))

)2 → R

is defined by

M
(
φ,ψ; φ̄, ψ̄

)
= (ρ1 + b11e

−s + α1)
∫ L

0
φφ̄ dx+ (ρ2 + b22e

−s + α2)
∫ L

0
ψψ̄ dx

+k
∫ L

0
(φx + ψ)

(
φ̄x + ψ̄

)
dx+ b

∫ L

0
ψψ̄x dx,

and the linear form
L :
(
H1

0 ((0, L))
)2 → R

by

L
(
φ̄, ψ̄

)
= ρ1

∫ L

0
f2φ̄ dx+ (ρ1 + α1ρ1)

∫ L

0
f1φ̄dx− b1

∫ L

0

{∫ +∞
−∞

ϖ(ν)f5(x,ν)
1+ν2+β dν

}
φ̄dx

−b2
∫ L

0

{∫ +∞
−∞

ϖ(ν)f6(x,ν)
1+ν2+β dν

}
ψ̄ dx+ ρ2

∫ L

0
f4ψ̄ dx+ (ρ2 + α2)

∫ L

0
f3ψ̄ dx

+b1

(∫ +∞
−∞

ϖ2(ν)
1+ν2+βdν

) ∫ L

0

{
f1 − se−s

∫ 1

0
eτsf7 (x, τ) dτ

}
φ̄dx

+b2

(∫ +∞
−∞

ϖ2(ν)
1+ν2+βdν

) ∫ L

0

{
f3 − se−s

∫ 1

0
eτsf8 (x, τ) dτ

}
ψ̄dx.

It is not hard to see the bilinear operator M is coercive and continuous and L is continu-

ous. Then, applying the Lax-Milgram Theorem to find ∀
(
φ̄, ψ̄

)
∈
(
H1

0 ((0, L))
)2
, we see

that the system (29) has a unique weak solution (φ,ψ) ∈
(
H1

0 ((0, L))
)2
. Owing to the

classical elliptic regularity, we find by (29) that

(φ,ψ) ∈
(
H2 ((0, L))

)2
.

It remains only to prove

ν2 + βϕi − zi (x, 1)ϖ (ν) ∈ L2 ((0, L)× (−∞,+∞)) , i = 1, 2.

Indeed, we have from (17)5 and (17)6,(
ν2 + β

)
ϕ1 − z1 (x, 1)ϖ (ν) = f5 − ϕ1 ∈ L2 ((0, L)× (−∞,+∞)) ,(

ν2 + β
)
ϕ2 − z2 (x, 1)ϖ (ν) = f6 − ϕ2 ∈ L2 ((0, L)× (−∞,+∞)) .

Therefore, U ∈ D (A) . Thus, the operator I −A is surjective. Now, we prove that

F : H → H
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is locally Lipschitz. For U, Ū ∈ H, we have

∥F (U)− F
(
Ū
)
∥2H ≤ C

[
∥φ− φ̄∥2

H1
0 (Ω)

+ ∥ψ − ψ̄∥2
H1

0 (Ω)

]
. (30)

Thus, F is locally Lipschitz. This completes the proof.
We show the global existence result. First, we introduce the following useful func-

tionals:
I1(t) = b1

∫ L

0

∫ +∞
−∞ |ϕ1 (x, ν, t)|2 dν dx+ k∥φx + ψ∥2

+ b
2∥ψx∥2 − ∥φ∥pp + sv1

∫
Ω

∫ 1

0
|z1 (x, ρ, t)|2 dρ ,

(31)

I2(t) = b2
∫
Ω

∫ +∞
−∞ |ϕ2 (x, ν, t)|2 dν dx+ b

2∥ψx∥2

−∥ψ∥qq + sv2
∫
Ω

∫ 1

0
|z2 (x, ρ, t)|2 dρ dx,

(32)

J1(t) =
b1
2

∫
Ω

∫ +∞
−∞ |ϕ1 (x, ν, t) dν dx|2 + k

2∥φx + ψ∥2 + b
4∥ψx∥2

− 1
p∥φ∥

p
p + sv1

∫
Ω

∫ 1

0
|z1 (x, ρ, t)|2 dρ dx,

(33)

and
J2(t) =

b2
2

∫
Ω

∫ +∞
−∞ |ϕ2 (x, ν, t)|2 dν dx+ b

4∥ψx∥2

− 1
q∥ψ∥

q
q + sv2

∫
Ω

∫ 1

0
|z2 (x, ρ, t)|2 dρ dx.

(34)

We easily see that

E(t) = 1

2
∥φt∥2 +

1

2
∥ψt∥2 + J1(t) + J2(t). (35)

Lemma 3.1 Suppose that conditions (4), p > 2 and q > 2 hold. Then, for U0 ∈ H
satisfying  B̃ = max

(
Cp

⋆⋆

(
2p
p−2E (0)

) p−2
2

, Cq
⋆⋆

(
2q
q−2E (0)

) q−2
2

)
< 1,

Ii (0) > 0 for i = 1, 2,
(36)

we have for all t > 0,

Ii(t) > 0, for i = 1, 2.

Proof. As Ii (0) > 0 for i = 1, 2, by continuity of φ and ψ, there exists T ⋆ < T such
that

Ii(t) ≥ 0 for all t ∈ [0, t⋆] , i = 1, 2, (37)

and with a straight forward calculation, we can find

2p
p−2J1(t) = k∥φx + ψ∥2 + b1

∫
Ω

∫ +∞
−∞ |ϕ1 (x, ν, t)|2 dνdx+ b

2∥ψx∥2

+ 2(p−1)
p−2 sv1

∫
Ω

∫ 1

0
|z1 (x, ρ, t)|2 dρ dx+ 2

p−2I1(t) ≥ k∥φx + ψ∥2 + b
2∥ψx∥2,

(38)

2q
q−2J2(t) = b2

∫
Ω

∫ +∞
−∞ |ϕ2 (x, ν, t)|2 dν dx+ b

2∥ψx∥2

+ 2(q−1)
q−2 sv2

∫
Ω

∫ 1

0
|z2 (x, ν, t)|2 dν dx+ 2

q−2I2(t) ≥
b
2∥ψx∥2.

(39)

Exploiting (35), (38), (39) and Lemma 2.4, we find

b

2
∥ψx∥2 + k∥φx + ψ∥2 ≤ 2p

p− 2
E(t) ≤ 2p

p− 2
E (0) for all t ∈ [0, t⋆] , (40)
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and
b

2
∥ψx∥2 ≤ 2q

q − 2
E(t) ≤ 2q

q − 2
E (0) for all t ∈ [0, t⋆] . (41)

Applying Sobolev-Poincaré’s inequality and taking into consideration (36), (40) and (41),
we get

∥φ∥pp ≤ Cp
⋆∥φx∥p ≤ Cp

1⋆

[√
k∥φx + ψ∥+

√
b
2∥ψx∥

]p
≤ Cp

⋆⋆

(
2p
p−2E (0)

) q−2
2 [

k∥φx + ψ∥2 + b
2∥ψx∥2

]
≤ k∥φx + ψ∥2 + b

2∥ψx∥2,
(42)

and

∥ψ∥qq ≤ Cq
⋆∥ψx∥q2 = Cq

⋆⋆

[
2q
q−2E (0)

] p−2
2 b

2∥ψx∥22 ≤ b
2∥ψx∥22. (43)

This implies that

Ii(t) > 0 for i = 1, 2 ∀ t ∈ [0, t⋆] .

By repeating this procedure and using the fact that

lim
t→T⋆

max

(
Cp

⋆⋆

(
2p

p− 2
E (0)

) p−2
2

, Cq
⋆⋆

(
2q

q − 2
E (0)

) q−2
2

)
< 1,

we can take T ⋆ = T.

Theorem 3.2 (Global existence) Assume that condition (10), p > 2 and q > 2 are
satisfied. Then, for U0 ∈ D(A) satisfying (36), the solution of system (8) is global in
time.

Proof. It suffices to show that ∥φx + ψ∥2 + ∥ψx∥2 + ∥ψt∥2 + ∥φt∥2 is bounded
independently of t.
Indeed, by (35), (38), (39), we get

E (0) ≥ E(t) = 1
2

[
∥φt∥2 + ∥ψt∥2

]
+ J1(t) + J2(t)

≥ min
(

1
2 ,

(p−2)
2p k, q−2

2q
b
2

) [
∥φt∥2 + ∥ψt∥2 + ∥φx + ψ∥2 + ∥ψx∥2

]
,

which implies that

∥φt∥2 + ∥ψt∥2 + ∥φx + ψ∥2 + ∥ψ∥2 ≤ CE (0) ,

where C is a constant depending only on p, q, k and b.

4 Decay Rate Result

Our next step is devoted to the proof of the decay result to the problem (8). For this
purpose, we prepare some Lemmas and present some appropriate functionals. Firstly,
we define

k1(t) =

2∑
i=1

∫
Ω

ρiφ
i
tφ

i dx+

2∑
i=1

bi

2

∫
Ω

∫ +∞

−∞

(
ν2 + β

)
|Mi (x, ν, t)|2 dν dx, (44)
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and

k2(t) = s

2∑
i=1

∫
Ω

∫ 1

0

e−sρ |zi (x, ρ, t)|2 dρ dx, (45)

where

Mi (x, ν, t) =

∫ t

0

ϕi (x, ν, z) dz −
sϖ (ν)

ν2 + β

∫ 1

0

f i0 (x,−ρs) dρ+
φi
0ϖ (ν)

ν2 + β
(46)

with

(
f i0 (x,−ρs) , φi

0 (x) , φ
i (x, t)

)
=

 (f0 (x,−ρs) , φ0 (x) , φ (x, t)) i = 1,

(g0 (x,−ρs) , ψ0 (x) , ψ (x, t)) i = 2.

Lemma 4.1 [1] Let (φ, ϕ1, z1, ψ, ϕ2, z2) be a regular solution of problem (8), then
we have(

ν2 + β
)
Mi (x, ν, t) = −sϖ (ν)

∫ 1

0

zi (x, ρ, t) dρ+ φi (x, t)ϖ (ν)− ϕi (x, ν, t) ,

and∫
Ω

∫ +∞
−∞

(
ν2 + β

)
ϕi (x, ν, t)Mi (x, ν, t) dν dx =

∫
Ω
φi (x, t)

∫ +∞
−∞ ϕi (x, ν, t)ϖ (ν) dν dx

−s
∫
Ω

∫ 1

0
zi (x, ρ, t)

∫ +∞
−∞ ϖ (ν)ϕi (x, ν, t) dν dρ dx−

∫
Ω

∫ +∞
−∞ |ϕi (x, ν, t)|2 dν dx, i = 1, 2.

Lemma 4.2 [1] Let (φ, ϕ1, z1, ψ, ϕ2, z2) be a regular solution of the problem (8),
then we have∣∣∣∫Ω ∫ +∞

−∞
(
ν2 + β

)
|Mi (x, ν, t)|2 dν dx

∣∣∣ ≤ 3s2A0

∫
Ω

∫ 1

0
|zi (x, ρ, t)|2 dρ dx

+ 3A0C
2
⋆∥φi

x∥22 + 3
β

∫
Ω

∫ +∞
−∞ |ϕi (x, ν, t)|2 dν dx, i = 1, 2.

Lemma 4.3 Assume (4) with p > 2 and q > 2 hold. The functional k1 defined in
(44) satisfies

k′1(t) ≤ −C1∥φx + ψ∥2 − C2∥ψx∥2 + C∥φt∥2 + C∥ψt∥2

−
2∑

i=1

bi
∫
Ω

∫ +∞
−∞ |ϕi (x, ν, t)|2 dν dx+ ∥φ∥pp + ∥ψ∥qq

+s2
2∑

i=1

vi
∫
Ω

∫ 1

0
|zi (x, ρ, t)|2 dρ dx+

2∑
i=1

bi
4

∫
Ω

∫ +∞
−∞

(
ν2 + β

)
|ϕi (x, ν, t)|2 dν dx,

(47)
where C1, C2, C are positive constants.

Proof. Differentiating k1 with respect to t, using (8)1 and (8)2, by integration by
parts and using Lemma 4.1, we obtain

k′1(t) = −k∥φx + ψ∥2 − b∥ψx∥2 + ρ1∥φt∥2 + ρ2∥ψt∥2

−
2∑

i=1

bi
∫
Ω

∫ +∞
−∞ |ϕi (x, ν, t)|2 dν dx− α1

∫
Ω
φφt dx− α2

∫
Ω
ψψt dx

−s
2∑

i=1

bi
∫
Ω

∫ 1

0
zi
∫ +∞
−∞ ϖϕi (x, ν, t) dν dρ dx+ ∥φ∥pp + ∥ψ∥qq.

(48)
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Now, we will estimate the last three terms of the RHS as follows. Using Lemma 2.3 and
due to the fact that biA0 < vi, i = 1, 2, and then integrating over (0, 1) with respect to
ρ, we can write

−
2∑

i=1

bi
∫
Ω
szi
∫ +∞
−∞ ϖϕ (x, ν, t) dν dx ≤ s2

2∑
i=1

vi
∫
Ω

∫ 1

0
|zi (x, ρ, t)|2 dρ dx

+
2∑

i=1

bi
4

∫
Ω

∫ +∞
−∞

(
ν2 + β

)
|ϕi (x, ν, t)|2 dν dx.

(49)

By Young and Poincaré’s inequality, we have

−α1

∫
Ω
φφt dx+ α2

∫
Ω
ψψt dx ≤ α1

4δ ∥φt∥2 + α2

4δ ∥ψt∥2 + Cδα1∥φx + ψ∥2
+Cδ (α2 + α1C) ∥ψx∥2.

(50)

Inserting (49) and (50) in (48), we arrive at

k′1(t) ≤−(k−Cδα1) ∥φx+ψ∥2−(b−Cδ (α2+α1C)) ∥ψx∥2+
(
α1

4δ +ρ1
)
∥φt∥2

+
(
α2

4δ +ρ2
)
∥ψt∥2 −

2∑
i=1

bi
∫
Ω

∫ +∞
−∞ |ϕi (x, ν, t)|2 dν dx+ s2

2∑
i=1

vi
∫
Ω

∫ 1

0
|zi (x, ν, t)|2 dρ dx

+
2∑

i=1

bi
4

∫
Ω

∫ +∞
∞

(
ν2 + β

)
|ϕi (x, ν, t)|2 dν dx+ ∥φ∥pp + ∥ψ∥qq,

we choose δ = min
(

b
2C(α2+α1C) ,

k
2Cα1

)
, then setting C1 = k − Cδα1 and

C2 = b− Cδ (α2 + α1C) , we get (47).

Lemma 4.4 With the same hypotheses as in Lemma 4.3, the functional k2 defined
in (45) satisfies

k′2(t) ≤ −se−s
2∑

i=1

∫
Ω

∫ 1

0

|zi (x, ρ, t)|2 dρ dx+ ∥φt∥2 + ∥ψt∥2. (51)

Proof. We take the derivative of k2 with respect to t, and using (8)4 and (8)6, we
get

k′2(t) =

2∑
i=1

∫
Ω

|zi (x, 0, t)|2−
2∑

i=1

∫
Ω

e−s |zi (x, 1, t)|2 dρ dx−s
2∑

i=1

∫
Ω

∫ 1

0

e−sρ |zi (x, ρ, t)|2 dρ dx.

We have zi (x, 0, t) = φi
t (x, t) , and since e−sρ ≥ e−s, we obtain (51).

Now, we introduce the perturbed modified energy, named Lyapunov function, as

L(t) = NE(t) + εk1(t) + k2(t)

for ε > 0 and N > 0.

Lemma 4.5 For ε1 small and N large enough, we have

N

2
E(t) ≤ L(t) ≤ 2NE(t), ∀ t ≥ 0. (52)
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Proof. The application of Young and Poincaré’s inequalities gives

L(t) ≤ NE(t) + ε
2

[
ρ1∥φt∥2 + ρ1C

2
⋆∥φx + ψ∥2

]
+ ε

2

[
ρ2∥ψt∥2 + C2

⋆⋆

{
ρ2 + C2

⋆ρ1
}
∥ψx∥2

]
+

2∑
i=1

bi
2 ε
∫
Ω

∫ +∞
−∞

(
ν2 + β

)
|Mi (x, ν, t)|2 dν dx+ s

2∑
i=1

∫
Ω

∫ 1

0
e−sρ |zi (x, ρ, t)|2 dρ dx.

Using E(t), I1, I2, Lemma 4.2 and the fact that biA0 < vi for i = 1, 2, we get

2NE(t)− L(t) ≥ ρ1

2 [N − ε] ∥φt∥22 +
ρ2

2 [N − ε] ∥ψt∥22
+N

p I1 +
N
q I2 +

1
2

[
Nk(p−2)

p − εC2
⋆ [3v1 + ρ1]

]
∥φx + ψ∥2

+ 1
2

[
bN(pq−q−p)

pq − εC2
⋆⋆

{
C2

⋆ (3v1 + ρ1) + 3v2 + ρ2
}]

∥ψx∥2

+s
∫
Ω

∫ 1

0

([
Nv1(p−1)

p −1− 3
2sεv1

]
|z1 (x, ρ, t)|2+

[
Nv1(q−1)

q −1− 3
2sεv2

]
|z2 (x, ρ, t)|2

)
dρ dx

+b1
2

[
N(p−2)

p − 3ε
β

] ∫
Ω

∫ +∞
−∞ |ϕ1 (x, ν, t)|2 dν dx+ b2

2

[
N(q−2)

q − 3ε
β

] ∫
Ω

∫ +∞
−∞ |ϕ2 (x, ν, t)|2 dν dx.

On the other hand, we can estimate the following:

L(t)− N
2 E(t) ≥

N
2 E(t)−

ε
2

[
ρ1∥φt∥2 + C2

⋆ρ1∥φx + ψ∥2
]

+ ε
2

[
ρ2∥ψt∥2 + C2

⋆⋆

{
C2

⋆ρ1 + ρ2
}
∥ψx∥2

]
+ s

2∑
i=1

e−s
∫
Ω

∫ 1

0
zi (x, ρ, t) dρ dx

+
2∑

i=1

biε
2

∫
Ω

∫ +∞
−∞

(
ν2 + β

)
|Mi (x, ν, t)|2 dν dx.

Using Lemma 4.2 and the fact that biA0 < vi, i = 1, 2, we obtain

L(t)− N
2 E(t) ≥

ρ1

2

[
N
2 − ε

]
∥φt∥2 + ρ2

2

[
N
2 − ε

]
∥ψt∥2 + N

2 pI1 +
N
2 qI2

+ 1
2

[
kN(p−2)

2p − C2
⋆ε (ρ1 + 3v1)

]
∥φx + ψ∥2

+ 1
2

[
Nb(qp−p−q)

2pq − εC2
⋆⋆

{
ρ2 + 3v2 + C2

⋆ (ρ1 + 3v1)
}]

∥ψx∥2

+ b1
2

(
N(p−2)

2p − 3ε
β

) ∫
Ω

∫ +∞
−∞ |ϕ1 (x, ν, t)|2 dν dx

+ b2
2

(
N(q−2)

2q − 3ε
β

) ∫
Ω

∫ +∞
−∞ |ϕ2 (x, ν, t)|2 dν dx

+ s
[
v1N(p−1)

2p + e−s − 3
2εv1s

] ∫
Ω

∫ 1

0
|z1 (x, ρ, t)|2 dρ dx

+s
[
v2N(q−1)

2q + e−s − 3
2sv2ε

] ∫
Ω

∫ 1

0
|z2 (x, ρ, t)|2 dρ dx.

Finally, if we pick ε small and N large enough, we deduce that

L(t)− N

2
E(t) ≥ 0 and 2NE(t)− L(t) ≥ 0.

Hence, we conclude that
E(t) ∼ L(t) ∀t > 0.

Theorem 4.1 (Exponential decay rate) Let p > 2 and q > 2. Assume that (4) holds
for i = 1, 2, and U0 ∈ H satisfying (36), then the unique solution of (8) satisfies

E(t) ≤ ke−mt ∀t ≥ 0,

for some positive constants k and m independent of t.
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Proof. We remember that

L(t) = NE(t) + εk1(t) + k2(t).

By means of Lemma 4.3 and Lemma 4.4, we get for all t ≥ 0,

L′(t) ≤ − (NC − εC − 1) ∥φt∥2 − (NC − εC − 1) ∥ψt∥2

−
2∑

i=1

bi
2

[
N − ε

2

] ∫ L

0

∫∞
−∞

(
ν2 + β

)
|ϕi (x, ν, t)|2 dν dx− C1ε∥φx + ψ∥2 − C2ε∥ψx∥2

−
2∑

i=1

εbi
∫
Ω

∫∞
−∞ |ϕi (x, ν, t)|2 dν dx−

2∑
i=1

s (e−s − visε)
∫
Ω

∫ 1

0
|zi (x, ρ, t)|2 dρ dx

+ε
[
∥φ∥pp + ∥ψ∥qq

]
.

We now choose ε small enough such that e−s−visε > 0, i = 1, 2. Pick N large enough
such that N > max

(
Cε+1
C , ε2

)
. Thus, ∃m1 > 0 so that

L′(t) ≤ −m1E(t) ∀t ≥ 0.

By Lemma 4.5, it follows that E(t) and L(t) are equivalent ∀t > 0. Then, ∃m > 0 such
that

L′(t) ≤ −mL(t) ∀t ≥ 0. (53)

Hence, the solution of (53) is given by

L′(t) ≤ L (0) e−mt ∀t ≥ 0,

so, we have
E(t) ≤ ke−mt ∀t ≥ 0,

with k > 0. This completes the proof.

Example

Consider the problem (1) with Ω = (0, 2π), ρ1 = ρ2 = 1,
p = q = 3 > 2, b = 1,K = 1

2 , φ0(x) = ψ0(x) =
1√

24πC
sinx,

φ1(x) = ψ1(x) = − 1√
24πC

sinx, where C is the maximal value between two constants

denoted by the same notation C∗∗ and they are given by (42) and (43). The initial delays
f0 (x, t− s) = g0 (x, t− s) = 0 for t ∈ (0, s). We set vi = 2biA0 and αi = 4biA0 for i=1,2.
Then we have

1. The initial condition U0 = 1√
24πC

(sinx,−sinx, sinx,−sinx, 0, 0, 0, 0) ∈ D(A).

2. By Lemma 2.2, we have A0 = πβα−1

sin(πα) , from the definition of bi,

it follows that αi = 4aiβ
α−1. Then the condition (4) is satisfied.

3. It easy to notice that the relation (10) holds.

4. From the expression of the energy (9), we get E(0) = 1
12C3 . Thus, B̃ = 1√

2
< 1.

By a simple and direct calculation, we find I1(0) = 3I2(0) = 1
48C3 > 0. Then we

deduce that the conditions (36) are verified.

So, by Theorem 3.1 and Theorem 3.2, the problem (1) has a unique local and global
solution. Furthermore, by Theorem 4.1, we get the decay result.
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Conclusion

In this paper, we prove the well-posedness result of problem (1) using the semi-group
theories. Then, we prove that the solution decay exponentially by means of the multiplier
approach. Finally, we provide an example in which our results can be applied. The main
contribution of this work is the extension of the previous results from [2]. It will be
interesting to extend our results to the following system:

ρ1φtt − k (φx + ψ)x + a1∂
α,β
t φ (0t− s) = |φ|p−2

φ,

ρ2ψtt − bψxx + k (φx + ψ) + a2∂
α,β
t ψ (t− s) = |ψ|q−2

ψ,
φ(x, t = 0) = φ0(x), ψ(x, t = 0) = ψ0(x),
φt(x, t = 0) = φ1(x), ψt (x, 0) = ψ1(x),
φt (x, t− s) = f0 (x, t− s) , t ∈ (0, s) ,
ψt (x, t− s) = g0 (x, t− s) , t ∈ (0, s)

under the following boundary conditions:{
(φx + ψ)(L, t) + α1φt(L, t) = 0,

ψx(L, t) + α2ϕt(L, t) = 0,

which will be an open problem.
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Formation Flight of UAVs for Search and Detection
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Abstract: In this paper, the formation problem of multiple unmanned aerial vehicles
(UAVs) is addressed. In particular, the formation of UAVs is achieved by using
complex systems theory and backstepping nonlinear control. We apply the obtained
formation of multiple UAVs to search for and detect a target of interest within an
exploration area. In addition, a coverage study of the formation of UAVs for search
and detection by tracking time-variable trajectories is reported.

Keywords: complex systems; formation control; backstepping control; multiple
UAVs; search mission.
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1 Introduction

From the formation of some kinds of birds to extend their flight time, to the grouping of
fish to avoid attacks of predators, different groups of animals often associate naturally
to achieve a common goal or benefit, which they individually could not achieve, and
therefore could not survive [6], [18], [19].

The exchange of information due to the interactions between the members of these
groups gives rise to a set of collective behaviors that are different from an isolated indi-
vidual behavior. It is called emergent collective behavior [17], [21].

∗ Corresponding author: mailto:roslopez@uabc.edu.mx

© 2025 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua315

mailto:roslopez@uabc.edu.mx
http://e-ndst.kiev.ua


316 ROLANDO D́IAZ-CASTILLO, ROSA MARTHA LOPÉZ-GUTIÉRREZ et al.

In the literature, there are many works dealing with this problem, one of them is the
work by R. Abas and Wu [1], in which the dynamic model of a quadcopter is studied
by using the Newton-Euler method, and the synchronization of three quadcopters is
achieved in the simulation using sliding modes as a control algorithm.

In the work done by P. Flores [9], the author faces the problem of the formation of a
group of unmanned aerial vehicles (UVAs), for this a dynamic model of a quadcopter is
consedered using the Newton-Euler method, the control algorithm for the formation is
backstepping control, and the formation of a group of three quadcopters is achieved.

In the work reported by A. Toledo [2], the dynamic model of a quadcopter is con-
sidered using the Newton-Euler method and an integral backstepping control algorithm
with sliding modes is proposed for an unmanned aerial vehicle. The experimental results
are obtained by using a Qball-X4 quadcopter.

In the work by N. Koksal [14], the dynamic model of the Qball-X4 quadcopter is
considered. A PID control algorithm is used for the translation system and another
algorithm is applied for the rotation system, the simulations results are obtained for a
group of 3 quadcopters, and experimental tests with two Qball-X4 type quadcopters are
carried out.

In the work done by X. Dong [7], a dynamic model for a small UAV type mini
helicopter is considered assuming that there is a leading quadcopter and the other are
followers, they use a PID control algorithm and obtain the formation of the group of
quadcopters in simulation and experimental results.

The main goals of this paper are: (i) to obtain network synchronization and formation
flight of coupled UAVs in star topology, considering a single master UAV with four slave
UAVs. This objective is achieved by using recent results from complex systems theory.
In addition, (ii) to apply the network formation to object detection, and (iii) to carry
out a coverage study of the formation of UAVs for search and detection by tracking
time-variable trajectories. To our knowledge, the results have not been reported.

The organization of the paper is as follows. In Section 2, the problem statement is
presented. Section 3 describes the mathematical model of the UAV quadrotor used in
this work. Section 4 contains the designed control algorithm for synchronization and
formation of UAVs. Section 5 presents the obtained numerical results. In Section 6, an
application to object detection is provided. Finally, some conclusions are given in Section
7.

2 Problem Statement

In recent decades, many control proposals have emerged in order to achieve formations
in mobile robots. Particularly, formations in Unmanned Aerial Vehicles (UAVs) have
received considerable interest due to their wide potential applications in the military,
civil and industrial fields, and agriculture [10], [13]. The purpose of this study is to
preserve mobility and compact groups at the same time, which generates advantages
such as reduced implementation costs, increased robustness, system efficiency, etc.

The quadcopter is used to access hostile environments, where the safety of the pilots
can not be guaranteed. The quadcopter´s configuration makes it capable of taking off
vertically, controlled landing, as well as great maneuverability. These advantages have
attracted many researchers’ interest in recent years.

Different control techniques can be applied to a quadcopter, for example, a nonlinear
controller, PID control, backstepping, dynamic feedback linearization, and sliding modes,
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among others. See for example [3], [7], [12].
The study of collective behaviors seen in nature and their representation in mathemat-

ical equations opens the door for multiple applications in robotics and, in our particular
case, the formation of multiple unmanned aerial vehicles (UVAs).

The purpose of this paper is to reproduce collective behaviors observed in animals,
namely synchronization and formation, and apply them to the networks of unmanned
aerial vehicles (UVAs) for applications in search, rescue, and patrol task. Fig. 1 illustrates
a group of quadcopters searching for the target of interest T.

𝑄1

𝑄2

𝑄𝑛

T

Figure 1: Group of quadrotors searching for the target T.

We will solve the stated problem on the network formation of five UAVs with a single
master and four slaves by using complex systems theory and nonlinear backstepping
control, providing an analytical stability proof based on the Lyapunov theory, and we
will also analyze the search and detection coverage of the object in the area. In addition,
for a particular type of UAV, we will use the mathematical model of the quadrotor
described in Section 3.

3 Quadrotor Dynamic Model

The complete quadrotor dynamic model, with the x, y, z−plane position and orientation
angles (roll, pitch, and yaw), is described by [2], [3]- [5], [20]

ϕ̈ = θ̇ψ̇
(

Iy−Iz
Ix

)
− Jr

Ix
θ̇Ω+ l

IxU2,

θ̈ = ϕ̇ψ̇
(

Iz−Ix
Iy

)
+ Jr

Iy
ϕ̇Ω+ l

IyU3,

ψ̈ = ϕ̇θ̇
(

Ix−Iy
Iz

)
+ l

Iz
U4,

ẍ = (cosϕ sinθ cosψ + sinϕ sinψ) 1
mU1,

ÿ = (cosϕ sinθ sinψ − sinϕ cosψ) 1
mU1,

z̈ = −g + cosϕ cosθ 1
mU1.

(1)

The first three differential equations correspond to the quadrotor orientation
(ϕ, θ, ψ)T , and the last three differential equations represent the position of the quadrotor
with respect to the original inertial frame (x, y, z)T , see Figure 2.
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∅ 

Figure 2: Quadcopter representation with respect to the inertial frame.

The angular velocity due to the propellers in each engine is represented by Ωi, for
i = 1, 2, 3, 4, respectively. The control inputs of the quadrotor are denoted by Ui, i =
1, 2, 3, 4, and Ω is a disturbance, which correspond to

U1 = b(Ω2
1 +Ω2

2 +Ω2
3 +Ω2

4),
U2 = b(Ω2

4 − Ω2
2),

U3 = b(Ω2
3 − Ω2

1),
U4 = d(Ω2

2 +Ω2
4 − Ω2

1 − Ω2
3),

Ω = Ω2 +Ω4 − Ω1 − Ω3.

(2)

The quadrotor dynamic model described in Eq. (1) can be rewritten in a state space
as Ẋ = f(X,U), introducing the following state vector:

X = [ϕ, ϕ̇, θ, θ̇, ψ, ψ̇, x, ẋ, y, ẏ, z, ż]T , (3)

where

x1 = ϕ, x2 = ẋ1 = ϕ̇,

x3 = θ, x4 = ẋ3 = θ̇,

x5 = ψ, x6 = ẋ5 = ψ̇,
x7 = z, x8 = ẋ7 = ż,
x9 = x, x10 = ẋ9 = ẋ,
x11 = y, x12 = ẋ11 = ẏ.

(4)

From Equations (1) and (4), the quadrotor mathematical model can be described in
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the state space as follows:

Ẋ = f(X,U) =



x2
x4x6a1 + x4a2Ω+ b1U2

x4
x2x6a3 + x2a4Ω+ b2U3

x6
x4x2a5 + b3U4

x8
−g + (cosx1cosx3)

1
mU1

x10
ux

1
mU1

x12
uy

1
mU1



, (5)

where
a1 =

Iy−Iz
Ix

, a2 = −Jr

Ix
, a3 = Iz−Ix

Iy
, a4 = Jr

Iy
, a5 =

Ix−Iy
Iz

,

b1 = l
Ix
, b2 = l

Iy
, b3 = l

Iz
,

ux = cosx1 sinx3 cosx5 + sinx1 sinx5,
uy = cosx1 sinx3 sinx5 − sinx1 cosx5.

The quadrotor mathematical model (5) can be divided into two subsystems: orienta-
tion and translation. The first one is given by

ẋo = fo(xi) +BiUoi, (6)

where Uoi =
(
U2 U3 U4

)T
,

fo =


x2

x4x6a1 + x4a2Ω
x4

x2x6a3 + x2a4Ω
x6

x4x2a5

 , Bi =


0 0 0
b1 0 0
0 0 0
0 b2 0
0 0 0
0 0 b3

 . (7)

On the other hand, the translation subsystem is described by the following expression:

ẋti = f t(xi) +GU ti, (8)

where U ti =
(
U1 Ux Uy

)T
,

f t =


x8
−g
x10
0
x11
0

 , G =


0 0 0

cosx1cosx3

m 0 0
0 0 0
0 1

m 0
0 0 0
0 0 1

m

 . (9)
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The physical parameters of the quadrotor mathematical model (5) are given in Table
1.

Parameter Definition Value
m Mass 0.650 kg
Ix x-axis inertia 7.5e−3 kgm2

Iy y-axis inertia 7.5e−3 kgm2

Iz z-axis inertia 1.3e−2 kgm2

b Thrust coefficient 3.13e−3 Ns2

d Drag coefficient 7.5e−7 Nms2

Jr Rotor inertia 6e−5 kgm2

l Arm length 0.23 m
g Gravity 9.8 N/kg

Table 1: Physical parameters of the quadrotor mathematical model (5).

4 Control Design for Trajectory Tracking

In nonlinear control theory, backstepping is a technique developed around 1990 by Petar
V. Kokotovic, Miroslav Krstiv, and Ioannis Kanellakopoulos [15] to design stabilizing
controls for a special class of nonlinear dynamical systems. These systems are built from
subsystems that originate from an irreducible subsystem that can be stabilized using
some other method.

𝑥𝑑
𝑦𝑑
𝑧𝑑
𝜓𝑑

Translation
control 

Rotation
control 

Quadrotor
helicopter

𝑄𝑖

𝜙
ሶ𝜙
𝜃
ሶ𝜃
𝜓
ሶ𝜓
𝑥
ሶ𝑥
𝑦
ሶ𝑦
𝑧
ሶ𝑧

𝜙𝑑
𝜃𝑑

𝑈1
𝑢𝑥
𝑢𝑦

𝑈2
𝑈3
𝑈4

𝜓𝑑

Figure 3: Block diagram of quadrotor helicopter Q and its controller.

In the backstepping approach, the control law is designed so that the system can
follow the desired trajectory. For this, it is considered that the quadrotor mathematical
model (5) can be divided into two subsystems, one is the orientation and the other is the
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position [5], as previously discussed in Section 3. Figure 3 shows the block diagram of
quadcopter and its controller for tracking a desired path.

Due to its complete independence with respect to the other subsystem (Eqs.(6) and
(8)), the control input for the angular rotations of the subsystem is considered first and
then the position control input is derived. A desired trajectory x1d is defined, in which
the following error is given by

z1 := x1d − x1, (10)

from expression (10), we have

ż1 = ẋ1d − ẋ1. (11)

From the quadrotor mathematical model (5), ẋ1 = x2 is known. Substituting into
(11), we have

ż1 = ẋ1d − x2. (12)

Now, consider the following Lyapunov candidate function in terms of z1:

V (z1) =
1

2
z21 . (13)

Differentiating the candidate Lyapunov function with respect to time gives

V̇ (z1) = z1ż1. (14)

Substituting Equation (12) in (14) gives

V̇ (z1) = z1(ẋ1d − x2). (15)

x2 is considered as a virtual control to stabilize z1, thus we have

x2 = ẋ1d + α1z1, (16)

we make α1 > 0 so that the derivative of the Lyapunov function is negative definite.
Solving for (16) in (15), we have

V̇ (z1) = z1(ẋ1d − x2)

= z1(ẋ1d − ẋ1d − α1z1)

= −α1z
2
1 .

(17)

After the variable change

z2 = x2 − ẋ1d − α1z1, (18)

differentiating Equation (18), we have

ż2 = ẋ2 − ẍ1d − α1ż1. (19)

The following Lyapunov candidate function is proposed as a function of (z1, z2):

V (z1, z2) =
1

2
(z21 + z22). (20)
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Differentiating the candidate Lyapunov function and solving, we have

V̇ (z1, z2) = z2ż2 + z1ż1

= z2(ẋ2 − ẍ1d − α1ż1) + z1(ẋ1d − x2)

= z2(ẋ2 − ẍ1d − α1(ẋ1d − x2)) + z1(ẋ1d − x2).

(21)

Solve x2 from Equation (18): x2 = z2 + ẋ1d + α1z1, thus

V̇ (z1, z2) = z2(ẋ2 − ẍ1d − α1(ẋ1d − x2)) + z1(ẋ1d − x2)

= z2(ẋ2 − ẍ1d − α1(ẋ1d − (z2 + ẋ1d

+ α1z1)) + z1(ẋ1d − (z2 + ẋ1d + α1z1))

= z2ẋ2 − z2(ẍ1d − α1(z2 + α1z1))− z1z2 − α1z
2
1

= z2(a1x4x6 + a2x4Ω+ b1U2)− z2(ẍ1d − α1(z2 + α1z1))

− z1z2 − α1z
2
1 .

(22)

Considering ẍ1d,2d,3d = 0 and given V̇ (z1, z2) < 0, the virtual controller U2 is designed
as

U2 =
1

b1
(z1 − a1x4x6 − a2x4Ω− α1(z2 + α1z1)− α2z2). (23)

The remaining control inputs U3, U4, and U1 can be solved by a similar approach,
obtaining the corresponding virtual controllers for each control input:

U3 =
1

b2
(z3 − a3x2x6 − a4x2Ω− α3(z4 + α3z3)− α4z4), (24)

U4 =
1

b3
(z5 − a5x2x4 − α5(z2 + α1z1)− α6z6). (25)

The control input for the positioning subsystem is given by

U1 =
m

cosx1cosx3
(z7 + g − α7(z8 + α7z7)− α8z8 + ẍ7), (26)

ux =
m

U1
(z9 − α9(z10 + α9z9)− α10z10 + ẍ9), (27)

uy =
m

U1
(z11 − α11(z12 + α11z11)− α12z12 + ẍ11), (28)

where
z1 = x1d − x1,
z2 = x2 − ẋ1d − α1z1,
z3 = x3d − x3,
z4 = x4 − ẋ3d − α3z3,
z5 = x5d − x5,
z6 = x6 − ẋ5d − α5z5,
z7 = x7d − x7,
z8 = x8 − ẋ7d − α7z7,
z9 = x9d − x9,
z10 = x10 − ẋ9d − α9z9,
z11 = x11d − x11,
z12 = x12 − ẋ11d − α11z11.

(29)
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Communication in a multi-agent topology can be represented directly or indirectly
by a graph, where each node is an agent and the edges are the communication media
that exist between them [11]. A group of 5 quadcopters (Eq.(5)) is considered, one of
which is the master quadrotor (M) and the rest are slave quadrotors (S1, S2, S3, S4). The
network of quadrotors can be represented by the following graph shown in Figure 4.

M

S1

S2

S3

S4

Figure 4: Connection graph of 5 quadrotors.

The corresponding adjacency matrix associated with this graph is

A(G) =


0 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

 . (30)

The network synchronization was achieved through the variables zi of the control law,
given by Eq. (29), so each slave quadrotor Si, i = 1, 2, 3, 4, follows the master quadrotor
M, and their states will have to follow the states of the master quadrotor. The auxiliary
variables for each quadrotor are given as follows:

z1Si = x1M − x1Si,
z2Si = x2Si − ẋ1M − α1Siz1Si,
z3Si = x3M − x3Si,
z4Si = x4Si − ẋ3M − α3Siz3Si,
z5Si = x5M − x5Si,
z6Si = x6Si − ẋ5M − α5Siz5Si,
z7Si = x7M − x7Si,
z8Si = x8Si − ẋ7M − α7Siz7Si,
z9Si = x9M − x9Si,
z10Si = x10Si − ẋ9M − α9Siz9Si,
z11Si = x11M − x11Si,
z12Si = x12Si − ẋ11M − α11Siz11Si.

(31)

When performing the calculations from Equation (5) to Equation (9), with the help
of the auxiliary variables (31), the following control inputs for network synchronization
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of the quadrotors in star connection are obtained:

U1l =
m

cosϕcosθ
(ẋ8 + g) +

m

cosϕcosθ

N=4∑
j=1

aij [(1 + α7α8)(x7j − x7i)

+ (α7 + α8)(x8j − x8i)],

(32)

uxl =
m

U1l
ẋ10 +

m

U1l

N=4∑
j=1

aij [(1 + α9α10)(x9j − x9i)

+ (α9 + α10)(x10j − x10i)],

(33)

uyl =
m

U1l
ẋ12 +

m

U1l

N=4∑
j=1

aij [(1 + α11α12)(x11j − x11i)

+ (α11 + α12)(x12j − x12i)],

(34)

where (l = 1, 2, 3, 4) is the i-th quadrotor, (ẋ8, ẋ10, ẋ12) are the states of the master
quadrotor M, aij are the entries of the adjacency matrix (30) associated with the graph
used for communication between the quadrotors.

In order to achieve quadrotor formation, the use of a vector ∆ with components
corresponding to each axis is proposed and then used in the controller of each slave
quadrotor (Si, i = 1, 2, 3, 4). This vector separates each slave from the master M by a
distance corresponding to each axis in the plane (x, y, z). The auxiliary variables for the
formation of each quadrotor respectively are given as follows:

z1Si = x1M − x1Si,
z2Si = x2Si − ẋ1M − α1Siz1Si,
z3Si = x3M − x3Si,
z4Si = x4Si − ẋ3M − α3Siz3Si,
z5Si = x5M − x5Si,
z6Si = x6Si − ẋ5M − α5Siz5Si,
z7Si = x7M − x7Si +∆zSi,
z8Si = x8Si − ẋ7M − α7Siz7Si,
z9Si = x9M − x9Si +∆xSi,
z10Si = x10Si − ẋ9M − α9Siz9Si,
z11Si = x11M − x11Si +∆ySi,
z12Si = x12Si − ẋ11M − α11Siz11Si.

(35)

5 Numerical Results

When considering a star-shaped topology connection between five quadrotors, a numer-
ical simulation is carried out, in which the group of quadrotors will follow a desired
circular trajectory with a radius of 3 meters at a height of 2 meters. These trajecto-
ries start after the quadrotors takes off. The initial conditions for the quadrotors are:
Master (x1(0), y1(0), z1(0)) = (0, 0, 0), slave 1 (x2(0), y2(0), z2(0)) = (0.5, 0, 0), slave 2
(x3(0), y3(0), z3(0)) = (−0.5, 0, 0), slave 3 (x4(0), y4(0), z4(0)) = (1.5, 0, 0), and slave 4
(x5(0), y5(0), z5(0)) = (−1.5, 0, 0). The physical parameters of the five quadrotors are
taken from Table 1 and the alphas are definitely positive with a value of 50.
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Figure 5: Synchronization of five quadrotors to a desired circular trajectory.

In Figure 5, it can be seen that the network of five quadrotors is synchronized in a
desired circular trajectory. Next, to achieve the network formation of five quadrotors,
we proceed to give a net constant separation between the master quadrotor M and the
slave quadrotors Si by using the vector ∆ for the separation. The initial conditions for
quadrotors are the same as considered in the previous simulation. The quadrotors are
separated by a distance ∆ on the x-axis for a horizontal line formation, where the slave
quadrotors S1 and S2 are desired to be separated by a distance D1 = 0.5 m from the
master M, while slave quadrotors S3 and S4 are separated from the master quadrotor M
by a distance D2 = 1 m. This can be seen in Figure 6.

M S1S2 S3S4

D1D1

D2D2

Figure 6: Separation ∆ for the formation of five quadrotors.
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Figure 7: Flight of the formation of five quadrotors describing a circular trajectory.

Figure 7 shows the five quadrotors are already in formation describing a circular
trajectory. Next, we will apply the formation of quadrotors to the search for an object
on a surface. For this, a rectangular search surface is considered, but it can be deduced
that using a circular trajectory to explore a rectangular surface would have a great
disadvantage since there are unexplored areas since the object, when placed randomly
on the surface, could not be detected. For this reason, it is decided to use the Lissajous
trajectories, of which the denser trajectory is used.

6 Application to Object Detection

The target of interest to be detected within the search area is a circle object, which
varies in size with respect to the total percentage of the search area. The tarjet to be
searched and detected is randomly placed within the exploration area. The target can be
considered detected by using the coordinates of the quadrotors and the coordinates where
the center of the target is located, considering the radius of the target. The detection of
the target is determined by using the coordinates of the trajectories of each quadrotor
and the coordinates of the center of the target calculating their distances by means of
the expression

d(A,B) = |
−−→
AB|. (36)

Substituting the coordinates of the center of the target and the trajectory of the
quadrotor, the elements of vector A and B are obtained. The distance is calculated as
follows:

d(A,B) = |
−−→
AB| =

√
(X2 −X1)2 + (Y2 − Y1)2, (37)

where X2 and Y2 are the quadrotor coordinates, and X1 and Y1 are the position of the
center of the target. The following Figure 8 shows how the detection is done.
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Radius

Target

Quadrotor
trajectory

d(A,B)

Area of the

object

B (𝑋2,𝑌2)

A (𝑋1,𝑌1)

Figure 8: Target detection process.

For target detection, if any point of the trajectories of the quadrotors is within
the radius of the target, it indicates that this point is within the area of the target,
concluding that it was detected and, given that more than one quadrotor trajectory
passes through this area, we can determine which quadrotor passed first and met this
condition before the others.

Lissajous curves

The Lissajous curve, also known as the Lissajous figure or Bowditch curve, is the
graph of the parametric equation system corresponding to the superposition of two simple
harmonic motions in perpendicular directions [8], [16], [22] defined by

x = Asin(wxt+ α), y = Bsin(wyt+ β), δ = α− β. (38)

The Lissajous curves for different parameter values are shown in Figure 9.
Now, we will proceed to carry out some numerical simulations in MatLab, where

quadrotors formation explores a rectangular area. This search surface, or the area of
exploration, has a dimension of 8x6 m2, the Lissajous curve used has the parameter
values 5 : 6 and π

2 with the values of A = 3, B = 3, wx = 6, and wy = 5. Quadrotors will
be considered to start outside of this area. The search for the randomly placed target
will begin, and then the area of this target will be varied as shown in Table 2.

The first simulation is carried out with a target size of 10% with respect to the search
area and in the network, the quadrotors are separated by a distance ∆ on the x-axis for
a horizontal line formation, where the slave quadrotors S1 and S2 are desired to be sepa-
rated by a distance D1 = 0.5 m from the master M, while the slave quadrotors S3 and S4

are separated from the master quadrotor M by a distance D2 = 1 m, as shown in Figure
6. The initial conditions for the quadrotors are: Master (x1(0), y1(0), z1(0)) = (4.5, 0, 0),
slave 1 (x2(0), y2(0), z2(0)) = (4.5, 0.6, 0), slave 2 (x3(0), y3(0), z3(0)) = (4.5, 1.2, 0), slave
3 (x4(0), y4(0), z4(0)) = (4.5,−0.6, 0), and slave 4 (x5(0), y5(0), z5(0)) = (4.5,−1.2, 0).

As seen in Figure 10, several trajectories of the quadrotor formation pass over the
target, so it can be deduced that it was easily detected within the search surface. It can
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Figure 9: Lissajous curves described by (38) for different parameter values.

Surface percentage Object area Object radius
10 % 4.8 m2 1.23 m
7.5 % 3.6 m2 1.07 m
5 % 2.4 m2 0.87 m
1 % 0.48 m2 0.39 m
0.5 % 0.24 m2 0.27 m
0.3 % 0.144 m2 0.21 m
0.1 % 0.048 m2 0.12 m
0.01 % 0.0048 m2 0.039 m

Table 2: Object area table.

be considered that the searched target was detected due to its big size, so it is decided
to reduce it, according to Table 2. Next, a new numerical simulation is performed using
a target with a size of 1% with respect to the rectangular search surface. The initial
conditions for quadrotors are the same as considered in the previous simulation.

Figure 11 shows that the searched target was detected by at least two quadrotors.
Considering that its size makes it easier to be found, its dimensions can be reduced
further with respect to the rectangular search surface.

In addition, another simulation is performed now using a target sized 0.1% with
respect to the rectangular search surface. The initial conditions for quadrotors are the
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Figure 10: Search for a target sized 10% of the exploration area.

Figure 11: Search for a target sized 1% of the exploration area.

same as considered in the previous simlation.

Figure 12 shows that the target was detected by two of the slave quadrotors. In
addition, it can be considered that it already has a suitable size with respect to the
rectangular search surface, therefore we will use this target size. It was decided to use
this target size to run 10 tests, to determine if some of the quadrotors can detect it. The
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Figure 12: Search for a target sized 0.1% of the exploration area.

obtained numerical results are shown in Table 3.

Run Detection x-axis y-axis Target
Test time time position position detected by
1 0.622 s 966.648 s 2.439 m 2.334 m S1

2 0.624 s 389.48 s -2.891 m 2.334 m M
3 0.620 s 309.201 s 1.026 m -2.315 m M
4 0.620 s 309.201 s -1.717 m 0.269 m S3

5 0.631 s 958.754 s 3.546 m 2.674 m S1

6 0.626 s 147.690 s -2.654 m -2.707 m S2

7 0.629 s 250.066 s 2.328 m -2.060 m M
8 0.628 s 128.67 s -0.606 m 2.391 m S3

9 0.630 s 1047.094 s 2.265 m 2.643 m S2

10 0.736 s 72.773 s 1.207 m -2.670 m S3

Table 3: 10 tests to search for a target sized 0.1 % of the rectangular search area.

As shown in Table 3, the target was detected in each of the ten tests that were carried
out. However, considering the size of the target in Figure 12, it can be seen that there
are zones through which no trajectory passes and the target could be located in any of
them. For this reason, it was decided to combine some of the Lissajous curves of the
Figure 9 to get a suitable trajectory for the formation of quadrotors that do pass through
these zones.

6.1 Lissajous curves as desired trajectories

It is desired to explore most of the search area, for which some of the Lissajous curves
will be used. First, the curve with the parameters 2 : 3 and π

2 will be used. Taking
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into account that, due to the shape of the curve, there will be unexplored zones, it is
decided to combine it with another Lissajous curve with the parameters 3 : 4 and π

2 .
These curves can be seen in Figure 9.

Considering the combined trajectory 1 with two mentioned Lissajous curves, one after
another, we have

Trajectory1 =

{
t0 to t1; x = 3sin(2πt+ π), y = 3sin(3πt+ 0.5π),
t1 to t2; x = 3sin(4πt+ π), y = 3sin(3πt+ 0.5π).

(39)

To explore the rectangular search area with the combined trajectory1, the final tra-
jectory is taken into consideration. With the combination of both trajectories, a target
with the size 0.1 % of the total search area will be detected. This is shown in Figure 13.

Figure 13: Target search with the combined trajectory 1 for the target sized 0.1% of the
rectangular search area.

Ten tests are performed with this combined trajectory 1 for target detection, the
numerical results are shown in Table 4.

According to the obtained results (Table 4), the target was also found with this
combined trajectory 1. However, the unexplored zones did not decrease. Therefore, it
was decided to use another combination of two other Lissajous curves.

We explore the search area again, making use of a different combination of the Lis-
sajous curves. The curve with the parameters 3 : 4 and π

2 will be first used, and then
another curve with parameters 6 : 5 and π

2 . These curves can be seen in Figure 9.
The resulting combined trajectory 2 is described as follows.

Trajectory2 =

{
t0 to t1; x = 3sin(4πt+ π), y = 3sin(3πt+ 0.5π),
t1 to t2; x = 3sin(6πt+ π), y = 3sin(5πt+ 0.5π).

(40)

The resulting search trajectory2 is shown in Figure 14.
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Run Detection x-axis y-axis Target
Test time time position position detected by
1 1.044 s 865.115 s 2.439 m 2.334 m S2

2 0.519 s 792.091 s -2.891 m 2.334 m M
3 0.157 s 1075.385 s 1.026 m -2.315 m S2

4 0.145 s 60.001 s -1.717 m 0.269 m S1

5 0.146 s 286.197 s 3.546 m 2.674 m S1

6 0.148 s 834.347 s -2.654 m -2.707 m S2

7 0.155 s 1142.108 s 2.328 m -2.060 m S3

8 0.136 s 888.934 s -0.606 m 2.391 m S3

9 0.141 s 2215.229 s 2.265 m 2.643 m S3

10 0.128 s 454.929 s 1.207 m -2.670 m S1

Table 4: Test results for combined trajectory 1 for the search of the target sized 0.1% of the
rectangular search area.

Figure 14: Target search with the combined trajectory 2 for a target sized 0.1% of the rectan-
gular search area.

We perform ten tests with this combination for target detection and the results are
shown in Table 5.

With the combined trajectory 2 of these two Lissajous curves, it is observed that
some of the trajectories pass through the zones that they did not pass before (Figure
12); and the target was successfully detected in all ten tests, as shown in Table 5.

In the last table, only 10 of the 100 tests that were carried out were recorded, of
which only in one case, the randomly placed target could not be detected.

The target search time is measured from the moment all five quadrotors start to fly
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Run Detection x-axis y-axis Target
Test time time position position detected by
1 0.472 s 865.11 s 2.439 m 2.334 m S2

2 0.293 s 792.091 s -2.891 m 2.334 m M
3 0.154 s 1075.385 s 1.026 m -2.315 m S2

4 0.140 s 60 s -1.717 m 0.269 m S1

5 0.155 s 286.197 s 3.546 m 2.674 m S1

6 0.139 s 834.347 s -2.654 m -2.707 m S2

7 0.138 s 1142.108 s 2.328 m -2.060 m S3

8 0.148 s 888.934 s -0.606 m 2.391 m S3

9 0.152 s 2215.229 s 2.265 m 2.643 m S3

10 0.173 s 189.443 s 1.207 m -2.670 m M

Table 5: Test results for combined trajectory 2 for the search of the target sized 0.1% of the
rectangular area.

and till the moment when any of them finds the object within the search area, as shown
in Figure 15.

Figure 15: Target search and detection time for the formation of quadrotors.

Figure 15 shows that the target was detected by a slave quadrotor within the rectan-
gular search area. The position of the center of the target was (x, y) = (−3.628 m, 0.659
m) and it was found in 12,877.043 seconds.
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Figure 16: Three targets detected by the formation of quadrotors.

6.2 Three targets detection

In Figure 16, the detection of three targets placed randomly within the rectangular
search surface is simulated and it is observed that at least one of the trajectories of the
quadrotors passes through any of them, so it is assumed that they were detected.

In order to determine the percentage of the exploration area that is covered by the
trajectories of the quadrotors formation, it is divided into 3136 squares of equal size
and those that are visited by some quadrotor are noted, see Figure 17. The size of each
square was determined to be smaller than the target to be detected. Using this method
for both combinations of trajectories, a percentage of 84.27% of the covered area was
obtained for the first case, and 92.12% for the second, demonstrating that the latter is
more suitable for finding targets. With these results, it is concluded that the trajectories
could easily find almost any targets in the rectangular search area, including small ones.

6.3 Discussion

The used exploration area is a rectangle which is 6 meters wide and 8 meters long. It
is explored with the formation of five quadrotors. At first, they formed a vertical line
and followed a desired circular trajectory, where it was observed that there were large
unexplored zones. If none of the trajectories of the quadrotors passes over that zone,
it is considered as not explored. Approximately 48% of the total search area remained
unexplored, predominantly the central zone.
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Figure 17: Quadcopters formation training trajectories coverage: a) by combined trajectory 1
and b) by combined trajectory 2.

Some tests were also carried out with other trajectories by using different parameters
for the Lissajous curves, and it was observed that the unexplored zones were reduced.
Different trajectories were made, taking the densest one, thus decreasing the unexplored
zones between the quadrotors, with 4 % of the total unexplored surface.

Various formations were applied in the search and detection of the target. The first
formation was a vertical line in which the slave quadrotors were observed to leave the
boundaries of the search surface. The “V” formation was also used and it was observed
that there were unexplored zones, mainly in the upper corners of the search surface.
Therefore it was decided to use the formation in a horizontal line to explore this surface.

Next, the search surface was explored by using now two combinations of the Lissajous
curves with different parameters. Ten tests for each combination were carried out.
Because the target was found every time, another 90 tests were made (100 in total for
each one). In the first case, comparing with the trajectory in Figure 13, an efficiency
of 96% was reached. Exploring the search surface with the second combination, an
efficiency of 99% was obtained.

7 Conclusions

In this paper, we have presented the formation problem of multiple UAVs for applications
to search and detection by tracking time-variable trajectories. The main contributions
of this work are: the mentioned formation was obtained by using complex systems
theory and backstepping nonlinear control. We made a comprehensive study of UAVs
formation coverage for search and detection of a random target within the search zone
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by tracking time-variable trajectories. The reported numerical results show that the
methodology employed meets the purpose of detecting the target within the search zone
and reducing the unexplored zones by the combination of time-varying trajectories.Thus,
in future work, we plan the physical implementation of the proposed formation scheme,
we will use switching trajectories and switching topology connection, as well as chaotic
trajectories.
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1 Introduction

Seventy percent of Indonesia is covered by sea, so Indonesia has significant marine re-
source. For exploring marine resource, a Remotely Operated Vehicle (ROV) with its
control is required. In a ROV, there are six degrees of freedom: surge, sway, heave,
roll, pitch, and yaw. In linear motions, there are surge, sway and heave. Surge, sway,
and heave are linear motions on the x-axis, y-axis, and z-axis, respectively. In angular
rotations, there are roll, pitch and yaw. Roll, pitch, and yaw are angular rotations on
the x-axis, y-axis, and z-axis, respectively [1].

In practice, there are disturbances and noise in the linear motion and angular rotation
in their measurements. Therefore, in this research, the estimation of pitch angle and
heave position of ROV will be carried out by Linear Quadratic Gaussian (LQG). Linear
Quadratic Gaussian (LQG) control refers to an optimal control problem where the plant
model is linear with a white noise disturbance input and white measurement noise. LQG
is used for optimal control when there are a disturbance input and measurement noise
in the plant model. Generally, optimal control is used to find the control minimizing the
performance index and result in the trajectory of state solution [2].

From the previous research, an AUV has been developed by the method of Lin-
ear Quadratic Regulator (LQR) minimizing the control with no reference [3], Linear
Quadratic Tracking (LQT) minimizing the control included to the tracking path [4], PID
control for determining the response [5]. The estimation method is also established by
the Kalman Filter and H-infinity method [6]. Besides the AUV, the LQR and LQT are
also applied in the inverted pendulum [7], missile and projectile [8], mobile robot [9] and
human arm models [10].

The dynamical model of LQG is almost similar to the LQR, however in the LQG
model, there are distubance input and measurement noise. To determine the estimation
of the state solution, we need a Riccati solution and feedback gain from the LQR and
Kalman Gain. LQG is also used for optimizing the given performance index. To run the
simulation, the calculation of LQR should be made before. Then the Riccati solution
and feeback gain of LQR are brought to the LQT as variables. From the simulation, the
estimation of state solution of pitch and heave and optimal control with various noise
can be compared by LQG with small mean square error (MSE).

2 Mathematical Model of ROV

There are some motions and rotations in a ROV which will be constructed as a mathe-
matical model. In linear motions such as surge, sway, and heave, there are motions on
the x-axis, y-axis, and z-axis, respectively. In angular rotations such as roll, pitch, and
yaw are rotations on the x-axis, y-axis, and z-axis, respectively. The mathematical model
of ROV is shown in Figure 1. According to Newton’s Law, the mathematical model of
ROV [5] is

X = m
[
i− vr + wq − xG

(
q2 + r2

)
+ yG (pq − ṙ) + zG (pr + q̇)

]
, (1)

Y = m
[
v̇ + ur − wp+ xG (pq + ṙ)− yG

(
p2 + r2

)
+ zG (qr − ṗ)

]
, (2)

Z = m
[
ẇ − uq + vp+ xG(vp− q̇) + yG(qr + ṗ)− zG(p

2 + q2)
]
, (3)

K = Ixṗ+ (Ix − Iy)qr + Ixy(pr − q̇)− Iyz(q
2 − r2)− Ixz(pq + ṙ)

+m (yG(ẇ − uq + vp)− zG(v̇ + ur − wp)) ,
(4)
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M = Iy q̇ + (Ix − Iz)pr − Ixy(qr − ṗ)− Iyz(p1− ṙ)− Ixz(p
2 − r2)

−m (xG(ẇ − uq + vp)− zG(u̇− vr + w1)) ,
(5)

N = Iz ṙ + (Iy − Ix)pq − Ixy(p
2 − q2)− Iyz(pr − q̇)− Ixz(qr − ṗ)

−m (xG(v̇ + ur − wp)− yG(u̇− vr + wq)) .
(6)

The model parameters are: m is the ROV mass, Ix, Iy, Iz are the inertia moments on
the x-axis, y-axis, and z-axis, respectively, xG, yG, zG are the positions of gravity center
on the x-axis, y-axis, and z-axis, respectively. The other notations are:

X : surge force x : surge position u : surge velocity
Y : sway force y : sway position v : sway velocity
Z : heave force z : heave position w : heave velocity
K : roll moment ϕ : roll angle p : roll rate
M : pitch moment θ : pitch angle q : pitch rate
N : yaw moment ψ : yaw angle r : yaw rate

The problem is only limited for linear motion and angular rotation. By removing
surge, sway, roll and yaw, the variables are v = r = p = φ = ψ = y = 0. The state
solutions are the pitch angle θ, pitch velocity q, heave position z, and heave velocity w.

The simplicity of the model of ROV can be explained as follows.
As the pitch moment equation, take equation (5): M = Iy q̇ + (Ix − Iz)pr− Ixy(qr+

ṗ)− Iyz(pq − ṙ)− Ixz(p
2 − r2)−m (xG(ẇ − uq + vp)− zG(u̇− vr + wq)).

By removing surge, sway, roll and yaw, the variables are v = r = p = φ = ψ = y = 0.
The pitch moment M can be elaborated as M = Mq q̇ +Mqq +Mẇẇ +Mww, then the
pitch moment equation is

Mq̇ q̇ +Mqq +Mẇẇ +Mww = Iy q̇ −mxGẇ +mxGuq +mzGwq, (7)

where Mq̇ is the added inertia mass moment related to the pitch rate, Mẇ is the added
inertia mass moment related to the heave velocity, Mq is the pitch moment coefficient
induced by the pitch rate, Mw is the pitch moment coefficient induced by the heave
velocity.

As the heave force equation, take equation (3):
Z = m

[
ẇ − uq + vp+ xG(vp− q̇) + yG(qr + ṗ)− zG(p

2 + q2)
]
. By removing surge,

sway, roll and yaw, the variables are v = r = p = φ = ψ = y = 0. The heave force
Z can be elaborated as Z = Zq̇q̇+Zqq+Zẇẇ+Zww, then the heave force equation is

Zq̇ q̇ + Zqq + Zẇẇ + Zww = mẇ −muq −mxGq̇ −mzGq
2, (8)

where Zq̇ is the added mass related to the pitch rate, Zẇ is the added mass related to
the heave velocity, Zq is the heave force coefficient induced by pitch rate, Zw is heave
force coefficient induced by the heave velocity.

From equations (7) and (8), the nonlinear system of ROV is

θ̇ = q, (9)

(Mq̇−Iy)q̇+(Mẇ+mxG)ẇ = (zGW−zB)θ+mxGuq+mzGwq−Mqq−Mww+Mδδ, (10)

ż = w cos θ − u sin θ, (11)
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(Zq̇ +mxG)q̇ + (Zẇ −m)ẇ = −muq −mzGq
2 − Zqq − Zww − Zδδ. (12)

By the linearization sin θ ≈, cos θ ≈ 1 and the Jacobian around the equilibrium point
(θ∗, q∗, z∗, w∗) = (0, 0, 0, 0), the linear form is

1 0 0 0
0 (Mq̇ 0 (Mẇ +mxG)
0 0 1 0
0 (Zq̇ +mxG) 0 (Zẇ −m)



θ̇
q̇
ż
ẇ

 =


0 (zGW − zB) −u 0
1 −(Mq −mxGu) 0 −Mw

−u 0 0 1
0 −(Zq +mu) 0 −Zw



θ
q
z
w

+


0

−Zδ

Mδ

0

 δ.
(13)

3 Methods

3.1 Linear Quadratic Regulator (LQR)

The Linear Quadratic Regulator is used to find the control minimizing the performance
index and results in the trajectory of state solution. Some steps of the LQR are computing
the solution of the Riccati Equation P (t) in equation (14) and the feedback gain K(t)
in equation (15). From the result of the feedback gain, we can compute the solution of
state space and optimal control [11].

Ṗ = −P (t)A−ATP (t)−Q+ P (t)BuR
−1BT

u P (t), P (tf ) = H, (14)

K(t) = R−1BT
u P (t). (15)

3.2 Linear Quadratic Gaussian (LQG)

3.2.1 State space model

The state space model of LQG is similar to the LQR model, however there is additional
noise so that the state space model of LQG [12] is

ẋ(t) = Ax(t) +Buu(t) +Bww(t), (16)

m(t) = Cmx(t) + v(t), (17)

E[w(t)wT (t+ τ)] = Swδ(τ), (18)

E[v(t)vT (t+ τ)] = Svδ(τ), (19)

E[v(t)wT (t+ τ)] = 0. (20)

Here, equation (16) is the plant model, equation (17) is the measurement and equations
(18) to (20) are the noise model of plant and measurement. The performance index which
will be optimized is

J =
1

2
E

[
xT (tf )Hx(tf ) +

∫ tf

0

(
xT (t)Qx(t) + uT (t)Ru(t)

)]
, (21)

where H and Q are positive semidefinite and R is positive definite.
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3.2.2 The development of the Riccati equation

The development of the Riccati equation can be computed in equation (22) with the
initial condition Fe(0) = 0. After the solutions are obtained, the solution of the Riccati
equation can be applied in computing the Kalman Gain in equation (23).

Ḟe(t) = AFe(t) + Fe(t)A
T +BwSwB

T
w − Fe(t)C

T
mS

−1
v CmFe(t), Fe(0) = 0, (22)

G(t) = Fe(t)C
T
mS

−1
v . (23)

3.2.3 Kalman filter equation

To estimate the state solution, we use the Kalman Filter equation in equations (24) and
(25) using the feedback gain from the LQR and Kalman Gain in equation (26).

˙̂x(t) = Ax̂(t) +Buu(t) +G(t)(m(t)− Cmx̂(t)), (24)

˙̂x(t) = [A−G(t)Cm −BuK(t)]x̂(t) +G(t)m(t), (25)

u(t) = −K(t)x̂(t). (26)

4 Results and Discussion

4.1 Model of ROV

The model of ROV used is as in equations (27) and (28), where θ is the pitch angle, w is
the heave velocity, q is the pitch rate, and z is the heave position. The simulations will be
run with various rates of Sw and Sv. The solution of state space and its estimation, i.e.,
the pitch angle and heave position, and optimal control will be obtained as comparison.

θ̇
ẇ
q̇
ż

 =


0 0 1 0

0.0175 −1.273 −3.559 0
−0.052 1.273 −2.661 0
−5 1 0 0



θ
w
q
z

+


0

0.085
21.79
0

 δ, (27)

[
y1
y2

]
=

[
1 0 0 0
0 0 0 1

]
θ
w
q
z

 . (28)

4.2 Simulation 1

In this simulation, the values of Sw = 0.01 and Sv = 0.01 will be used and the result of
feedback gain can be seen in Figure 1, the Kalman gain can be seen in Figure 2. The
state solution and its estimation, i.e., the pitch angle and heave position, can ben seen
in Figure 3 and optimal control can be seen in Figure 4.

Figure 1 describes the solution of the feedback gain from the LQR with given final
conditions being zero. The feedback gain is obtained from the Riccati solution which is
computed backwardly. Figure 2 describes the solution of the Kalman gain with given
initial condition being zero.

The Kalman gain is obtained from development of the Riccati solution which is com-
puted forwardly. Figure 3 shows the state solution and its estimation of the pitch angle
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Figure 1: The Solution of the Feedback Gain. Figure 2: The Solution of the Kalman Gain.

Figure 3: The State Solution and Estimation with Large Noise.

denoted by x1 and the heave position denoted by x4. The RMSE of the estimation is
0.9268 for the pitch angle estimation and 1.0646 for the heave position estimation. Figure
4 represents the optimal control and its solution with RMSE being 16.0780.

4.3 Simulation 2

In this simulation, the values of Sw = 0.001 and Sv = 0.001 will be used and the result of
the feedback gain can be seen in Figure 5, the Kalman gain can be seen in Figure 6. The
state solution and its estimation, i.e., the pitch angle and heave position, can be seen in
Figure 7 and optimal control can be seen in Figure 8.

Figure 5 describes the solution of the feedback gain from the LQR with given final
conditions being zero. The feedback gain is obtained from the Riccati solution which is



344 A. SURYOWINOTO, T. HERLAMBANG, Y. A. PRABOWO, et al.

Figure 4: The Optimal Control and Estimation with Large Noise.

Figure 5: The Solution of the Feedback Gain. Figure 6: The Solution of the Kalman Gain.

computed backwardly. Figure 6 describes the solution of the Kalman gain with given
initial condition being zero. The Kalman gain is obtained from development of the Riccati
solution which is computed forwardly. Figure 7 shows state solution and its estimation
of the pitch angle denoted by x1 and the heave position denoted by x4. The RMSE of
the estimation is 0.2473 for the pitch angle estimation and 0.2652 for the heave position
estimation. Figure 8 represents the optimal control and its solution with RMSE being
4.6209.

4.4 Simulation 3

In this simulation, the values of Sw = 0.0001 and Sv = 0.0001 will be used and the result
of the feedback gain can be seen in Figure 9, the Kalman gain can be seen in Figure 10.
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Figure 7: The State Solution and Estimation with Moderate Noise.

Figure 8: The Optimal Control and Estimation with Moderate Noise.

The state solution and its estimation, i.e., the pitch angle and heave position, can be
seen in Figure 11 and optimal control can be seen in Figure 12.

Figure 9 describes the solution of the feedback gain from the LQR with given final
conditions being zero. The feedback gain is obtained from the Riccati solution which is
computed backwardly. Figure 10 describes the solution of the Kalman gain with given
initial condition being zero. The Kalman gain is obtained from development of the
Riccati solution which is computed forwardly. Figure 11 shows the state solution and
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Figure 9: The Solution of the Feedback Gain. Figure 10: The Solution of the Kalman Gain.

Figure 11: The State Solution and Estimation with Small Noise.

its estimation of the pitch angle denoted by x1 and the heave position denoted by x4.
The RMSE of the estimation is 0.0762 for the pitch angle estimation and 0.0956 for the
heave position estimation. Figure 12 represents the optimal control and its solution with
RMSE being 1.3031.

5 Conclusion

The estimation of the pitch angle and heave position of a ROV is carried out by Linear
Quadratic Gaussian (LQG). From the simulation, the estimation of the state solution
and optimal control with various noise can be compared by LQG. From the results of
three simulations, the small values of Sw and Sv can give better estimation with a small
value of RMSE in both state solution and optimal control.
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Figure 12: The Optimal Control and Estimation with Small Noise.

The developments of this research are the application of LQG to different objects
besides the ROV. Moreover, the optimization of weight matrices in the performance
index can be done by available methods.
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