
Nonlinear Dynamics and Systems Theory, 25 (4) (2025) 349–360

Blow up of Nonlinear Hyperbolic Equation with

Variable Damping and Source Terms

S. Abdelhadi ∗ and I. Hamchi

Laboratory of PDE and Applications, Department of Mathematics, University of Batna 2,
Algeria.

Received: November 14, 2024; Revised: June 23, 2025

Abstract: In this work, we consider a nonlinear hyperbolic equation with variable
damping and source terms. Our aim is to prove that the solution with negative initial
energy blows up in finite time.

Keywords: hyperbolic equation; damping term; source term; variable exponents;
blow up.

Mathematics Subject Classification (2020): 35B40, 37D30, 37K58, 46E35.

1 Introduction

In this work, we consider the following problem utt − div (A∇u) + ut |ut|m(.)−2
= u |u|p(.)−2

in Ω× (0, T ) ,
u = 0 on ∂Ω× (0, T ) ,
u(0) = u0 and ut(0) = u1 in Ω,

(P )

where T > 0, Ω is a bounded domain of Rn (n ∈ N∗) with a smooth boundary ∂Ω.
A = A(x, t) is an n×n symmetric matrix with real coefficients. The exponents m(.) and
p(.) are given measurable functions on Ω.

When A = Identity, the bibliography of works concerning problems of existence and
nonexistence of global solution is truly long. In the case of constant damping and
source terms, Ball [3] in 1977, considered the wave equation with source term and
proved the blow up of solution when the energy of the initial data is negative. Haraux
and Zuazua [8] in 1988, proved that the damping term of polynomial or arbitrary growth
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assured the global estimates of the wave equation for arbitrary initial data. The inter-
action between the damping and the source term was considered by Levine [9] in 1974,
in the linear damping case m = 2. He showed that the solutions with negative initial
energy blow up in finite time. Georgiev and Todorova [6] in 1994, extended Levine’s
result to the nonlinear damping case m > 2. They showed that solutions with any initial
data are global if the damping term dominates the source term, then blow up in finite
time if the source term dominates the damping term and the initial energy is sufficiently
negative. Without imposing the condition that the initial energy is sufficiently negative,
Messaoudi [10] in 2001, proved that any negative initial energy solution blow up in finite
time. In the case of variable damping and source term, these problems have been
considered by many authors using the Lebesgue spaces with variable exponent [5]. For
instance, Antontsev [2] in 2011, considered the wave equation with p(x, t)-Laplacian and
variable source term. In his work, he proved existence and blow up results under some
assumptions on the initial energy data. In a recent study, Messaoudi and Talahmeh [11]
in 2017, considered the quasilinear wave equation with variable exponent nonlinearities
and proved that the solution with negative or positive initial energy blows up in finite
time. In the same year, Messaoudi et al. [12] considered the nonlinear wave equation
with variable source and damping terms and proved the blow up of solution with nega-
tive energy of initial data. In 2018, Ghegal et al. [7] considered the same system. They
used the stable set method to prove the global existence result. Then, by some integral
inequality, they showed the stability of this solution.

When A(x, t) = a(x, t), where a is a given function, Sun et al. [13] in 2016, showed a
result of blow up of solution when the energy of initial data is positive.

When A = A(x, t), Boukhatem and Benyatou [4], in 2012, considered the hyperbolic
equation with constant damping and source terms. They obtained a result of blow up of
solution when the initial energy is positive.

In this work, we consider the case of variable coefficients (A = A(x, t)), variable
damping and source terms and we show that the solution of (P ) with negative initial
energy blows up in finite time.

This paper consists of two sections in addition to Introduction. In Section 2, we give
the assumptions and preliminary results needed to obtain our result. In Section 3, we
prove the main result.

2 Assumptions and Preliminary Results

In this paper, we study the blow up behavior of the system (P ) under the following
assumptions:

• (H1) For the matrix A: Assume that

1. A is of class C1
(
Ω̄× [0,+∞[

)
.

2. There exists a constant a0 > 0 such that for all ξ ∈ Rn, we have

Aξξ ≥ a0 | ξ |2 and A′ξξ ≤ 0.

• (H2) For the exponents: The exponents m(.) and p(.) are measurable functions on
Ω such that
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1. The following log-Holder continuity condition is satisfied:

|q(x)− q(y)| ≤ − A

log |x− y|
for all x, y ∈ Ω, with |x− y| < δ,

where A > 0 and 0 < δ < 1.

2. We have

2 ≤ m1 ≤ m(x) ≤ m2, n = 1, 2.

2 ≤ m1 ≤ m(x) ≤ m2 ≤ 2n

n− 2
, n ≥ 3,

with m1 := ess infx∈Ω m(x) and m2 := ess supx∈Ω m(x).

3. We assume that

2 ≤ p1 ≤ p(x) ≤ p2, n = 1, 2.

2 < p1 ≤ p(x) ≤ p2 ≤ 2
n− 1

n− 2
, n ≥ 3,

with p1 := ess infx∈Ω p(x) and p2 := ess supx∈Ω p(x).

4. We assume that

m2 < p1 ≤ p2 ≤ 2n

n− 2
.

• (H3) For the initial energy data: we assume that

E(0) < 0,

where

E(0) :=
1

2
∥ u1 ∥22 +

1

2

∫
Ω

A(x, 0)∇u0∇u0dx−
∫
Ω

1

p(x)
| u0 |p(x) dx.

Now, we introduce some preliminary results needed to prove our main result. The
existence and uniqueness result for problem (P ) is given in the following Theorem.

Theorem 2.1 Let (u0, u1) ∈ H1
0 (Ω) × L2(Ω). Then the problem (P ) has a unique

local solution

u ∈ L∞((0, T );H1
0 (Ω)),

ut ∈ L∞((0, T );L2(Ω)) ∩ Lm(.)(Ω× (0, T )),

utt ∈ L2((0, T );H1
0 (Ω)) ,

for some T > 0.

We define the energy functional for the local solution u of problem (P ) by

E(t) =
1

2
∥ ut ∥22 +

1

2

∫
Ω

A∇u∇udx−
∫
Ω

1

p(x)
|u|p(x) dx, ∀t ∈ [0, T ].

The following Lemma shows that E is a non-increasing function of t.
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Lemma 2.1 We have

E′(t) =
1

2

∫
Ω

A′∇u∇udx−
∫
Ω

| ut |m(x) dx ≤ 0, ∀ t ∈ [0, T ].

Proof. We multiply the first equation in (P ) by ut, integrate it over Ω, we obtain∫
Ω

ututtdx−
∫
Ω

utdiv (A∇u) dx−
∫
Ω

utu |u|p(x)−2
dx = −

∫
Ω

|ut|m(x)
dx. (1)

First, we have∫
Ω

ututtdx =
1

2

d

dt
∥ut∥22 and

∫
Ω

utu |u|p(x)−2
dx =

d

dt

∫
Ω

1

p(x)
| u |p(x) dx. (2)

On the other hand, by the generalized Green formula, we find

−
∫
Ω

utdiv (A∇u) dx =

∫
Ω

A∇u∇utdx. (3)

But

d

dt

∫
Ω

A∇u∇udx =

∫
Ω

d(A∇u)

dt
∇udx+

∫
Ω

A∇u∇utdx

=

∫
Ω

A′∇u∇udx+

∫
Ω

A∇ut∇udx+

∫
Ω

A∇u∇utdx.

Since A is symmetric∫
Ω

A∇u∇utdx =
1

2

d

dt

∫
Ω

A∇u∇udx− 1

2

∫
Ω

A′∇u∇udx

(3) becomes

−
∫
Ω

utdiv (A∇u) dx =
1

2

d

dt

∫
Ω

A∇u∇udx− 1

2

∫
Ω

A′∇u∇udx. (4)

We replace (2) and (4) in (1) to obtain

d

dt

{
1

2
∥ut∥22 dx+

1

2

∫
Ω

A∇u∇udx−
∫
Ω

1

p(x)
| u |p(x) dx

}
=

1

2

∫
Ω

A′∇u∇udx−
∫
Ω

| ut |m(x) dx.

This implies the desired result. We set

H(t) = −E(t), ∀t ∈ [0, T ].

Lemma 2.2 We have

0 < H(0) ≤ H(t) ≤ 1

p1

∫
Ω

| u |p(x) dx, ∀t ∈ [0, T ]. (5)
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Proof.

• Since E(0) < 0, we find H(0) = −E(0) > 0.

• From the definition of H and the monotonicity of E, we have

H(0) ≤ H(t), ∀t ∈ [0, T ].

• We have

H(t) = −1

2
∥ut∥22 −

1

2

∫
Ω

A∇u∇udx+

∫
Ω

1

p(x)
| u |p(x) dx.

(H1− 2) implies that

H(t) ≤
∫
Ω

1

p(x)
| u |p(x) dx.

By (H2− 3), we arrive at

H(t) ≤ 1

p1

∫
Ω

|u|p(x) dx.

Let C be a generic positive constant and it may change from line to line.
The following two Lemmas are also needed in our work.

Lemma 2.3 There exists a constant C > 0 such that∫
Ω

| u |p(x) dx ≥ C ∥u∥p1

p1
(6)

and ∫
Ω

| u |m(x) dx ≤ C

((∫
Ω

| u |p(x) dx
)m2

p1

+

(∫
Ω

| u |p(x) dx
)m1

p1

)
. (7)

Proof. Proof of (6): We have∫
Ω

| u |p(x) dx =

∫
Ω+

| u |p(x) dx+

∫
Ω−

| u |p(x) dx, (8)

where

Ω+ = {x ∈ Ω/ | u(x, t) |≥ 1} and Ω− = {x ∈ Ω/ | u(x, t) |< 1} .

We have ∫
Ω+

| u |p(x) dx ≥
∫
Ω+

| u |p1 dx (9)

and ∫
Ω−

| u |p(x) dx ≥
∫
Ω−

| u |p2 dx.
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Since p1 ≤ p2, ∫
Ω−

| u |p(x) dx ≥ C

(∫
Ω−

| u |p1 dx

) p2
p1

. (10)

We replace (9) and (10) in (8) to obtain

∫
Ω

| u |p(x) dx ≥
∫
Ω+

| u |p1 dx+ C

(∫
Ω−

| u |p1 dx

) p2
p1

.

This implies that∫
Ω

| u |p(x) dx ≥
∫
Ω+

| u |p1 dx and C

(∫
Ω

| u |p(x) dx
) p1

p2

≥
∫
Ω−

| u |p1 dx.

By addition, we find∫
Ω

| u |p(x) dx+ C

(∫
Ω

| u |p(x) dx
) p1

p2

≥ ∥u∥p1

p1
.

So [
1 + C

(∫
Ω

| u |p(x) dx
) p1

p2
−1
]∫

Ω

| u |p(x) dx ≥ ∥u∥p1

p1
.

But, by (5) and (H2− 3), we find

(p1H(0))
p1
p2

−1 ≥
(∫

Ω

| u |p(x) dx
) p1

p2
−1

.

Then [
1 + C (p1H(0))

p1
p2

−1
] ∫

Ω

| u |p(x) dx ≥ ∥u∥p1

p1
.

Consequently, we obtain (6).
Proof of (7): We have∫

Ω

| u |m(x) dx =

∫
Ω+

| u |m(x) dx+

∫
Ω−

| u |m(x) dx

≤
∫
Ω+

| u |m2 dx+

∫
Ω−

| u |m1 dx.

Since m1 ≤ m2 < p1,∫
Ω

| u |m(x) dx ≤ C

(∫
Ω+

| u |p1 dx

)m2
p1

+

(∫
Ω−

| u |p1 dx

)m1
p1


≤ C

(
∥u∥m2

p1
+ ∥u∥m1

p1

)
.

By (6), we find the desired result.
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Lemma 2.4 For all

0 < α ≤ min

{
p1 − 2

2p1
,

p1 −m2

p1(m2 − 1)

}
and k > 1,

we have∫
Ω

Hα(m(x)−1)(t) | u |m(x) dx ≤ C

(∫
Ω

A∇u∇udx+

∫
Ω

| u |p(x) dx
)

(11)

and ∫
Ω

| u || ut |m(x)−1 dx ≤ C
k1−m1

m1

(∫
Ω

A∇u∇udx+

∫
Ω

| u |p(x) dx
)

+
(m2 − 1)k

m2
H−α(t)H ′(t). (12)

Proof. Proof of (11): We have∫
Ω

Hα(m(x)−1)(t) | u |m(x) dx =

∫
Ω

[
H(t)

H(0)

]α(m(x)−1)

[H(0)]
α(m(x)−1) | u |m(x) dx.

Since
H(t)

H(0)
≥ 1, by (H2− 2), we find

∫
Ω

Hα(m(x)−1)(t) | u |m(x) dx ≤
∫
Ω

[
H(t)

H(0)

]α(m2−1)

[H(0)]
α(m(x)−1) | u |m(x) dx

≤ [H(t)]
α(m2−1)

∫
Ω

[H(0)]
α(m(x)−m2) | u |m(x) dx. (13)

But

[H(0)]
α(m(x)−m2) ≤ C for all x ∈ Ω.

Indeed,

if H(0) ≤ 1, then [H(0)]
α(m(x)−m2) ≤ [H(0)]

α(m1−m2) ,

if H(0) > 1, then [H(0)]
α(m(x)−m2) ≤ [H(0)]

α(m2−m2) = 1.

Then (13) becomes∫
Ω

Hα(m(x)−1)(t) | u |m(x) dx ≤ C [H(t)]
α(m2−1)

∫
Ω

| u |m(x) dx.

By (5) and (7), we find∫
Ω

Hα(m(x)−1)(t) | u |m(x) dx

≤ C

((∫
Ω

| u |p(x) dx
)m2

p1
+α(m2−1)

+

(∫
Ω

| u |p(x) dx
)m1

p1
+α(m2−1)

)
.
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We apply Lemma 4.1 from [12] to

2 ≤ s = m1 + αp1(m2 − 1) ≤ p1,

and

2 ≤ s = m2 + αp1(m2 − 1) ≤ p1,

and by (H1− 1), we obtain (11).
Proof of (12): By the Young inequality

XY ≤ δµ

µ
Xµ +

δ−θ

θ
Y θ for all X, Y ≥ 0, δ > 0 and

1

µ
+

1

θ
= 1 (14)

with

X = |u| , Y =| ut |m(x)−1, µ = m(x) and θ =
m(x)

m(x)− 1
,

we find∫
Ω

| u || ut |m(x)−1 dx ≤
∫
Ω

δm(x)

m(x)
| u |m(x) dx+

∫
Ω

m(x)− 1

m(x)
δ−

m(x)
m(x)−1 | ut |m(x) dx

≤ 1

m1

∫
Ω

δm(x) | u |m(x) dx

+
m2 − 1

m1

∫
Ω

δ−
m(x)

m(x)−1 | ut |m(x) dx.

Let k > 0. If we take

δ =
(
kH−α(t)

)−m(x)−1
m(x) > 0,

then we find∫
Ω

| u || ut |m(x)−1 dx ≤ 1

m1

∫
Ω

k1−m(x)Hα(m(x)−1)(t) | u |m(x) dx

+
(m2 − 1)k

m1
H−α(t)

∫
Ω

| ut |m(x) dx. (15)

But, from the definition of H, Lemma 2.1 and (H1− 2), we have∫
Ω

|ut|m(x)
dx =

1

2

∫
Ω

A′∇u∇udx+H ′(t) ≤ H ′(t).

Then, for k > 1, (15) becomes∫
Ω

| u || ut |m(x)−1 dx ≤ k1−m1

m1

∫
Ω

Hα(m(x)−1)(t) | u |m(x) dx+
(m2 − 1)k

m2
H−α(t)H ′(t).

By (11), we obtain the result.
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3 Main Result

In this section, we state and prove our main result.

Theorem 3.1 The solution of problem (P ) blows up in finite time.

Proof. We proceed in 4 steps.
Step 1. For ϵ > 0, we consider the following functional:

L(t) = H1−α(t) + ϵ

∫
Ω

uutdx, ∀t ∈ [0, T ].

If we derive the function L with respect to t, we obtain

L′(t) = (1− α)H−α(t)H ′(t) + ϵ ∥ut∥22 + ϵ

∫
Ω

uuttdx, ∀t ∈ [0, T ]. (16)

But ∫
Ω

uuttdx =

∫
Ω

udiv(A∇u)dx−
∫
Ω

uut | ut |m(x)−2 dx

+

∫
Ω

| u |p(x) dx.

By the generalized Green formula, we obtain∫
Ω

uuttdx = −
∫
Ω

A∇u∇udx−
∫
Ω

uut | ut |m(x)−2 dx+

∫
Ω

| u |p(x) dx. (17)

Replacing (17) in (16), we find

L′(t) ≥ (1− α)H−α(t)H ′(t) + ϵ ∥ut∥22 − ϵ

∫
Ω

A∇u∇udx

− ϵ

∫
Ω

| u || ut |m(x)−1 dx+ ϵ

∫
Ω

| u |p(x) dx.

By (12), we obtain

L′(t) ≥
[
1− α− ϵ

(m2 − 1)k

m2

]
H−α(t)H ′(t) + ϵ ∥ut∥22

− ϵ

(
1 + C

k1−m1

m1

)∫
Ω

A∇u∇udx

+ ϵ

(
1− C

k1−m1

m1

)∫
Ω

| u |p(x) dx. (18)

Add and subtract ϵ(1 − η)p1H(t) for 0 < η < 1 in the right-hand side of (18) and use
the definition of H to obtain

L′(t) ≥
[
1− α− ϵ

(m2 − 1)k

m2

]
H−α(t)H ′(t) + ϵ(1− η)p1H(t) + ϵ ∥ut∥22

− ϵ

(
1 + C

k1−m1

m1

)∫
Ω

A∇u∇udx+ ϵ

(
1− C

k1−m1

m1

)∫
Ω

| u |p(x) dx

− ϵ(1− η)p1

(
−1

2
∥ut∥22 −

1

2

∫
Ω

A∇u∇udx+
1

p1

∫
Ω

| u |p(x) dx
)
. (19)
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Then

L′(t) ≥
[
1− α− ϵ

(m2 − 1)k

m2

]
H−α(t)H ′(t) + ϵ(1− η)p1H(t)

+ ϵ

(
η − C

k1−m1

m1

)∫
Ω

| u |p(x) dx+ ϵ

(
(1− η)p1

2
+ 1

)
ϵ ∥ut∥22

+ ϵ

(
p1 − 2

2
− ηp1

2
− C

k1−m1

m1

)∫
Ω

A∇u∇udx.

For the fixed k sufficiently large, then for η sufficiently small, we arrive at

L′(t) ≥
[
1− α− ϵ

(m2 − 1)k

m2

]
H−α(t)H ′(t) + ϵγ

[
H(t) +

∫
Ω

| u |p(x) dx+ ϵ ∥ut∥22

]
+ ϵβ

∫
Ω

A∇u∇udx, (20)

where

γ = min

{
(1− η)p1, η − C

k1−m1

m1
,
(1− η)p1

2
+ 1

}
> 0,

and

β =
p1 − 2

2
− ηp1

2
− C

k1−m1

m1
=

p1 − 2

2
− η

(
1 +

p1
2

)
+ η − C

k1−m1

m1
> 0.

If ϵ is chosen sufficiently small such that

1− α− ϵ
m2 − 1

m2
k ≥ 0,

then, by (6), inequality (20) takes the form

L′(t) ≥ ϵC
[
H(t)+ ∥ u ∥p1

p1
+ ∥ ut ∥22

]
. (21)

Step 2. Since

L(0) = H1−α(0) + ϵ

∫
Ω

u0(x)u1(x)dx > 0,

from the increase of L (see (21)), we find

L(t) ≥ 0, ∀t ∈ [0, T ].

Step 3. By the definition of L, we find

L
1

1−α (t) ≤
[
H1−α(t) + ϵ

∫
Ω

| u || ut | dx
] 1

1−α

.

By the following inequality:

(a+ b)m ≤ 2m(am + bm) for all a, b ≥ 0 and m > 0,
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with

a = H1−α(t), b = ϵ

∫
Ω

| u || ut | dx and m =
1

1− α
,

we obtain

L
1

1−α (t) ≤ 2
1

1−α

[
H(t) +

(
ϵ

∫
Ω

| u || ut | dx
) 1

1−α

]
.

But, by the Cauchy–Schwarz inequality, we have(∫
Ω

| u || ut | dx
) 1

1−α

≤ ∥ u ∥
1

1−α

2 ∥ ut ∥
1

1−α

2 .

From the embedding Lp1(Ω) ↪→ L2(Ω), we find(∫
Ω

| u || ut | dx
) 1

1−α

≤ C ∥ u ∥
1

1−α
p1 ∥ ut ∥

1
1−α

2 .

Apply Young’s inequality (14) with

X =∥ u ∥
1

1−α
p1 , Y =∥ ut ∥

1
1−α

2 , µ =
2(1− α)

1− 2α
and θ = 2(1− α),

we have (∫
Ω

| u || ut | dx
) 1

1−α

≤ C

(
∥ u ∥

2
1−2α
p1 + ∥ ut ∥22

)
.

We apply Corollary 4.4 from [12] with 2 ≤ s = 2
1−2α ≤ p1 to find

L
1

1−α (t) ≤ C
[
H(t)+ ∥ u ∥p1

p1
+ ∥ ut ∥22

]
, ∀t ∈ [0, T ]. (22)

Step 4. We proceed by contradiction. By the continuation principal, we obtain that
T = +∞. By combining (21) and (22), we arrive at

L′(t) ≥ CL
1

1−α (t), for all t ≥ 0.

A simple integration over (0, t) gives

L(t) ≥ 1[
L

−α
1−α (0)− αCt

(1−α)

] 1−α
α

, for all t ≥ 0.

This leads to a contradiction.

4 Conclusion

In this work, we study the blow up of solutions of the nonlinear hyperbolic equation with
variable damping and source terms. We present the assumptions and preliminary results
required to obtain our main result. We also provide the energy identity associated with
the solution. Finally, we state and prove the blow up result for the solution.
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