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Abstract: This paper explores the flow of a uniform stream with no pressure gra-
dient on a parallel semi-infinite plate. This study unveils a novel perspective on the
significant influence of the mass transfer parameter and the velocity parameter on
the behavior of self-similar boundary layer flows over moving surfaces, governed by
the Prandtl boundary layer equations. The analysis reveals that these parameters are
pivotal in determining the existence and multiplicity of solutions, which may include
no solution, a unique solution, or dual solutions, depending on their specific values.
The modified operational matrix method was employed to reduce the complex non-
linear system to a manageable linear third-order boundary value problem, facilitating
a more thorough investigation. The numerical validations conducted, including the
calculation of L2-truncation errors, comparison with exact boundary conditions, and
consistency checks against established results in the literature, not only affirm the
robustness and accuracy of the proposed method but also instill confidence in its
reliability. This work contributes to understanding boundary layer flows over moving
surfaces by elucidating the critical roles of mass transfer and velocity parameters. It
offers a reliable numerical method for solving these complex fluid dynamics problems
and provides valuable insights into the physical phenomena governing such flows.
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1 Introduction

Different studies over the past few decades have demonstrated the presence of multiple
solutions in boundary layer flows driven by moving surfaces, both with and without ex-
ternal pressure gradients. This paper presents a novel examination of the uniform flow
over a belt moving towards or away from the origin at a constant speed. This topic
is closely related to the seminal works by Klemp and Acrivos [1] and Syam [2], who
explored the flow induced by finite and semi-infinite flat plates moving at a constant ve-
locity beneath a uniform mainstream. In the scenario where a similarity reduction to an
ordinary differential equation is applicable, dual solutions were identified when the plate
moved toward the oncoming stream. Mourad et al. [4] and others [5, 6] investigate the
multiple solutions to the Falkner–Skan equation in the flow over a stretching boundary.
The authors explore the conditions under which dual solutions emerge, specifically fo-
cusing on how variations in boundary stretching influence the flow characteristics. They
provide a detailed mathematical analysis, demonstrating that the Falkner–Skan equation
admits more than one solution under specific parameter regimes. This work contributes
to understanding boundary layer behavior in fluid dynamics, particularly in cases where
stretching boundaries are present. Hussaini et al. [3] and others [7, 8] later confirmed
the non-uniqueness of the similarity solutions for a boundary layer problem involving an
upstream-moving wall. The study analyzes the impact of the wall’s motion on the bound-
ary layer flow, identifying conditions that lead to multiple solutions. Through a rigorous
mathematical approach, the authors demonstrate the existence of non-unique similarity
solutions and give a deep understanding of the behavior of the boundary layer under these
conditions. Their findings highlight the complexities of upstream-moving walls in fluid
dynamics and contribute to a deeper understanding of boundary layer theory. As part of
a broader investigation of the Falkner–Skan flows with stretching boundaries, these novel
findings open up new avenues for research in the field of fluid dynamics and boundary
layer flows. A mathematically analogous problem on the uniform viscous flow over a
moving plate arises in the mixed convection boundary layer flow within a fluid-saturated
porous medium adjacent to a heated vertical semi-infinite rigid plate. The governing
similarity equations include a nondimensional parameter that quantifies the balance be-
tween natural and forced convection with two primary scenarios. In the first scenario,
where buoyancy and the uniform external flow are aligned, the solutions are singular,
as discussed by Cheng [5]. In the second scenario, where buoyancy opposes the uniform
external flow, in [9–12], the authors identified the exact dual solutions mentioned in [1–8],
where the investigation of the mixed convection boundary layer flow along a vertical sur-
face within saturated porous medium yields significant findings. The study examines the
combined effects of natural and forced convection on the boundary layer, offering a de-
tailed analysis of the governing equations. Merkin identifies the critical parameters that
influence the flow behavior and provides solutions that describe the boundary layer’s
response to varying conditions. This work enhances the understanding of convection
processes in porous media, particularly in vertical configurations, and underscores the
complex interactions between buoyancy-driven and externally imposed flows. Of particu-
lar relevance to this study are Merkin and some subsequent works [13–15], which explore
the phenomenon of dual solutions in mixed convection within a porous medium. The
studies delve into the conditions under which multiple solutions arise, mainly focusing on
the interplay between natural and forced convection. The authors present a comprehen-
sive analysis, showing that dual solutions can occur depending on the relative strength of
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buoyancy forces compared to the imposed flow. Finally, Weidman et al. [20] and other
authors [17–19] present a unified formulation for stagnation-point flow overstretching
surfaces, introducing new findings in this area of fluid dynamics. The authors develop
a comprehensive and exhaustive mathematical model that encapsulates various cases of
stagnation-point flow, incorporating both classical and stretching boundary conditions.
Through their analysis, they uncover novel results that extend the understanding of how
stretching surfaces influence flow behavior near stagnation points. This work contributes
significantly to the field, offering insights and generalizations that enhance the theoretical
framework for studying stagnation-point flows. This work, with its thorough and com-
prehensive nature, provides significant insights into the complexities of mixed convection
in porous media and contributes to a broader understanding of fluid behavior in such
environments. These implications are crucial for further research and applications in the
field of fluid dynamics and boundary layer flows.

2 Mathematical Model

When a uniform stream with velocity U flows parallel to a semi-infinite plate positioned
at y = 0 for x ≥ 0, the flow exhibits no pressure gradient. The velocity components in
the directions along and perpendicular to the plate are denoted as u and v, respectively.
The dimensional unsteady Prandtl boundary layer equations governing this scenario are

∂u

∂x
= −∂v

∂y
, (1)

∂u

∂t
+ u

∂u

∂x
= η

∂2u

∂y2
− v

∂u

∂y
(2)

with boundary conditions specified as

u(x, 0) = α2U, v(x, 0) = −α1

√
ηU

2x
, x > 0, (3)

u = U, x ∈ R, y → ∞. (4)

Figure 1 illustrates the physical setup of the model.

u(y)

UyU

a

Figure 1: Schematic representation of the physical model.

By introducing the similarity variables

u = Uf ′(ζ), v =

√
ηU

2x
(ζf ′(ζ)− f(ζ)), ζ = y

√
U

2ηx
, (5)
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the chain rule yields

∂u

∂x
=

∂u

∂ζ

∂ζ

∂x
= −yUf ′′(ζ)

2x

√
U

2ηx
, (6)
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=
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=

yUf ′′(ζ)

2x

√
U

2ηx
, (7)

∂u

∂y
=

∂u

∂ζ

∂ζ

∂y
= Uf ′′(ζ)

√
U

2ηx
, (8)

∂2u

∂y2
=

∂

∂ζ

(
∂u

∂y

)
∂ζ

∂y
=

U2

2ηx
f ′′′(ζ). (9)

Substituting these into equations (1) and (2) simplifies the latter to

f ′′′(ζ) + f(ζ)f ′′(ζ) = 0 (10)

with the boundary conditions

f(0) = α1, f ′(0) = α2, f ′(∞) = 1. (11)

It is crucial to note that the mass transfer parameter α1 and the velocity parameter
α2 are key factors in determining the nature of the solution. Depending on their values,
the system may have no solution, a unique solution, or multiple solutions (specifically,
two). This paper will examine these scenarios and identify the critical values of α1 and
α2. Additionally, when α1 > 0, suction is present, and when α2 > 0, the plate moves
downstream from the origin. Furthermore, the wall shear stress is expressed as

S =

√
ρ3U3η

2x
f ′′(0). (12)

3 Numerical Methodology

Given the nonlinear nature of the system described by equations (10) and (11), obtain-
ing an exact closed-form solution is challenging and impractical. Therefore, we employ
an innovative numerical approach developed by Syam et al. [7, 19], which utilizes the
operational matrix method. The following substitutions are made:

λ1 = f, λ2 = λ′
1, λ3 = λ′

2. (13)

This transforms the original system (10) and (11) into the following set of equations:

λ′
1 = λ2, λ′

2 = λ3, λ′
3 = −λ1λ3, (14)

λ1(0) = α1, λ2(0) = α2, λ3(0) = ξ. (15)

The parameter ξ is determined by solving the system of equations (14) and (15),
followed by the application of the shooting method to meet the boundary condition
λ2(∞) = 1.

Given the nonlinear nature of system (14)-(15), obtaining an exact closed-form solu-
tion is challenging. Thus, we employ a novel numerical approach based on the operational
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matrix technique, as proposed by Syam et al. [7,19]. We represent the system in matrix
form as

Λ′ = Ω(Λ(ζ)), Λ(0) = Λ0, (16)

where

Λ =

λ1

λ2

λ3

 , Λ0 =

α1

α2

ξ

 , Ω(Λ) =

 λ2

λ3

−λ1λ3

 . (17)

Following the methodology outlined in [7, 19], the solution is expressed as

Λ(ζ) =

M∑
k=0

Λkφk(ζ), (18)

where {φ0(ζ), φ1(ζ), . . . , φM (ζ)} represent block pulse functions defined by

φk(ζ) =

{
1, if ζk ≤ ζ < ζk+1,

0, otherwise,
(19)

and {ζ0, ζ1, . . . , ζM+1} denotes a uniform partition of the interval [0, ζ∞] with step size
∆, while {Λ0,Λ1, . . . ,ΛM} are constant vectors. Integrating both sides of equation (16)
yields

Λ(ζ) = Λ0 +

∫ ζ

0

Ω(Λ(s)) ds. (20)

At ζ = ζj , for j = 1, 2, . . . ,M + 1, we have

φk(ζj) =

{
1, if j = k,

0, otherwise,
(21)

which leads to

Λ(ζj) =

M∑
k=0

Λkφk(ζj) = Λj . (22)

Thus, we can write

Λ(ζj) = Λj

= Λ0 +

∫ ζj

0

Ω(Λ(s)) ds

= Λ0 +

j−1∑
k=0

∫ ζk+1

ζk

Ω(Λ(s)) ds

= Λ0 +

j−1∑
k=0

∫ ζk+1

ζk

Ω

(
M∑
i=0

Λiφi(s)

)
ds. (23)

Since

φk(s) =

{
1, if i = k,

0, otherwise,
s ∈ [ζk, ζk+1), (24)
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we obtain

Λj = Λ0 +

j−1∑
k=0

∫ ζk+1

ζk

Ω (Λk) ds = Λ0 +∆

j−1∑
k=0

Ω(Λk).

For further details on this approach, including its convergence and error analysis, refer
to [7,19]. As indicated in equation (25), this method is direct, iterative, and highly precise
for solving nonlinear systems, offering computational efficiency and reduced processing
times compared to other methods for similar problems.

4 Validation

To validate the solution, we define the L2-truncation error as follows:

ϵ(α1, α2) =

√∫ 1

0

∥ Λ′(ζ)− Ω(Λ(ζ)) ∥2E dζ, (25)

where ∥ . ∥E denotes the Euclidean norm. Table 1 presents the computed truncation
errors for various values of α1 and α2.

α1 α2 ϵ(α1, α2)
-0.5 0 1.91× 10−14

-0.25 0.25 1.94× 10−14

0 0.5 11.881× 10−14

0.25 0.75 1.80× 10−14

0.5 -0.25 1.77× 10−14

0.75 -0.5 1.71× 10−14

Table 1: The L2-truncation error for different values of α1 and α2.

In Table 2, we evaluate the boundary condition values to compare them with the
expected boundary condition f ′(∞) for various values of α1 and α2. These values should
ideally be 1, indicating that the shooting method used is accurate.

α1 α2 f ′(∞)
-0.5 0 1.000000000001
-0.25 0.25 1.000000000001
0 0.5 1

0.25 0.75 0.9999999999999
0.5 -0.25 1.000000000001
0.75 -0.5 0.9999999999999

Table 2: The value of f ′(∞).

To compare our results with those in [20], we determine the critical value of the
velocity parameter α2c, which dictates whether the system (10)-(11) has a solution for
different values of the mass transfer parameter α1. Our findings align with those reported
in Table 3.
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α1 α2c

-0.5 -0.103499999998
-0.25 -0.212499999999
0 -0.354100000001

0.25 -0.52240000001
0.5 -0.720000000000

Table 3: The critical value of the velocity parameter α2c.
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Figure 2: The parametric relationship between the velocity parameter and ξ.

These results suggest that for α2 < α2c, no solution exists. When α2 ∈ [α2c, 0], there
are two solutions. Finally, for α2 > α2c, a unique solution is obtained. The parametric
relationship between α2 and ξ is shown in Figure 2.

In Figure 3, we investigate the impact of suction and blowing at positive values of
the velocity parameter. For α2 = 0.5, the plate moves away from the origin at half the
speed of the free stream, whereas for α2 = 1.5, the plate moves approximately 50% faster
than the free stream. In both cases, suction increases skin friction, indicated by f ′′(0),
and decreases the boundary layer thickness. Conversely, blowing results in the opposite
effect. This phenomenon is depicted in Figure 3.

The results shown in Figure 3 are consistent with the findings of [20]. Additionally,
in Figure 4, we explore the effect of the mass transfer parameter α1 on ξ for different
values of the velocity parameter. The outcomes are illustrated in Figure 4.

5 Results and Discussion

The influence of transpiration on self-similar boundary layer flow over moving surfaces
was analyzed using the modified operational matrix method. When a uniform stream
with velocity U flows parallel to a semi-infinite plate located at y = 0 for x ≥ 0, the flow
exhibits no pressure gradient. The velocity components along and perpendicular to the
plate are denoted as u and v, respectively. By employing similarity variables, the dimen-
sional unsteady Prandtl boundary layer equations are reduced to a linear boundary value
problem of third order. Our numerical method was validated through four approaches:
computing the L2-truncation error, comparing the boundary condition values between
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α2 = 0.5 α2 = 1.5
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Figure 3: Influence of suction and blowing at positive values of the velocity parameter.
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Figure 4: The effect of the mass transfer parameter α1 on ξ.
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the exact condition and those produced by the OMM at ∞, comparing our critical ve-
locity parameter value with that obtained in [20], and graphically comparing our results
with those in [20]. These validations are detailed in Tables 1-3 and Figures 2-4.

To gain physical insight into the flow problem and numerical calculations, we graphi-
cally discuss the influence of the main parameters in system (10)-(11) in Figures 2 through
16. Figure 2 shows the influence of the velocity parameter on the wall shear stress via
f ′′(0) for different values of the mass transfer parameter α1. Figure 3 illustrates the effect
of suction and blowing at positive values of the velocity parameter. Figure 4 depicts the
impact of the mass transfer parameter α1 on f ′′(0). Figures 5-8 display the influence
of the mass transfer parameter α1 on the velocity profile when the velocity parameter
α2 = 0.5, 1.5, 0 and −0.1. Figures 9-11 examine the effect of the velocity parameter α2

on the velocity profile for several values of the mass transfer parameter α1 = −0.5, 0 and
0.5. Figures 12-14 analyze the impact of the velocity parameter α2 on the stream profile
for various values of the mass transfer parameter α1 = 0, 0.5, and 1.5. Finally, Figures
15-16 investigate the influence of the mass transfer parameter α1 on the stream profile
when the velocity parameter α2 = 0.25 and 1.25.
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ζ0.4
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0.6
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1.2
f'(ζ )

Figure 5: Influence of the mass transfer parameter α1 on the velocity profile for the velocity
parameter α2 = 0.5.
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1.2

1.4
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f'(ζ )

Figure 6: Influence of the mass transfer parameter α1 on the velocity profile for the velocity
parameter α2 = 1.5.

From Figures 2 through 16, we can draw the following conclusions:

1. Table 3 presents the critical values of the velocity parameter. These findings in-
dicate that for α2 < α2c, no solution exists. When α2 ∈ [α2c, 0], there are two
solutions, and for α2 > α2c, a unique solution is obtained. For instance, when
α1 = −0.5, no solution exists for α2 < −0.103499999998, and there are two so-
lutions for α2 ∈ [−0.103499999998, 0]. For α2 > 0, a unique solution is present.
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Figure 7: Influence of the mass transfer parameter α1 on the velocity profile for the velocity
parameter α2 = 0.
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Figure 8: Influence of the mass transfer parameter α1 on the velocity profile for the velocity
parameter α2 = 1.
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Figure 9: Influence of the velocity parameter α2 on the velocity profile for the mass transfer
parameter α1 = −0.5.
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Figure 10: Influence of the velocity parameter α2 on the velocity profile for the mass transfer
parameter α1 = 0.5.
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Figure 11: Influence of the velocity parameter α2 on the velocity profile for the mass transfer
parameter α1 = 0.
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Figure 12: Influence of the velocity parameter α2 on the stream profile for the mass transfer
parameter α1 = 0.
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Figure 13: Influence of the velocity parameter α2 on the stream profile for the mass transfer
parameter α1 = 0.5.
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Figure 14: Influence of the velocity parameter α2 on the stream profile for the mass transfer
parameter α1 = 1.5.
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Figure 15: Influence of the mass transfer parameter α1 on the stream profile for the velocity
parameter α2 = 0.25.
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Figure 16: Influence of the mass transfer parameter α1 on the stream profile for the velocity
parameter α2 = 1.2.

The parametric relationship between α2 > 0 and ξ is illustrated in Figure 2. From
this figure, it is evident that as the velocity parameter increases for a fixed mass
transfer parameter, the wall shear stress decreases.

2. Figure 3 illustrates the impact of suction and blowing at positive values of the
velocity parameter. For α2 = 0.5, the plate moves away from the origin at half the
speed of the free stream, while for α2 = 1.5, the plate moves approximately 50%
faster than the free stream. In both scenarios, suction increases skin friction, as
indicated by f ′′(0), and reduces the boundary layer thickness. Conversely, blowing
produces the opposite effect. This phenomenon is depicted in Figure 3. It is also
noteworthy that the results shown in Figure 3 are consistent with the findings
of [20].

3. Figure 4 explores the effect of the mass transfer parameter α1 > 0 on ξ = f ′′(0)
for different values of the velocity parameter. Additionally, it is observed that
as the mass transfer parameter increases for a fixed velocity parameter, the wall
shear stress decreases. Furthermore, it is noted that when the velocity parameter
is negative, the wall shear stress is in the negative direction, while it is positive
when the velocity parameter is positive. It is zero when the velocity parameter is
zero.

4. Figures 5-8 demonstrate the effect of the mass transfer parameter α1 on the velocity
profile for different values of the velocity parameter α2. It is observed that the
velocity profiles increase as the mass transfer parameter increases when the velocity
parameter is -0.1, 0, and 0.5. The behavior changes when the velocity parameter is
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1. From our investigation, we notice that when the velocity parameter is less than
one, the velocity profile increases as the mass transfer parameter increases, while
the velocity profile decreases as the mass transfer parameter increases when the
velocity parameter is greater than one. Notably, when the velocity parameter is
one, all velocity profiles coincide for different values of the mass transfer parameter.

5. Figures 9-11 demonstrate the substantial effect of the velocity parameter α2 on the
velocity profile for fixed values of α1. It is observed that as the velocity parameter
increases, the velocity profile also increases. This behavior was examined for various
values of the mass transfer parameter such as -0.5, 0, and 0.5. It is noted that the
velocity profile stabilizes and approaches one as ξ approaches infinity.

6. Figures 12-14 illustrate the considerable influence of the velocity parameter α2

on the stream profile for fixed values of α1. It is observed that as the velocity
parameter increases, the stream profile also increases. This behavior was tested for
different values of the mass transfer parameter such as 0, 0.5, and 1.5.

7. Figures 15-16 depict the significant impact of the mass transfer parameter α1 on
the stream profile for fixed values of α2. It is noted that as the mass transfer
parameter increases, the stream profile also increases. This behavior was examined
for various values of the velocity parameter such as 0.25 and 1.25.

8. Table 1 shows that the L2-truncation error is of the order 10−14, indicating the
rapid convergence of the approximate solution to the exact solution of system (10)-
(11).

9. Table 2 reveals that the boundary condition is satisfied, confirming that the shoot-
ing method is operating correctly.
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