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Abstract: Tuberculosis is an infectious disease caused by the Mycobacterium tu-
berculosis (Mtb), bacteria that primarily attacks the lungs. Currently, tuberculosis
remains a major public health challenge. This study develops a fractional-order math-
ematical model using the Caputo-Fabrizio derivatives to explore the growth dynamics
of MTb in relation to vaccine administration. The methodology consists of the fol-
lowing steps: model formulation, equilibrium point determination, computation of
the fundamental reproduction number R0, equilibrium point stability analysis, and
numerical simulation utilizing the Adam-Bashforth 3-step method. The main result
reveals that the nonlinear dynamics of the model exhibits significant sensitivity to
the fractional order. The model indicates that the infection-free equilibrium point
is locally asymptotically stable if R0 < 1, and the endemic equilibrium point is also
locally asymptotically stable under specific circumstances. The fractional order can
greatly influence the convergence rate towards equilibrium points, as numerical sim-
ulations further highlight that smaller fractional orders accelerate the convergence of
immune response cells to stability, demonstrating the potential of fractional calculus
to capture complex biological dynamics more effectively.
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1 Introduction

Mycobacterium tuberculosis is the causative agent of tuberculosis (TB), a dangerous
infectious disease that mostly affects the lungs. Despite treatment, tuberculosis is still
one of the deadliest infectious diseases in the world, killing more people than HIV/AIDS
combined [1]. One of the reasons why this disease still exists is the resistance of bac-
teria to the immune system, especially macrophages, which are essential for eliminating
infections. Once TB germs enter the lungs, granulomas, a protective barrier that helps
regulate bacterial development, are activated. The persistence of bacteria allows them
to live inside these structures, postponing the immune response of the body and pro-
longing the illness. TB is difficult to control due to its rapid spread and drug resistance,
even though it can be managed with the right antibiotics. Consequently, prevention,
early detection, and effective management are essential in reducing the global burden of
tuberculosis [2]. Governments, health organizations, and researchers around the world
are working together to develop more comprehensive strategies to control the spread of
tuberculosis and improve case management.

Various strategies and models have been explored in the investigation of TB. Recent
research on TB prevention efforts at the cellular level can be found in several studies such
as [3]. Another novel approach is to use fractional differential equations to model bio-
logical processes. Fractional models, as opposed to traditional models, take into account
”memory” effects, which are situations in which previous occurrences impact future re-
sults. The fractional derivatives can be used to explain phenomena that show relaxation
effects and memory retention since they incorporate memory and genetic characteris-
tics [4]. This makes them especially helpful for tuberculosis, as the history of infection
can affect the immune response and transmission rates. Fractional models provide a
more accurate picture of TB dynamics by taking into consideration elements that are
frequently missed in classical models. For example, Ibarguen-Mondragon et al. [5] for-
mulate a model for the population dynamics of Mycobacterium tuberculosis (Mtb) to
assess the impact of the competition among bacteria on the infection prevalence.

Recently, numerous fractional derivatives have also been investigated in recent works
on tuberculosis epidemic modeling such as [6–8]. Zhang et al. [6] utilized the Caputo
derivative to capture TB’s transmission dynamics, incorporating the concept of memory
behavior to illustrate how past infections affect disease progression and treatment. Mean-
while, Zafar et al. [7] explored machine learning approaches alongside fractional operators
for various fractional orders. Recently, Olayiwola et al. [8] studied a mathematical model
to investigate the impact of treatment on physical limitations in tuberculosis. Studies on
TB control measures such as hospitalization, quarantine, and adherence to treatment,
have used the Atangana-Baleanu-Caputo and Caputo-Fabrizio derivatives [9]. This broad
variety of TB modeling is a result of continuous attempts to use fractional-order deriva-
tives to better understand and treat TB. Based on the previous studies, in this study, we
aim to develop a fractional-order-based mathematical model to analyze the interaction
of MTb with host immune cells. This fractional-order approach was chosen to consider
the memory effect on infection dynamics, which is not fully covered by models based on
integer order [10].

The structure of this paper is as follows. Section 2 defines the methods; in partic-
ular, we describe the model formulation for the interaction between macrophages and
Mycobacterium tuberculosis, the fractional model, and determine the existence and sta-
bility of the equilibrium point. Section 3 provides numerical results and discusses the
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effect of a variation in order. Finally, Section 4 gives the conclusion.

2 Methods

2.1 Model description

In this section, we develop a mathematical model describing the interaction between
macrophages and Mycobacterium tuberculosis (Mtb). The population is divided into
four sub-populations: uninfected macrophages (MU ), infected macrophages (MI), My-
cobacterium tuberculosis bacteria (B), and T cells (T ). The dynamics of Mycobacterium
tuberculosis within granulomas are represented in the schematic diagram in Figure 1.

Figure 1: Schematic diagram of Mtb progression.

The population dynamics of uninfected macrophages (MU (t)) are influenced by sev-
eral factors, including the growth rate of uninfected macrophages per unit of time (ΛU ),
the natural death rate of uninfected macrophages per unit of time (µUMU (t)), and the
interaction between uninfected macrophages and bacteria per unit of time (βB(t)MU (t)).
This change in population is represented by the following equation:

dMU (t)

dt
= ΛU − βB(t)MU (t)− µUMU (t). (1)

The population dynamics of infected macrophages (MI(t)) are influenced by inter-
actions between uninfected macrophages and bacteria per unit of time (βB(t)MU (t)),
interactions of T cells with infected macrophages per unit of time (αTMI(t)T (t)), and
the natural death rate of infected macrophages per unit of time (µIMI(t)):

dMI(t)

dt
= βB(t)MU (t)− αTMI(t)T (t)− µIMI(t). (2)

The population of Mycobacterium tuberculosis bacteria (B(t)) is influenced by factors
such as the bursting of infected macrophages when bacterial growth exceeds a threshold
per unit of time (rµIMI(t)), the logistic growth of bacteria with the growth rate v



364 Y. A. ADI AND S.A. SEPTIANI

and maximum capacity K, phagocytosis by uninfected macrophages per unit of time
(γUMU (t)B(t)), and the natural death rate of bacteria per unit of time (µBB(t)):

dB(t)

dt
= rµIMI(t) + v

(
1− B(t)

K

)
B(t)− γUMU (t)B(t)− µBB(t). (3)

The T cell population (T (t)) is affected by T cell growth due to signals from infected
macrophages per unit of time (k(1 − T (t))MI(t)), immune memory from vaccination

following a decay function per unit of time
(

cBBT
eBT+1

)
, and the natural death rate of T

cells per unit of time (µTT (t)):

dT (t)

dt
= k

(
1− T (t)

Tmax

)
MI(t) +

cBBT

eBT + 1
− µTT (t). (4)

To simplify the model, we introduce the following non-dimensional variables:

MU =
MU

ΛU/µU
; MI =

MI

ΛU/µU
; B =

B

K
; T =

T

Tmax
.

After substituting these variables into equations (1)–(4), the resulting system of dif-
ferential equations becomes:

ṀU = µU − βBMU − µUMU ,

ṀI = βBMU − αTMIT )− µIMI ,

Ḃ = rµIMI + v(1−B)B − γUMUB − µBB,

Ṫ = k(1− T )MI +
cBBT
eBT+1 − µTT,

(5)

where

αT = αTTmax; β = βK; γU =
γUΛU

µU
; r =

rΛU

KµU
; k =

kΛU

µU
.

2.2 Fractional model of Mycobacterium tuberculosis growth

Incorporating fractional calculus, we replace the integer-order derivatives d
dt in equation

(5) with the Caputo-Fabrizio fractional derivatives (CF
0 Dα

t ) of order α ∈ (0, 1), we get:
CF
0 Dα

t MU (t) = µU − βBMU − µUMU ,
CF
0 Dα

t MI(t) = βBMU − αTMIT − µIMI ,
CF
0 Dα

t B(t) = rµIMI + v(1−B)B − γUMUB − µBB,
CF
0 Dα

t T (t) = k(1− T )MI +
cBBT
eBT+1 − µTT,

(6)

with the initial conditions MU (0) ≥ 0, MI(0) ≥ 0, B(0) ≥ 0, and T (0) ≥ 0.

2.3 Equilibrium points

Equilibrium points can be found by setting each equation in system (6) to zero, so we
have the infection-free equilibrium point

E0 = (MU ,MI , B, T ) = (1, 0, 0, 0).
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Next, the basic reproduction number, R0, can be derived using the next-generation
matrix method, where the classes responsible for infection are MI and B. Thus, the
differential equations used are

CF
0 Dα

t MI = βBMU − αTMIT − µIMI ,

CF
0 Dα

t B = rµIMI + v(1−B)B − γUMUB − µBB.

We can construct matrices F and V, where F represents the rate of infection that
increases the infected class, and V represents the rate of progression, recovery, and death
that decreases the infected class. The matrices F and V are as follows:

F =

(
βBMU

v(1−B)B

)
, V =

(
αTMIT + µIMI

−rµIMI + γUMUB + µBB

)
.

The Jacobian matrices of F and V at E0 are

F =

(
0 β
0 v

)
, V =

(
µI 0

−rµI γU + µB

)
.

Then the matrix G is given by

G = FV −1 =

(
βr

γU+µB

β
γU+µB

vr
γU+µB

v
γU+µB

)
.

The basic reproduction number R0 is the spectral radius of the matrix G, it is

R0 =
βr + v

γU + µB
.

Furthermore, the endemic equilibrium E1 of system (6) is given by

E1 = (M∗
U ,M

∗
I , B

∗, T ∗), (7)

where

M∗
U =

µU

βB∗ + µU
, M∗

I =
βB∗µU

(βB∗ + µU )(αTT + µI)
,

T ∗ =
µI

αTA

(
B∗βv −B∗2βv −B∗(vµU + βµ∗

B) + µU (γU + µ∗
B)(R0 − 1)

)
,

and B∗ is the root of

0 = k(1− T ∗)M∗
I +

cBBT ∗

eBT ∗ + 1
− µTT

∗.

After further substitutions and simplifications, we find that the resulting polynomial
equation is of degree 7. Based on Abel-Ruffini’s theorem, polynomial equations of de-
gree higher than 5 generally cannot be solved algebraically [11], so we will solve them
numerically in Section 3.1.
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2.4 Stability of equilibrium points

The stability of the equilibrium points in the system of equations (6) is provided by the
following theorem.

Theorem 2.1 The infection-free equilibrium point E0 = (MU ,MI , B, T ) = (1, 0, 0, 0)
is locally asymptotically stable if R0 < 1, and unstable if R0 > 1.

Proof. The Jacobian matrix of the linearized system (6) at E0 = (MU ,MI , B, T ) =
(1, 0, 0, 0) is

J(E0) =


−µU 0 −β 0
0 −µI β 0
0 rµI v − γU − µB 0
0 k 0 −µT

 .

The characteristic equation is

0 = (λ+ µU )(λ+ µT ) [(λ+ µI)(λ− v + γU + µB)− βrµI ] .

The first two eigenvalues are

λ1 = −µU , λ2 = −µT ,

and the other two are the roots of the quadratic equation

λ2 + λW1 +W2 = 0, (8)

where W1 = γU + µB − v + µI and W2 = µI(γU + µB − v − βr).
Thus, we have | arg(λ1)| = | arg(λ2)| = π > απ

2 . According to the Routh-Hurwitz
criterion, the roots of equation (8) are negative if W1,W2 > 0. Following Ahmed [12],
the roots of the quadratic equation (8) are negative if and only if | arg(λi)| > απ

2 or,
equivalently, R0 < 1. Thus, the infection-free equilibrium E0 = (MU ,MI , B, T ) =
(1, 0, 0, 0) is locally asymptotically stable if R0 < 1, and unstable if R0 > 1.

Theorem 2.2 Let D = βB∗+µU , E = βB∗, F = γUB
∗, G = αTT

∗+µI , H = rµI ,
I = βM∗

U , K = cBT∗

eBT∗+1 , L = αTM
∗
I , P = cBeBB∗T∗

(eBT∗+1)2 + kM∗
I + µT , Q = cBB∗

eBT∗+1 ,

and R = γUM
∗
U + 2vB∗ + µB. The endemic equilibrium point E1 in (7) is locally

asymptotically stable if s1 > 0, s4 > 0, s1s2 − s3 > 0, (s1s2 − s3)s3 − s21s4 > 0, A > 0,
and Bβv + µU (γU + µB)(R0 − 1) > Y .

Proof. Substituting the endemic equilibrium point E1 into the Jacobian matrix of
system (6), we get

J(E1) =


−D 0 −I 0
E −G I −L
−F H −R+ v 0
0 k − kT ∗ K Q− P

 .

To ensure negative eigenvalues, we form the characteristic polynomial

p1(λ) = det(λI − J(E1)) = λ4 + s1λ
3 + s2λ

2 + s3λ+ s4,



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 25 (4) (2025) 361–372 367

where

s1 = D +G+ P −Q+R− v,

s2 = (R− v +G+ P −Q)D + (R− v + P −Q)G+ (R− v)P + (v −R)Q− k(T ∗ − 1)L

− FI −HI,

s3 = ((R− v + P −Q)G+ (R− v)P + (v −R)Q− k(T − 1)L−HI)D

+ ((R− v)P + (v −R)Q− FI)G+ (−FI −HI)P + (FI +HI)Q

+ (−k(T − 1)R+ k(T − 1)v +HK)L+ EHI,

s4 = ((P −Q)(R− v)G−HPI +HQI − L(k(T − 1)R− k(T − 1)v −HK))D

− FGI(P −Q) + EHIP − EHIQ+ kFIL(T − 1).

By the Routh-Hurwitz criterion, the polynomial p1(λ) of order 4 will have all negative
roots if and only if s1 > 0, s4 > 0, s1s2 − s3 > 0, (s1s2 − s3)s3 − s21s4 > 0,A > 0, and
Bβv+µU (γU +µB)(R0−1) > Y . Thus, the endemic equilibrium E1 = (M∗

u ,M
∗
I , B

∗, T ∗)
is locally asymptotically stable if these conditions are met.

3 Results and Discussion

3.1 Numerical simulation

In this section, we provided numerical simulations for the system of equations (6) using
the Adams-Bashforth 3-step method.

We perform simulations for a first-order system using the possible parameter values
from [3,5]. We take the set of parameter values

β = 2.5× 10−5, αT = 2.5× 10−5, r = 0.1, v = 0.4, γU = 1.25× 10−8, k = 0.4848, (9)

cB = 5× 10−3, eB = 10−4, µU = 0.02, µI = 0.1, µB = 0.42, µT = 0.02.

With this set of parameter values, we have R0 = 0.8571 and the resulting interaction
graph of MU ,MI , B, T over time t is shown in Figure 2a. It can be seen that eventually
the populations MU ,MI , B, and T will move towards E0.

Furthermore, we performed simulations using the parameter µB = 0.12 and kept
the values of the other parameters as before. With these parameter values, we have
R0 = 3.0 > 1 and the infective equilibrium points E1 = (0.9991673, 1.66529 ×
10−4, 0.6666602, 4.82067× 10−3). The interaction graph of MU ,MI , B, T over t is shown
in Figure 2b. It is observed that the population of uninfected macrophages increases
steadily towards the equilibrium point. Infected macrophages decrease as a result of
interactions with T cells. Bacterial levels initially increase but eventually decrease due
to interactions with uninfected macrophages. T cells increase in response to the presence
of infected cells but decrease as infected macrophages decline.

Next, as for the stability of the equilibrium point E0, Figure 3 shows that with varying
initial conditions, the population will converge to E0. In Figure 3, the simulation with
various initial values shows that all growth graphs of uninfected macrophages, bacteria,
and T cells converge towards the equilibrium point E0, where the population of MU

approaches one, B approaches zero, and T approaches zero. This suggests that the
equilibrium point E0 is asymptotically stable and satisfies the condition R0 < 1, which
confirms Theorem 2.1. In this case, the bacteria cannot infect a sufficient number of
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Figure 2: The dynamics interaction of MU ,MI , B, T with respect to the set of parameter values
in (9), (a) R0 = 0.8571, (b)R0 = 3.00.

Figure 3: Phase portrait with different initial values confirms converge to E0. (a) the phase
portrait of MI , B, T ; (b) the phase portrait of MU ,MI , B.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 25 (4) (2025) 361–372 369

Figure 4: Phase portrait with different initial values confirm converge to E1. (a) the phase
portrait of MI , B, T ; (b) the phase portrait of MU ,MI , B.

macrophages, the bacterial growth rate is low, or the immune response is capable of
controlling the infection.

The graphical illustration related to the stability of the endemic equilibrium point
is presented in Figure 4. In Figure 4a, the simulation with various initial values shows
that the infected macrophages, bacteria, and T cells converge towards the endemic equi-
librium point E1. In Figure 4b, the simulation using various initial values shows that
all growth graphs of uninfected macrophages, bacteria, and T cells converge towards the
endemic equilibrium point E1. The movement graphs of uninfected macrophages, in-
fected macrophages, bacteria, and T cells show variables moving towards the equilibrium
point E1 = (M∗

U ,M
∗
I , B

∗, T ∗) with R0 = 3.0, indicating an average of 3 new infected
macrophages per day. This suggests that the equilibrium point E1 is asymptotically sta-
ble and satisfies the conditions A > 0, Bβv + (γUΛU + µUµB)(R0 − 1) > Y, s1 > 0, s4 >
0, s1s2 − s3 > 0, and (s1s2 − s3)s3 − s21s4 > 0, thus confirming Theorem 2.2.

The locally asymptotically stable equilibrium point E1 implies that the number
of uninfected macrophages remains significantly higher than the number of infected
macrophages and bacteria, representing a latent state. This state suggests that bac-
terial growth exists but is still controllable by the immune system. If the immune system
weakens, inactive bacteria may become active again, leading to active tuberculosis. This
is consistent with [13], which states that the BCG tuberculosis vaccine has an efficacy of
60—80% against severe tuberculosis. According to [14], no tuberculosis vaccine has been
shown to fully prevent and eliminate Mycobacterium tuberculosis infection, indicating
that the bacteria remain in the human body.

Following [15], we calculate the sensitivity indices of each parameter with respect to
the basic reproduction number R0 presented in Table 1.

From Table 1, the most influential parameters on R0 are the bacterial growth rate v
and the bacterial death rate µB . The parameter v has a positive relationship with R0,
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Parameter Sensitivity Index
β +6.25× 10−9

r +6.25× 10−9

v +1.000000000
γU −2.5× 10−16

µB −1.00000000

Table 1: Sensitivity indices of R0.

while µB has a negative relationship with R0. If the parameter v is increased by 10%
from 0.4 to 0.44, then R0 increases from 0.8 to 0.88. Conversely, if v is decreased by
10% from 0.4 to 0.36, then R0 decreases from 0.8 to 0.72. This result confirms that the
sensitivity analysis aligns with the tested results on R0.

3.2 Effect of variational order

In this section, we present numerical simulation results with fractional orders α =
0.6, 0.75, 0.85, and 1 using the parameters in (9). The simulation results for uninfected
macrophages, infected macrophages, bacteria, and T cells are illustrated in Figure 5.

Figure 5: Graphs of uninfected macrophages, uninfected macrophages, bacteria Mtb, and T
cells with different orders.

Figure 5a shows the population of uninfected macrophages with orders α =
0.6, 0.75, 0.85, 1, all moving towards the equilibrium point with the same trend, regard-
less of the different orders used. The graph with order 0.6 reaches equilibrium faster
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than with order 0.75, the graph with order 0.8 reaches equilibrium faster than with order
0.85, and so on. From the results of the numerical simulation, the graphs of uninfected
macrophages, infected macrophages, bacteria and T cells converge to the equilibrium
point, even when different orders are used, but follow the same trend as shown in Fig-
ure 5b-d. These figures indicate that the smaller the order used, the faster the immune
response cells grow toward the equilibrium point.

4 Conclusion

This study presents a fractional-order mathematical model with the Caputo-Fabrizio
derivative to understand the dynamics of Mycobacterium tuberculosis (Mtb) infection.
The model offers a novel approach that incorporates memory effects, an aspect often
overlooked in classical models. Key findings show that the fractional order value strongly
influences the stability of the system and the rate of convergence of the immune response
to a steady state. This provides new insights into how infections can persist or be
controlled over time. Furthermore, the sensitivity of the model to certain parameters
such as bacterial growth and death rates, demonstrates the importance of these elements
in determining the overall behavior of the system. These results open up opportunities
for broader applications in nonlinear dynamics, especially in studying other biological
systems with similar characteristics, for example, chronic infections or complex ecological
interactions. By integrating stability analysis, numerical simulations, and a memory
effect-based approach, this study makes novel contributions to understanding complex
biological interactions. This model is not only relevant for understanding TB dynamics,
but also has the potential to develop more effective control strategies in the future.
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