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Abstract: This paper develops a SIR model for COVID-19 that incorporates both
direct and indirect transmission dynamics through two distinct incidence rates. To
capture the infection rate, we employ a nonlinear Beddington-DeAngelis function
and a bilinear incidence function. The model’s solutions are shown to be positive
and bounded, with two equilibrium points identified: the disease-free equilibrium
E0 and the endemic equilibrium E∗. We establish that E0 is locally and globally
asymptotically stable when the basic reproduction number R0 < 1. Conversely,
under specific parameter conditions, E∗ is uniformly asymptotically stable for R0 > 1.
Numerical simulations are provided to validate the theoretical results.
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1 Introduction

The COVID-19 pandemic has spurred research across many fields, including the devel-
opment of mathematical models to assess the impact of interventions on disease control.
Kermack and McKendrick [10] pioneered the use of compartmental models for disease
dynamics research, leading to the development of various models such as SIR, SIRS, and
SEIRS [1,2, 7, 9, 11,12].

Incidence functions are crucial in epidemic models as they determine how susceptible
individuals transition to infected, significantly influencing model predictions. Epidemi-
ological models often assume well-mixed populations in uniform environments. These
models typically use the bilinear incidence rate βSI [10,17] or the standard incidence rate
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βSI
N [11,13], where β represents the transmission coefficient and N is the total population.
However, when a model incorporates a more realistic population structure with varied
mixing patterns and potentially nonlinear transmission dynamics, these standard rates
might need adjustments. The probability of infection per contact might be influenced by
the number of infected individuals. As the infected population grows, the infection rate
may not increase proportionally due to saturation effects, leading to a nonlinear relation-
ship. To address this, nonlinear incidence rates such as the Beddington-DeAngelis rate,

βSI
1+α1S+α2I

, [3, 5] have been incorporated into epidemiological models to better capture
the complexities of disease transmission.

Recently, Ahmed et al. [1] conducted a bifurcation analysis of an SIR epidemic model
that incorporates both direct and indirect transmission rates. They employed a standard
incidence rate, βSI

S+I , for direct transmission and a bilinear incidence term, βSI, for indi-
rect transmission. This approach takes into account the various ways in which diseases
spread through different types of contact. However, their study focused on bifurcation
analysis. In this paper, we investigate the stability of an SIR model that incorporates
the Beddington-DeAngelis term for direct transmission and the bilinear term for indirect
transmission. This combination offers a more realistic representation of transmission dy-
namics. A constant recruitment rate Λ ensures a steady flow of susceptible individuals
due to births. Direct transmission is influenced by the average number of meetings mi

between susceptible and infected individuals within a time interval ∆t and the proba-
bility of infection success sc. The Beddington-DeAngelis term βdSI

1+α1S+α2I
captures this,

here, βd = misc > 0 and S
1+α1S+α2I

is the proportion of the susceptible population in
time t. In contrast, indirect transmission occurs when susceptible individuals come into
contact with the virus on surfaces, without directly interacting with infected individu-
als. This is modeled as a mass contact process with an indirect infection rate βi > 0.
The bilinear incidence term βiSI represents the rate of indirect COVID-19 transmission
through contaminated surfaces. To the best of our knowledge, there is no SIR model
that combines direct (Beddington-DeAngelis) and indirect (bilinear) transmissions.

The manuscript is organized as follows. Section 2 establishes the well-posedness of
the model by demonstrating the existence, positivity, and boundedness of its solutions.
In Section 3, we analyze the model, compute the basic reproduction number, and prove
the existence of equilibria. Section 4 delves into the analytical properties of the model,
including the stability analysis of the equilibria. Numerical simulations are given in
Section 5, and concluding remarks are offered in the closing section.

2 Model Formulation and Analysis

We consider the total population at time t, it is denoted by N (t) and divided into three
compartments: susceptible individuals S (t), infected individuals I (t) and recovered in-
dividuals R (t), where N (t) = S (t)+I (t)+R (t). Susceptible individuals are healthy but
vulnerable to infection, while infected individuals can transmit the disease and eventually
transit to the recovered state, either through immunity or treatment.

Based on the previous assumptions, the SIR model with direct and indirect transmis-
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sions is described by the following system of differential equations:

dS

dt
= Λ− βdSI

1 + α1S + α2I
− βiSI − µS,

dI

dt
=

βdSI

1 + α1S + α2I
+ βiSI − (d+ γ + µ) I, (1)

dR

dt
= γI − µR

with the given initial conditions S (0) ≥ 0, I (0) ≥ 0 and R (0) ≥ 0.
The parameters involved in this model and their corresponding interpretations are

given in Table 2. The flowchart of the SIR model is illustrated in Figure 1.

Parameter Description

Λ Recruitment rate
βd Direct transmission rate
βi Indirect transmission rate
α1 Measure of inhibition (taken by susceptibles)
α2 Measure of inhibition (taken by infectives)
µ Natural death rate
d Infection death rate
γ Natural recovery rate

Table 1: Description of biological parameters.

Figure 1: Flowchart of the proposed model.

For problems concerning population dynamics, it is crucial to ensure that solutions
remain non-negative and bounded for all time. To achieve this, we define the region
Ω =

{
(S, I,R) ∈ R3

+ : S ≥ 0, I ≥ 0, R ≥ 0
}
.

Theorem 2.1 For any non-negative initial data, the solutions of (1) exist, remain
bounded and non-negative in Ω. Moreover, we have

N (t) ≤ Λ

µ
.

Proof. Based on the well-established theory of differential equations in a functional
framework (see, e.g., [8]), we can ensure a unique local solution for problem (1). To
establish solution positivity, we prove invariance of the positive set Ω. We have

dS

dt

∣∣∣∣
S=0

= Λ > 0,
dI

dt

∣∣∣∣
I=0

= 0 ≥ 0,
dR

dt

∣∣∣∣
R=0

= γI ≥ 0.

Hence, for all t ≥ 0, the positivity of all solutions initiating in Ω is guaranteed.
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For the boundedness, we utilize the fact that N = S + I + R. By summing the
equations of the model (1), we have

dN

dt
= Λ− µN − dI.

As I ≥ 0, we get
dN

dt
≤ Λ− µN,

and therefore,

N (t) ≤ Λ

µ
+

(
N (0)− Λ

µ

)
e−µt.

Thus, limt→∞ supN (t) ≤ Λ
µ and dN

dt < 0 ifN > Λ
µ . This reveals that the total population

size N (t) is bounded, and so is each compartment S (t), I (t) and R (t).

3 The Steady States

The existence of a disease-free equilibrium (DFE) and that of an endemic equilibrium for
our model are established in this subsection. Due to the fact that the first two equations
of the system (1) are not affected by R (t), and considering that the total population
number is N (t) = S (t) + I (t) +R (t), we may omit the last equation of the system (1).
As a result, the problem can be reduced to

dS

dt
= Λ− βdSI

1 + α1S + α2I
− βiSI − µS,

dI

dt
=

βdSI

1 + α1S + α2I
+ βiSI − δI,

(2)

where δ = d+ γ + µ and S, I ≥ 0.
In order to find the equilibria of the system (2), we solve the following system:

Λ− βdSI

1 + α1S + α2I
− βiSI − µS = 0,

βdSI

1 + α1S + α2I
+ βiSI − δI = 0.

Obviously, E0 =
(

Λ
µ , 0
)
is the DFE of (2).

When the system reaches the DFE point E0, the disease vanishes completely. At this
point, the infected population becomes zero, and the remaining population consists only
of susceptible individuals.

3.1 Basic reproduction number

The basic reproduction number R0 is crucial in epidemiology as it predicts disease spread
and informs control strategies. It estimates the average number of new infections caused
by one infected individual. By using the next-generation matrix method [15], we can
easily find R0. Let X (t) = (S (t) , I (t)), then it follows from model (2) that

dX

dt
= F − V,
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where

F =

(
Λ− βdSI

1+α1S+α2I
− βiSI

βdSI
1+α1S+α2I

+ βiSI

)
and V =

(
µS
δI

)
.

So, the Jacobian matrices of new infected terms F and other transfer terms V at E0 are

F =

(
0 − βdΛ

µ+α1Λ
− βiΛ

µ

0 βdΛ
µ+α1Λ

+ βiΛ
µ

)
and V =

(
µ 0
0 δ

)
.

So

FV −1 =

(
0 − βdΛ

(µ+α1Λ)δ − βiΛ
µδ

0 βdΛ
(µ+α1Λ)δ + βiΛ

µδ

)
.

As R0 is the spectral radius of FV −1, we get

R0 =
βdΛ

(µ+ α1Λ) δ
+

βiΛ

µδ
= Rd

0 +Ri
0.

Note that Rd
0 represents the basic reproduction number for only direct transmission,

where a susceptible individual becomes infected through contact with an infected in-
dividual Ri

0, on the other hand, it captures the contribution of indirect transmission,
where an infected individual contaminates the environment, leading to subsequent in-
fections. Public health interventions can target these specific pathways. Quarantine
measures reduce direct transmission, lowering Rd

0. Improved hygiene practices reduce
indirect transmission, lowering Ri

0. Consequently, the overall ability of the disease to
spread (reflected by R0) will also go down. This makes sense because there are fewer
ways for people to catch it.

3.2 Existence of endemic equilibrium

In the presence of infection, we show, in the following result, that the system (2) has a
unique endemic equilibrium.

Theorem 3.1 If R0 > 1, the model (2) has a unique endemic equilibrium point
E∗ = (S∗, I∗).

Proof. Consider the system (2), where E∗ = (S∗, I∗),

βdS
∗I∗

1 + α1S∗ + α2I∗
+ βiS

∗I∗ = Λ− µS∗,

βdS
∗I∗

1 + α1S∗ + α2I∗
+ βiS

∗I∗ = δI∗,

(3)

which implies that

Λ− µS∗ = δI∗.

We get S∗ as a function of I∗ as follows:

S∗ =
Λ− δI∗

µ
. (4)
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Now, we take the S∗ quadratic equation out from the first equation of (3) as

α1 (βiI
∗ + µ)S∗2

+ (βdI
∗ − α1Λ + (βiI

∗ + µ) (1 + α2I
∗))S∗ − Λ (1 + α2I

∗) = 0. (5)

Substituting (4) into (5) gives the cubic equation in I∗:

a1 (I
∗)

3
+ a2 (I

∗)
2
+ a3I

∗ = 0,

where

a1 = δβi (δα1 − µα2) ,

a2 = δµ (δα1 − µα2) + βiΛ (2δα1 − µα2)− δµ (βi + βd) ,

a3 = µΛβd + Λβi (µ+ Λα1)− δµ (µ+ α1Λ) .

The constant term a3 can be rewritten as

a3 = δµ (µ+ α1Λ)

(
Λβd

δ (µ+ α1Λ)
+

Λβi

δµ
− 1

)
= δµ (µ+ α1Λ) (R0 − 1) .

It is easily seen that a3 > 0 if R0 > 1. Additionally, we note that a1, a2 < 0 if 2δα1 < µα2.
According to the Descartes rule of signs, see Wang [16], the equation (2) possesses a
unique non-negative I∗.

The value of S∗ is then calculated using equation (4). As a result, the model (2) has
a unique endemic equilibrium point E∗ = (S∗, I∗) if R0 > 1.

4 Stability Analysis

4.1 Local stability

The local stability results for the model (2) are ensured by the following results.

Theorem 4.1 If R0 < 1, the model (2) at E0 is locally asymptotically stable and
unstable for R0 > 1.

Proof. The Jacobian matrix of the system (2) at E0 is given by

J =

(
−µ − βdΛ

µ+α1Λ
− βiΛ

µ

0 βdΛ
µ+α1Λ

+ βiΛ
µ − δ

)
.

The eigenvalues of J are λ1 = −µ and λ2 = δ (R0 − 1) . The matrix J has negative
eigenvalues when R0 < 1. Thus, E0 of the model (2) is locally asymptotically stable. If
R0 > 1, the eigenvalue λ2 > 0, so E0 is unstable.

Theorem 4.2 If R0 > 1, the model (2) at the disease endemic equilibrium point E∗

is locally asymptotically stable under the following conditions:

βdS
∗ (1 + α1S

∗)

(1 + α1S∗ + α2I∗)
2 < l, (6)

where

l = min

(
µ+ δ +

βdI
∗ (1 + α2I

∗)

(1 + α1S∗ + α2I∗)
2 + βiI

∗, δ +
βdI

∗ (1 + α2I
∗) δ

µ (1 + α1S∗ + α2I∗)
2 +

βiI
∗δ

µ

)
.
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Proof. The Jacobian matrix of the system (2) at E∗ is given by

J (E∗) =

(
−µ− βdI

∗(1+α2I
∗)

(1+α1S∗+α2I∗)2
− βiI

∗ − βdS
∗(1+α1S

∗)

(1+α1S∗+α2I∗)2
− βiS

∗

βdI
∗(1+α2I

∗)

(1+α1S∗+α2I∗)2
+ βiI

∗ βdS
∗(1+α1S

∗)

(1+α1S∗+α2I∗)2
+ βiS

∗ − δ

)
.

The characteristics equation det (J − λI) associated to J (E∗) is derived and given as

λ2 + a1λ+ a2 = 0, (7)

where

a1 = µ+ δ +
βdI

∗ (1 + α2I
∗)

(1 + α1S∗ + α2I∗)
2 + βiI

∗ − βdS
∗ (1 + α1S

∗)

(1 + α1S∗ + α2I∗)
2 − βiS

∗,

a2 = µδ +
βdI

∗ (1 + α2I
∗) δ

(1 + α1S∗ + α2I∗)
2 + βiI

∗δ − µβdS
∗ (1 + α1S

∗)

(1 + α1S∗ + α2I∗)
2 − µβiS

∗.

Thanks to the assumption (6), we know that ai > 0, i = 1, 2. Therefore, by the Routh–
Hurwitz criterion [4], all roots of (7) have negative real parts. Thus, E∗ is locally
asymptotically stable.

Remark 4.1 Taking into account the sign of real parts of λ in (7), we can establish
the following:

• if

µδ +
βdI

∗ (1 + α2I
∗) δ

(1 + α1S∗ + α2I∗)
2 + βiI

∗δ <
µβdS

∗ (1 + α1S
∗)

(1 + α1S∗ + α2I∗)
2 + µβiS

∗, (8)

the endemic equilibrium E∗ is a saddle point.

• if

µ+ δ +
βdI

∗ (1 + α2I
∗)

(1 + α1S∗ + α2I∗)
2 + βiI

∗ <
βdS

∗ (1 + α1S
∗)

(1 + α1S∗ + α2I∗)
2 + βiS

∗, (9)

the endemic equilibrium E∗ is unstable.

4.2 Global stability

We employed a Lyapunov function to analyze the global stability of both the DFE and
endemic equilibrium of the system. The stability of the DFE is established by the
following theorem.

Theorem 4.3 If R0 ≤ 1, the model (2) at the DFE E0 is globally asymptotically
stable.

Proof. We consider the following Lyapunov function:

L (S, I) =
1

1 + α1S0

(
S − S0 − S0 ln

S

S0

)
+ I. (10)

Taking derivative of (10) with respect to time t, one has

dL

dt
(S, I) =

1

1 + α1S0

(
1− S0

S

)
dS

dt
+

dI

dt

=
1

1 + α1S0

(
1− S0

S

)(
Λ− βdSI

1 + α1S + α2I
− βiSI − µS

)
+

βdSI

1 + α1S + α2I
+ βiSI − δI.
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Given that S0 = Λ
µ and after simplification, we have

dL

dt
=

−µ
(
S0 − S

)2
(1 + α1S0)S

+
δI

(1 + α1S + α2I)
Rd

0 +
δα1SI

(1 + α1S + α2I)
Rd

0

− δI +
δI (1 + α1S)

(1 + α1S0)
Ri

0

=
−µ
(
S0 − S

)2
(1 + α1S0)S

+
δI

(1 + α1S + α2I)

(
Rd

0 − 1
)

+
δα1SI

(1 + α1S + α2I)

(
Rd

0 − 1
)
− δα2I

2

1 + α1S + α2I
+

δI (1 + α1S)

(1 + α1S0)
Ri

0

=
−µ
(
S0 − S

)2
(1 + α1S0)S

+
P

1 + α1S + α2I

(
Rd

0 − 1
)
− δα2I

2

1 + α1S + α2I

+
P

(1 + α1S0)
Ri

0,

where P = δ (α1S + 1) I. We end the proof by noting that

P

1 + α1S + α2I

(
Rd

0 − 1
)
+

P

(1 + α1S0)
Ri

0

≤ P

(1 + α1S + α2I)
(R0 − 1) +

P

(1 + α1S0)
(R0 − 1) .

Thus

dL

dt
≤

−µ
(
S0 − S

)2
(1 + α1S0)S

+
P
((
1 + α1S

0
)
+ (1 + α1S + α2I)

)
(1 + α1S + α2I) (1 + α1S0)

(R0 − 1)

− δα2I
2

1 + α1S + α2I
.

It is obvious that dL
dt < 0 if R0 ≤ 1 for all (S, I) ̸=

(
S0, 0

)
. Also, dL

dt = 0 if and only
if (S, I) is at E0. Hence, the La Salle invariance principle states that the DFE point of
system (2) is globally asymptotically stable.

Theorem 4.4 If R0 > 1, the model (2) at the endemic equilibrium E∗ is globally
asymptotically stable under the following conditions:(

1 + α1S
∗ + α2I

∗

1 + α1S + α2I
− 1

)(
I∗

I
− S∗

S

)
≤ 0. (11)

Proof. We consider the following Lyapunov function:

L (t) = S − S∗ − S∗ ln
S

S∗ +

(
I − I∗ − I∗ ln

I

I∗

)
. (12)

Taking the time derivative of (12), we have

dL (t)

dt
=

(
1− S∗

S

)
dS (t)

dt
+

(
1− I∗

I

)
dI (t)

dt
.
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Substituting the values of dS(t)
dt and dI(t)

dt into the above equation, and using the equalities

Λ =
βdS

∗I∗

1 + α1S∗ + α2I∗
+ βiS

∗I∗ + µS∗,

δI∗ =
βdS

∗I∗

1 + α1S∗ + α2I∗
+ βiS

∗I∗

give

dL (t)

dt
=

(
1− S∗

S

)
(

βdS
∗I∗

1 + α1S∗ + α2I∗
+ βiS

∗I∗ + µS∗ − βdSI

1 + α1S + α2I
− βiSI − µS

)
+

(
1− I∗

I

)(
βdSI

1 + α1S + α2I
+ βiSI − δI

)
= −µ

(S − S∗)
2

S
+

βdS
∗I∗

1 + α1S∗ + α2I∗
+ βiS

∗I∗ − βdSI

1 + α1S + α2I

− βiSI −
βd (S

∗)
2
I∗

S (1 + α1S∗ + α2I∗)
− βi (S

∗)
2
I∗

S
+

βdS
∗I

1 + α1S + α2I

+ βiS
∗I +

βdSI

1 + α1S + α2I
+ βiSI −

βdS
∗I

1 + α1S∗ + α2I∗

− βiS
∗I − βdSI

∗

1 + α1S + α2I
− βiSI

∗ +
βdS

∗I∗

1 + α1S∗ + α2I∗
+ βiS

∗I∗.

It follows that

dL (t)

dt
= µ

(
2− S∗

S
− S

S∗

)
+ βiS

∗I∗
(
2− S∗

S
− S

S∗

)
+

βdS
∗I∗

1 + α1S∗ + α2I∗

(
2− S∗

S
− S

S∗

)
+

βdS
∗I∗

1 + α1S∗ + α2I∗(
I (1 + α1S

∗ + α2I
∗)

I∗ (1 + α1S + α2I)
− I

I∗
− S (1 + α1S

∗ + α2I
∗)

S∗ (1 + α1S + α2I)
+

S

S∗

)
=

(
µ+

βdS
∗I∗

1 + α1S∗ + α2I∗
+ βiS

∗I∗
)(

1− S∗

S

)(
1− S

S∗

)
+

βdS
∗I∗

1 + α1S∗ + α2I∗

(
1 + α1S

∗ + α2I
∗

1 + α1S + α2I
− 1

)(
I∗

I
− S∗

S

)
.

Clearly, (
1− S∗

S

)(
1− S

S∗

)
≤ 0,

and by (11), (
1 + α1S

∗ + α2I
∗

1 + α1S + α2I
− 1

)(
I∗

I
− S∗

S

)
≤ 0,

where strict equality holds when S = S∗ and I = I∗. Thus, E∗ is globally asymptotically
stable.
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5 Numerical Simulations

In this section, we assess the computational performance of the SIR model (2). We
employed the Non-standard Finite Difference scheme for the numerical simulations. All
numerical simulations and figure generations were performed in Matlab

5.1 Stability of disease-free equilibrium

In a disease-free equilibrium, the infection is completely absent among the population.
The specific values used for the biological parameters are presented in Table 2 [14].

Parameter Value

Λ 5
βd 0.003
βi 0.00006 (Assumed)
α1 0.002
α2 0.001
µ 0.05
d 0.06
γ 0.002

Table 2: Parameter values.

For these values of parameters, R0 < 1 and E0 exists at (250, 0). This implies that the
disease eventually disappear from the population. As shown in Figure 2, the solutions
of the system (2) with the initial values S(0) = 85 and I(0) = 12 converge towards E0,
which confirms that that E0 is globally asymptotically stable.
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Figure 2: Dynamical behavior of the susceptible and infected populations.

5.2 Stability of endemic equilibrium

We choose the set of parameters given in Table 3 [6].

We find that R0 > 1 and the condition 2δα1 < µα2 holds. The numerical solutions,
depicted in Figure 3, show that the susceptible and infected populations, with the initial
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Parameter Value

Λ 7
βd 0.003
βi 0.0000001 (Assumed)
α1 0.002
α2 0.5
µ 0.02
d 0.05
γ 0.002

Table 3: Parameter values.

values S(0) = 250 and I(0) = 45, converge towards an endemic equilibrium point E∗ =
(277.8749, 20.0348). This indicates that E∗ is globally asymptotically stable.

Furthermore, in Figure 4, we utilize the parameters from Table 4 to demonstrate
that E∗ = (5.2041, 3.5738) is globally asymptotically stable. This implies that, for the
given parameter set, the trajectories of both S and I will converge towards the same
steady-state value of E∗ regardless of the initial values assigned to S and I.

Parameter Value

Λ 1.97
βd 0.05
βi 0.01 (Assumed)
α1 0.001
α2 0.1
µ 0.2
d 0.03
γ 0.03

Table 4: Parameter values.
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Figure 3: Dynamical behavior of the susceptible and infected populations.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 25 (4) (2025) 386–398 397

0 5 10 15 20 25 30

 Susceptible population

0

5

10

15

20

25

30

 i
n

fe
c
te

d
 p

o
p

u
la

ti
o

n

IV
1
 (15,28)

IV
2
 (20,3)

IV
3
 (25,18)

IV
4
 (30,8)

IV
5
 (1,27)

Figure 4: Global stability of the endemic equilibrium point.

6 Conclusion

This study developed a SIR model incorporating both direct and indirect transmission
pathways to investigate the dynamics of COVID-19. By utilizing a Beddington-DeAngelis
infection rate and a bilinear incidence term, the model captured the intricate complexities
of disease spread. The model’s well-posedness was confirmed through the identification of
a positively invariant region. A rigorous analysis of the DFE E0 and endemic equilibrium
E∗ is conducted. The basic reproduction number R0 is decomposed into its direct Rd

0

and indirect Ri
0 components, reflecting the dual transmission mechanisms. Our findings

demonstrate that E0 is both locally and globally asymptotically stable when R0 < 1,
indicating disease eradication. Conversely, for R0 > 1, E0 becomes unstable, giving rise
to E∗. The local and global stability of E∗ is investigated under specific conditions.

The findings underscore that to effectively eradicate the disease (R0 < 1), a compre-
hensive approach is needed targeting both Rd

0 and Ri
0. Reducing Rd

0 through measures
such as mask-wearing, social distancing, and improved ventilation, in conjunction with
decreasing Ri

0 via hand hygiene and surface disinfection, is crucial. By quantifying the
relative contributions of these transmission modes to the overall R0, policymakers can
optimize resource allocation and implement targeted control strategies. For instance,
environments with high levels of indirect transmission (e.g., hospitals, nursing homes)
necessitate enhanced cleaning protocols and personal protective equipment to reduce
disease spread.

This study provides a basic framework for understanding COVID-19 transmission dy-
namics. Future investigations should incorporate additional factors such as age structure
and vaccination to refine the model’s predictive accuracy. By combining these insights
with real-world data, we can develop more effective public health measures to protect
communities from subsequent outbreaks.
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[4] N.P. Bhatia and G.P. Szegő. Stability Theory of Dynamical Systems. Springer-Verlag,
Berlin, 1970.

[5] D.L. DeAngelis, R.A. Goldstein, and R.V. O’Neill. A model for tropic interaction. Ecology
56 (4) (1975) 881–892.

[6] B. Dubey, P. Dubey, and U.S. Dubey. Dynamics of an SIR model with nonlinear inci-
dence and treatment rate. Applications and Applied Mathematics: An International Journal
(AAM) 10 (2) (2015) 5.

[7] M. El Hassnaoui, S. Melliani, and M. Oukessou. Application of accretive operators theory
to linear SIR model. Nonlinear Dynamics and Systems Theory (2022) 379.

[8] J.K. Hale and S.M.V. Lunel. Introduction to Functional Differential Equations. Springer
Science & Business Media, Berlin, 2013.

[9] Y. Jin, W. Wang, and S. Xiao. An SIRS model with a nonlinear incidence rate. Chaos,
Solitons & Fractals 34 (5) (2007) 1482–1497.

[10] W.O. Kermack and A.G. McKendrick. A contribution to the mathematical theory of epi-
demics. Proceedings of the Royal Society of London. Series A, Containing papers of a math-
ematical and physical character 115 (772) (1927) 700–721.

[11] A. Korobeinikov and G.C. Wake. Lyapunov functions and global stability for SIR, SIRS,
and SIS epidemiological models. Applied Mathematics Letters 15 (8) (2002) 955–960.

[12] H. Ouedraogo and A. Guiro. Analysis of dengue disease transmission model with general
incidence functions. Nonlinear Dynamics and Systems Theory (2023).

[13] M. Parsamanesh and M. Erfanian. Global dynamics of an epidemic model with standard
incidence rate and vaccination strategy. Chaos, Solitons & Fractals 117 (2018) 192–199.

[14] Swati and Nilam. Fractional order SIR epidemic model with Beddington–De Angelis inci-
dence and Holling type II treatment rate for COVID-19. Journal of Applied Mathematics
and Computing 68 (6) (2022) 3835–3859.

[15] P. van den Driessche and J. Watmough. Reproduction numbers and sub-threshold endemic
equilibria for compartmental models of disease transmission. Mathematical Biosciences 180
(1–2) (2002) 29–48.

[16] X. Wang. A simple proof of Descartes’s rule of signs. The American Mathematical Monthly
111 (6) (2004) 525–526.

[17] F. Zhang, Z.-z. Li and F. Zhang. Global stability of an SIR epidemic model with constant
infectious period. Applied Mathematics and Computation 199 (1) (2008) 285–291.


	Introduction
	Model Formulation and Analysis
	The Steady States
	Basic reproduction number
	Existence of endemic equilibrium

	Stability Analysis
	Local stability
	Global stability

	Numerical Simulations
	Stability of disease-free equilibrium
	Stability of endemic equilibrium

	Conclusion

