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1 Introduction

A problem with more than a one-hundred year history going back to the seminal work
of Hermann Weyl in [27] is the limit-point/limit-circle problem. It began with his work
on eigenvalue problems for the second order linear differential equation

(a(t)y′)′ + r(t)y = λy, t ∈ [0,∞), λ ∈ C, (C)

which he classified as being of the limit-circle type if every solution is square integrable
(belongs to L2), and to be of limit-point type if at least one solution does not belong to
L2. This problem has important connections to the solution of certain boundary value
problems as can be seen in the works of Titchmarsh [25,26].
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Weyl showed that if ℑ(λ) ̸= 0, then (C) always has a solution y ∈ L2(R+) (the
terminology “limit-point or limit-circle” arises somewhat naturally from the proof of this
fact); and if equation (C) is of the limit-circle type for some λ0 ∈ C, then (C) is limit-
circle for all λ ∈ C. In particular, if equation (C) is limit-circle for λ = 0, then it is
limit–circle for all values of λ, and if (C) is not limit–circle for λ = 0, then it is not
limit–circle for any value of λ.

The problem then reduces to whether equation (C) with ℑ(λ) ̸= 0 has one (limit-point
case) or two linearly independent solutions (limit-circle case) in L2. This is known as the
Weyl Alternative. The limit-point/limit-circle problem then becomes that of determining
conditions under which each of these two cases holds.

For additional discussion on the background and history of the limit-point/limit-circle
problem, we refer the reader to the classic work of Dunford and Schwartz [9], the work
of Coddington and Levinson [6], and the monographs [2] and [3].

Probably the best known limit-circle result for the equation

(a(t)y′(t))′ + r(t)y(t) = 0, t ≥ t0, (L)

is that of Dunford and Schwartz [9, Sect. XIII.6.20, p. 1410].

Theorem 1.1 Assume that∫ ∞

0

∣∣∣∣∣
[
(a(u)r(u))′

a
1
2 (u)r

3
2 (u)

]′

+
{[a(u)r(u)]′}2

4a
3
2 (u)r

5
2 (u)

∣∣∣∣∣du < ∞. (1)

If ∫ ∞

0

[1/(a(u)r(u))
1
2 ]du < ∞, (2)

then equation (L) is of the limit–circle type, i.e., every solution y(t) of (L) satisfies∫ ∞

t0

y2(u)du < ∞.

Their corresponding limit–point result is the following.

Theorem 1.2 Assume that (1) holds. If∫ ∞

0

[1/(a(u)r(u))
1
2 ]du = ∞, (3)

then equation (L) is of the limit–point type, i.e., there is a solution y(t) of (L) such that∫ ∞

t0

y2(u)du = ∞.

Interest in extending these results to nonlinear equations began in the mid-twentieth
century with the papers of Atkinson [1], Burlak [4], Detki [7], Elias [10], Hallam [18],
Suyemoto and Waltman [24], and Wong [28], and continued with the work of Graef and
Spikes [13–15,23].

Here we wish to ask whether results in the spirit of Theorems 1.1 and 1.2 can be
found for equations with fractional derivatives. In particular, we will study the nonlinear
fractional differential equation

(Nα(a(t)(Nαy)(t)))(t) + r(t)y2k−1(t) = 0, (NF)
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where R = (−∞,∞), R+ = [0,∞), α ∈ (0, 1], a, r : R+ → R+ are continuous, a′,
r′ ∈ ACloc(R+), a′′, r′′ ∈ L2

loc(R+), a(t) > 0, r(t) > 0, and k is a positive integer.
Here, Nα is the nonconformable fractional derivative developed by Nápoles Valdes et
al. [17, 19–21], which is defined as follows.

Definition 1.1 ( [17, Definition 2.1], [21, Definition 1]) Let f : [0,∞) → R. The
nonconformable fractional derivative of f of order α ∈ (0, 1) is defined by

(Nαf)(t) = lim
ϵ→0

f(t+ ϵet
−α

)− f(t)

ϵ

for all t > 0.

Corresponding to the nonconformable fractional derivative, we have the noncon-
formable fractional integral.

Definition 1.2 ([21, Definition 2]) Let f : [0,∞) → R. The nonconformable frac-
tional integral of f of order α ∈ (0, 1) is defined by

(NJα
t0f)(t) =

∫ t

t0

f(s)

es−α ds.

In light of Definitions 1.1 and 1.2, we see that the following lemma is needed.

Lemma 1.1 ([21, Theorem 3]) If f is Nα–differentiable on (t0,∞) with α ∈ (0, 1],
then for t > t0:

(a) If f is differentiable, then (NJα
t0(N

αf))(t) = f(t)− f(t0);

(b) (Nα(NJα
t0f))(t) = f(t).

As a convenience to the reader, we next list some properties of the nonconformable
fractional derivative.

Lemma 1.2 ([17, Theorem 2.3]) Let f and g be Nα differentiable at a point t > 0,
with α ∈ (0, 1]. Then:

(1) Nα(c) = 0 for any constant c ∈ R;

(2) Nα(fg)(t) = f(t)(Nαg)(t) + g(t)(Nαf)(t);

(3) Nα
(

f
g

)
=

g(t)(Nαf)(t)− f(t)(Nαg)(t)

g2(t)
;

(4) If f is differentiable (in the ordinary sense), then (Nαf)(t) = et
−α

f ′(t).

One very important advantage of using the nonconformable fractional derivative is
the existence of a chain rule, which we state here.

Lemma 1.3 ([17, Theorem 3.1]) Let α ∈ (0, 1], g be Nα differentiable at t > 0, and
f be differentiable at g(t). Then

Nα(f ◦ g)(t) = f ′(g(t))(Nαg)(t).
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The following Gronwall type inequality for nonconformable fractional derivatives was
obtained in [16].

Lemma 1.4 ([16, Lemma 2.7]) Let c ∈ R+ and a, u : R → R+. If

u(t) ≤ c+ (NJα
t0au)(t), (4)

then

u(t) ≤ c exp{(NJα
t0a)(t)}. (5)

At this point, it seems that some discussion of notation is needed. If f is a function
of u, then (Nαf)(u) denotes the nonconformable fractional derivative of f with respect
to u. However, if f is a function of u, and u in turn is a function of z, then we denote
the derivative of f with respect to z by (Nαf(u))(z), or (Nαf)(z) if no ambiguity exists.
With respect to integration, in the notation (NJα

t0f)(t), t0 denotes the initial point for
the integration and t is the terminal point, which may be ∞.

2 Nonlinear Limit-Point and Limit-Circle Results

We first have to define what we mean by nonlinear limit-point and limit-circle solutions
of equation (NF).

Definition 2.1 A solution y(t) of equation (NF) is said to be of the nonlinear limit-
circle type if

(NJα
t0y

2k)(∞) < ∞,

and to be of the nonlinear limit-point type if

(NJα
t0y

2k)(∞) = ∞.

To simplify the notation in what follows, we let

γ = 1/2(k + 1) and ω = (2k + 1)/2(k + 1).

We begin our analysis of equation (NF) by transforming it as follows. Let

s =

(
NJα

t0

rγ

aω

)
(t), y(t) = x(s(t)), (T)

and notice that

γ + ω = 1 and ω − γ = 2ω − 1 = k/(k + 1).

Then, by Lemma 1.3,

(Nαy)(t) = (Nαx)(s)
ds(t)

dt
= (Nαx)(s) [rγ(t)/aω(t)]

and

a(t)(Nαy)(t) = (Nαx)(s)
[
rγ(t)a1−ω(t)

]
,
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so that

Nα(a(t)(Nαy))(t) = (N2αx)(s)[rγ(t)a1−ω(t)] [rγ(t)/aω(t)] + (Nαx)(s)[rγ(t)a1−ω(t)]′

= (N2αx)(s)[r2γ(t)a1−2ω(t)] + (Nαx)(s)[rγ(t)a1−ω(t)]′

= (N2αx)(s)[r2γ(t)a1−2ω(t)] + (Nαx)(s)[rγ(t)aγ(t)]′

= (N2αx)(s)[r2γ(t)a1−2ω(t)] + γ(Nαx)(s)(r(t)a(t))γ−1(r(t)a(t))′.

Equation (NF) then becomes

(N2αx)(s)[r2γ(t)a1−2ω(t)] + α(Nαx)(s)(r(t)a(t))γ−1(r(t)a(t))′ + r(t)x2k−1(s) = 0,

or

(N2αx)(s) + γ(Nαx)(s)
(a(t)r(t))′

aγ(t)rγ+1(t)
+ (a(t)r(t))ω−γx2k−1(s) = 0,

which we will write as

(N2αx)(s) + γP (t)(Nαx)(s) +R(t)x2k−1(s) = 0, (Es)

where

P (t) =
[a(t)r(t)]′

aγ(t)rγ+1(t)
and R(t) = (a(t)r(t))ω−γ .

Remark 2.1 If k = 1, the transformation (T) does not reduce to the transformation
used, for example, in [9].

3 Limit-Point and Limit-Circle Results

We first have to define what we mean by nonlinear limit-point and limit-circle solutions
of equation (NF).

Definition 3.1 A solution y(t) of equation (NF) is said to be of the nonlinear limit-
circle type if

(NJα
t0y

2k)(∞) < ∞,

and to be of the nonlinear limit-point type if

(NJα
t0y

2k)(∞) = ∞.

Equation (Es) can then be written as the system{
(Nαx)(s) = z(s)− γP (t)x(s),

(Nαz)(s) = γ(NαP )(t)x(s)−R(t)x2k−1(s).
(S)

The motivation for the form of this system is due to Burton and Patula [5].
We define a Liapunov (energy) function V for this system by

V (s) = V (x, z, s) =
z2

2
+R(t)

x2k

2k
.

Then, along solutions of system (S),

(NαV )(s) = γ(NαP (t))(s)xz + x2k

[
(NαR(t))(s)

2k
− γR(t)P (t)

]
. (6)
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Now by Lemma 1.3,

(NαR(t))(s)

2k
=

R′(t)(Nαt)(s)

2k
=

R′(t)

2k

aω(t)

rγ(t)

=
ω − γ

2k
(a(t)r(t))ω−γ−1(a(t)r(t))′

aω

rγ
= γ(a(t)r(t))′

a2ω−γ−1

r2γ−ω+1
(7)

and

γR(t)P (t) = γ(a(t)r(t))′
aω−2γ(t)

r2γ−ω+1(t)
= γ(a(t)r(t))′

a2ω−γ−1(t)

r2γ−ω+1(t)
. (8)

In view of (7) and (8), we see from (6) that

(NαV )(s) = γ(NαP (t))(s)x(s)z(s) = γP ′(t)
aω(t)

rγ(t)
x(s)z(s) (9)

since (NαP (t))(s) = P ′(t)a
ω(t)

rγ(t) . Notice that

|xz| = |R1/2(t)xz|
R1/2(t)

≤
[
R(t)

x2

2
+

z2

2

]
/R1/2(t)

≤
[
R(t)

(
x2k

2k
+ C1

)
+

z2

2

]
/R1/2(t) (10)

≤ V (s)/R1/2(t) + C1R
1/2(t)

for some C1 ≥ 0, a constant. Therefore,

(NαV )(s) ≤ γ(NαP (t))(s)V (s)/R1/2(t) + γ|(NαP (t))(s)|C1R
1/2(t).

Now if τ(s) denotes the inverse function of s(t),(
NJα

t0

{
|(NαP (τ))(s)|/R 1

2 (τ)
})

(s) =
(
NJα

t0

{
|{(ar)′/aγrγ+1}′|/(ar)(ω−γ)/2

})
(s)

and (
NJα

t0 |(N
αP (τ))|R 1

2 (τ))
)
(s) =

(
NJα

t0 |
{
(ar)′/aγrγ+1

}′ |(ar)(ω−γ)/2
)
(t).

Integrating (NαV )(s) gives

V (s) ≤ V (t0) + γ
(
NJα

t0 |N
αP (τ)|V/R 1

2 (τ)
)
(s) + C1γ

(
NJα

t0 |N
αP (τ)|R 1

2 (τ)
)
(s)

= V (t0) + γ
(
NJα

t0

{
|{(ar)′/aγrγ+1}′|/(ar)(ω−γ)/2

})
(s)

+ C1γ
(
NJα

t0 |
{
(ar)′/aγrγ+1

}′ |(ar)(ω−γ)/2
)
(s). (11)

We can now formulate our limit-circle result.

Theorem 3.1 Assume that(
NJα

t0

{
|{ar)′/aγrγ+1}′|/(ar)(ω−γ)/2

})
(∞) < ∞ (12)
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and (
NJα

t0

{
|(ar)′aαrα+1

}′ |(ar)(β−α)/2
)
(∞) < ∞. (13)

If (
NJα

t0

1

(ar)γ−ω

)
(∞) < ∞,

then any solution y of equation (NF) is of the nonlinear limit-circle type, that is,(
NJα

t0y
2k
)
(∞) < ∞.

Proof. From the analysis above, we arrive at (11). We see that condition (12) ensures
that the second term on the right-hand side of (11) is bounded, so by Lemma 1.4, for
some constant C2 > 0,

V (s) ≤ C2 exp
(
NJα

t0 |(N
αP (τ))|R 1

2 (τ)
)
(s).

Condition (13) then shows that V (s) is bounded, say, V (s) ≤ C3 for some C3 > 0.
Therefore,

(a(t)r(t))ω−γy2k(t) = (a(t)r(t))ω−γx2k(s) ≤ 2kC3,

and so it follows that(
NJα

t0y
2k(t)

)
≤ 2kC3

(
NJα

t0 [1/(a(u))r(u))
ω−γ ]

)
(∞) < ∞

by condition (14), and so all solutions of equation (NF) are of the nonlinear limit–circle
type. 2

Notice that if we are in the linear case (i.e., k = 1), then in reconstructing V (s) in
(10), the constant C1 ≡ 0, and so condition (13) is not needed in the theorem.

Next, we wish to formulate and prove a limit-point result for equation (NF).

Theorem 3.2 In addition to conditions (12) and (13), assume that there are con-
stants D1, D2 > 0 such that∣∣∣(Nα(ar))(t)/a1/2(t)r3/2(t)

∣∣∣ ≤ D1 (14)

and
|a 1

2 (t)(Nαr)(t)/r
3
2 (t)| ≤ D2. (15)

In addition, assume that(
NJα

t0

{
[(Nα(ar))(t)]

2
/ar3

})
(∞) < ∞ (16)

and (
NJα

t0{a[(N
αr)(t)]2/r3}

)
(∞) < ∞. (17)

If (
NJα

t0 [1/(ar)
ω−γ ]

)
(∞) = ∞, (18)

then equation (NF) is of the nonlinear limit-point type, that is, there is a solution y of
(NF) such that (

NJα
t0y

2k
)
(∞) = ∞.
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Proof. Suppose that equation (NF) is of the nonlinear limit-circle type, and let y be
one such solution. Then, since y2 ≤ y2k + 1 for all y ∈ R and (17) holds,(

NJα
t0{[(N

α(ar)(t)]2y2/ar3}
)
(s)

≤ D2
1

(
NJα

t0y
2k
)
(t) +

(
NJα

t0{[(N
α(ar)(t)]2/ar3}

)
(s) < ∞. (19)

Now if we multiply equation (NF) by y(t)/r(t), use the identity
y(t)(Nα(a(t)(Nαy)(t)))(t) = y(t)(Nα(a(t)(Nαy)))(t) − a(t)[(Nαy)(t)]2, and inte-
grate by parts, we then obtain

a(t) (Nαy)(t)y/r) (t)− a(t1)(N
αy)(t1)y(t1)/r(t1)

+
(
NJα

t1 [a(t)(N
αy)(t)y(t)(Nαr)(t)/r2]

)
(t) +

(
NJα

t1y
2k
)
(t)

−
(
NJα

t1{a[(N
αy)(t)]2/r}

)
(t) = 0 (20)

for any t1 ≥ t0. An application of the Schwarz inequality gives∣∣(
NJα

t1 [a(N
αy)(t)y(Nαr)(t)/r2]

)
(t)

∣∣
≤

[(
NJα

t1{a[(N
αy)(t)]2/r}

)
(t)

] 1
2
[(

NJα
t1 [ay

2/(Nαr)(t)]2/r3}
)
(t)

] 1
2 .

From (15), we have

a(t)y2(t)[(Nαr)(t)]2/r3(t) ≤ {a(t)[(Nαr)(t)]2/r3(t)}[y2k(t) + 1]

≤ D2
2y

2k(t) + a(t)[(Nαr)(t)]2/r3(t),

so, integrating this expression, applying (17), and using the fact that y is a nonlinear
limit circle solution give(

NJα
t1{ay

2[(Nαr)(t)]2/r3}
)
(∞) ≤ C4 < ∞

for some C4 > 0. If y is not eventually monotonic, let {tj} → ∞ be an increasing
sequence of zeros of (Nαy)(t). Then from (20), we have

C4H
1
2 (tj) + C5 ≥ H(tj),

where
H(t) =

(
NJα

t1{a[(N
αy)(t)]2/r}

)
(t)

and C5 > 0 is a constant. It follows that H(tj) ≤ C6 < ∞ for all j and some constant
C6 > 0, so (

NJα
t0

{
a[(Nαy)(t)]2/r

})
(∞) < ∞. (21)

If y(t) is eventually monotonic, then y(t)(Nαy)(t) ≤ 0 for t ≥ t1 for sufficiently large
t1 ≥ t0 since y is a nonlinear limit-circle type solution. Using this in (20), we can repeat
the style of argument used above to again see that (21) holds.

Finally, we define V (s) as we did in the proof of Theorem 3.1, namely,

V (s) = z2/2 + (a(t)r(t))ω−γx2k/2k;

then
(NαV )(s) ≥ −γ|(NαP )(s)|V (s)/R

1
2 (t)− γ|(NαP )(t)|C1R

1
2 (t),
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so
(NαV )(s) + γ|(NαP )(s)|V (s)/R

1
2 (t) ≥ −γ|(NαP )(t)|C1R

1
2 (t). (22)

If we let G and g : R+ → R be given by

G(t) = γ|(NαP (t))(s)|/R 1
2 (t)

and
g(t) = γ|(NαP (t))(s)|C1R

1
2 (t),

(22) can be written as
(NαV )(s) +G(t)V (s) ≥ −g(t).

Therefore, (
Nα

(
V exp

(
NJα

t0G(τ)
)
(s)

))
≥ −g(t) exp

(
NJα

t0G(τ)
)
(s). (23)

Condition (12) ensures that

exp
(
NJα

t0G(τ)
)
(∞) ≤ C7 < ∞

for some constant C7 > 0, and condition (13) implies that

C7

(
NJα

t0g(τ)
)
(∞) ≤ C8 < ∞

for some C8 > 0.
Let y(t) be any solution of (NF) such that V (t0) = V (x(t0), z(t0), t0) > C8 + 1.

Integrating (23), we have

V (s) exp
(
NJα

t0G(τ)
)
(s) ≥ V (t0)− C8 > 1,

and so
V (s) ≥ 1/C8

for s ≥ 0. Dividing both members of this last inequality by (a(t)r(t))ω−γ and rewriting
the left-hand side in terms of t, we have

a(t)[(Nαy)(t)]2/2r + γ(a(t)r(t))′y(t)y′(t)/r2(t)

+ γ2[(a(t)r(t))′]2y2(t)/2a(t)r3(t) + y2k(t)/2k ≥ 1/C8(a(t)r(t))
ω−γ . (24)

If y(t) is a nonlinear limit–circle solution of (NF), then (19) and (21) hold. By the
Schwarz inequality,∣∣(

NJα
t0

{
(Nα(ar))(t)y(Nαy)(t)/r2

})
(∞)

∣∣
≤

[(
NJα

t0

{
[Nα(ar)(t)]2y2/ar3)

}
(∞)

)] 1
2[(

NJα
t0

{
a[(Nαy)(t)]2/r)

})
(∞)

] 1
2 < ∞

by (19) and (21). Since y(t) is a nonlinear limit-circle type solution, an integration of
(24) contradicts (18). 2

Remark 3.1 From the proof of Theorem 3.2, we can see that if conditions (14) and
(16) hold, then (19) is a necessary condition for the existence of a nonlinear limit-circle
solution of equation (NF). The same thing can be said about (21) if (15) and (17) hold.
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Based on Theorems 3.1 and 3.2, we have the following necessary and sufficient con-
dition for equation (NF) to be of the nonlinear limit-circle type.

Theorem 3.3 Let conditions (12)–(17) hold. Then equation (NF) is of the nonlinear
limit-circle type if and only if(

NJα
t0 [1/(ar)

ω−γ ]
)
(∞) =

(
NJα

t0 [1/(ar)
k/(k+1)]

)
(∞) < ∞. (25)

We conclude this paper with a brief discussion of some possible directions for further
research. One somewhat obvious possibility is to explore sublinear equations, that is,
equations of the form

(Nα(a(t)(Nαy)(t)))(t) + r(t)yδ(t) = 0,

where 0 < δ < 1. Of course, equations with more general nonlinear terms such as f(y)
instead of y2k−1 in (NF), is another possible direction for further research. Adding a
forcing term to equation (NF) should not cause major difficulties. Exploring similar
results to those in this paper for equations with a delay argument or for equations with
a neutral term, would also be of interest.

Another interesting possible direction would be to look at the relationship between
limit-point and limit-circle solutions of (NF) and other asymptotic properties of solutions
such as boundedness, oscillation, convergence to zero, stability, etc.

Equations of higher order are another possible direction of interest. This would require
the notion of deficiency indicies; in this regard, the works of Devinatz [8], Dunford and
Schwartz [9], Everitt [11], Fedorjuk [12], and Naimark [22] would be useful. As a final
suggestion, equation (NF) with r(t) < 0 is another possibility, but in that case, the
continuability of solutions becomes an issue.
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[20] J. E. Nápoles Valdes, P. M. Guzman, and L. M. Lugo. On the stability of solutions of
nonconformable differential equations. Stud. Univ. Babeş-Bolyai Math., to appear.
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