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Abstract: The generalized type H∞ control problem is investigated for a class
of linear descriptor systems with nonzero initial state. A generalized performance
measure is used, which characterizes the weighted damping level of external and
initial disturbances. A non-degenerate transformation of the system is proposed,
which allows to apply known evaluation methods and achieve desired performance
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1 Introduction

In modern control theory, great attention is paid to descriptor (differential-algebraic)
systems, which are used in modeling the motion of objects in mechanics, robotics, energy,
electrical engineering, economics, etc. (see, e.g., [1–5]). Equations of motion, inputs
and outputs of controlled objects may contain uncertain elements (parameters, external
disturbances, measurement inaccuracies, etc.) that necessitate solving the problems of
robust stabilization and minimize the impact of bounded disturbances on the quality of
transient processes (H∞ optimization).

A typical performance measure in the H∞ optimization problem for systems with zero
initial state is a damping level of external (exogenous) disturbances, which corresponds
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to the maximum value of the ratio for L2-norms of controlled output and disturbances.
For a class of the linear descriptor systems

Eẋ = Ax+Bw, z = Cx+Dw, (1)

this characteristic coincides with the H∞-norm of the matrix transfer function

∥H∥∞ = sup
ω∈R

√
λmax(H⊤(−iω)H(iω)), H(λ) = C(λE −A)−1B +D,

where x ∈ Rn is the state, z ∈ Rk is the controlled output and w ∈ Rs represents the
exogenous input (external disturbances), E, A, B, C and D are the constant matrices
with compatible dimensions, λmax(·) denotes the maximum eigenvalue of a matrix.

In practice, it is advisable to apply generalized performance measures of the form [6,7]

J0 = sup
0<∥w∥P<∞

∥z∥Q
∥w∥P

, J = sup
{w,x0}∈W

∥z∥Q√
∥w∥2P + x⊤

0 X0x0

. (2)

Here, ∥z∥Q and ∥w∥P are the weighted L2-norms of z and w, respectively,

∥z∥Q =

√∫ ∞

0

z⊤Qz dt, ∥w∥P =

√∫ ∞

0

w⊤Pw dt,

W is a set of admissible pairs {w, x0} of the system such that 0 < ∥w∥2P +x⊤
0 X0x0 < ∞,

P = P⊤ > 0, Q = Q⊤ > 0 and X0 = E⊤HE are the weight matrices, H = H⊤ > 0 and
the initial vector x0 = x(0−) (see also [8, 9]). It is obvious that J0 ≤ J . If P = Is and
Q = Ik, then J0 = ∥H∥∞. The value of J characterizes the weighted damping level of
external disturbances, as well as initial disturbances caused by the nonzero initial vector.

Well-known H∞ control design methods are based on the statements of the Bounded
Real Lemma type [10–12], which represent necessary and sufficient conditions for achiev-
ing the upper estimates of the performance measures used. These statements are formu-
lated in terms of quadratic matrix equations and linear matrix inequalities (LMIs). For
a class of linear descriptor systems, similar statements were established in [13–16]. For
the available H∞ optimization methods for such systems, see, e.g., [3, 5, 7, 13,15,17].

This paper proposes new methods for solving the generalized H∞ control problem
for linear descriptor systems with performance measures of the form (2) based on a
nonsingular transformation of such systems into ordinary ones and the application of well-
known methods for synthesis of static and dynamic controllers. As a result, in a number of
cases, the corresponding control synthesis algorithms are based on LMIs solving without
additional rank constraints. In particular, the order of the desired dynamic controller
in such synthesis algorithms does not exceed the rank of the coefficient matrix at the
state derivative in the original system. Also, a distinctive feature of the obtained results
compared to known results is the application of weighted performance measures, which
provide new opportunities for achieving the desired characteristics of descriptor control
systems. By using weight coefficients in these performance criteria, we can establish
priorities between the components of controlled output and the unknown disturbances
in the control system.

Note that quite effective computer tools have been created for solving LMIs, for
example, the LMI Toolbox of MATLAB software [18]. The LMIRank and YALMIP
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tools with MATLAB [19, 20] as well as the Solve Block in Mathcad Prime software [21]
can be used to solve LMIs with rank constraints.

Notations: In is the identity n×nmatrix; 0n×m is the zero n×mmatrix; X = X⊤ > 0
(≥ 0) is a positive (nonnegative) definite symmetric matrix; σ(A) is the spectrum of A;
A−1(A+) is the inverse (pseudo-inverse) of A; KerA is the kernel of A; WA is the right
null matrix of A ∈ Rm×n, that is, AWA = 0, WA ∈ Rn×(n−r), rankWA = n − r, where
r = rankA < n (WA = 0 if r = n); ∥w∥P is the weighted L2-norm of a vector function
w(t); C− is the open half-plane Reλ < 0.

2 Definitions and Auxiliary Statements

Consider the descriptor system (1) with rankE = r < n and the performance measures
(2). The system is said to be admissible if the pair of matrices {E,A} is regular, stable
and impulse-free [1], i.e., detF (λ) ̸≡ 0 (λ ∈ C), σ(F ) ⊂ C− and deg {detF (λ)} = r,
respectively. Here, σ(F ) is the finite spectrum of the matrix pencil F (λ) = A−λE. The
system (1) is called internally stable if it is stable without disturbances (w ≡ 0).

The pair of matrices {E,A} is regular if and only if there exist nonsingular matrices L
and R that transform it to the canonical Weierstrass form [22]. System (1) is impulse-free
if and only if [2]

rank

[
E 0
A E

]
= n+ r. (3)

Let E = E1E
⊤
2 be the skeletal decomposition of E, where E1, E2 ∈ Rn×r are matrices

of full rank r. Denote the corresponding orthogonal complements by E⊥
1 , E⊥

2 ∈ Rn×(n−r)

such that E⊤
i E⊥

i = 0 and det
[
Ei E⊥

i

]
̸= 0, i = 1, 2.

Define a nonsingular transformation of system (1) by

LER =

[
Ir 0
0 0

]
, LAR =

[
A1 A2

A3 A4

]
, x = R

[
ξ1
ξ2

]
, ξ1 ∈ Rr, ξ2 ∈ Rn−r, (4)

where

L =

[
E+

1

E⊥+
1

]
, E+

1 = (E⊤
1 E1)

−1E⊤
1 , E⊥+

1 = (E⊥⊤
1 E⊥

1 )−1E⊥⊤
1 ,

R =
[
E+⊤

2 E⊥+⊤
2

]
, E+

2 = (E⊤
2 E2)

−1E⊤
2 , E⊥+

2 = (E⊥⊤
2 E⊥

2 )−1E⊥⊤
2 ,

A1 = E+
1 AE+⊤

2 , A2 = E+
1 AE⊥+⊤

2 , A3 = E⊥+
1 AE+⊤

2 , A4 = E⊥+
1 AE⊥+⊤

2 .

Note that

L−1 =
[
E1 E⊥

1

]
, R−1 =

[
E⊤

2

E⊥⊤
2

]
, ξ1 = E⊤

2 x, ξ2 = E⊥⊤
2 x.

It is easy to establish that (3) is equivalent to the inequality detA4 ̸= 0, i.e.,

det (E⊥⊤
1 AE⊥

2 ) ̸= 0. (5)

Eliminating the variable ξ2 = −A−1
4

(
A3ξ1 +B2w

)
under the condition (5), based on the

transformation (4), we obtain the ordinary system

ξ̇1 = Āξ1 + B̄w, z = C̄ξ1 + D̄w, ξ1(0) = ξ10, (6)
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where

Ā = A1 −A2A
−1
4 A3, B̄ = B1 −A2A

−1
4 B2, C̄ = C1 − C2A

−1
4 A3, D̄ = D − C2A

−1
4 B2,

LB =

[
B1

B2

]
, CR =

[
C1 C2

]
.

The spectrum of matrix Ā coincides with σ(F ) and the performance measures J0 and
J of impulse-free system (1) do not depend on ξ2 and are determined by system (6) since[

Ir −A2A
−1
4

0 In−r

]
LF (λ)R

[
Ir 0

−A−1
4 A3 In−r

]
=

[
Ā− λIr 0

0 A4

]
,

x⊤
0 X0x0 =

[
ξ⊤10 ξ⊤20

]
R⊤E⊤L⊤L−1⊤HL−1LER

[
ξ10
ξ20

]
= ξ⊤10H̄ξ10,

where H̄ = E⊤
1 HE1. Therefore, applying Lemma 4.1 from [23] to system (6), we have

the following statement.

Lemma 2.1 System (1) is admissible with J0 < γ if and only if (5) holds and there
exists a matrix X = X⊤ > 0 such that

Φ̄(X) =

[
Ā⊤X +XĀ+ C̄⊤QC̄ XB̄ + C̄⊤QD̄

B̄⊤X + D̄⊤QC̄ D̄⊤QD̄ − γ2P

]
< 0. (7)

The system is admissible with J < γ if and only if (5) holds and the LMIs (7) and

0 < X < γ2H̄ (8)

are feasible.

Lemma 2.1 can be used to calculate the characteristics J0 and J of system (1) based
on solving the corresponding optimization problems. At the same time, the restrictions
in these problems are used exclusively in terms of LMIs:

J0 = inf
{
γ : Φ̄(X) < 0, X > 0

}
, J = inf

{
γ : Φ̄(X) < 0, 0 < X < γ2H̄

}
.

For the worst-case perturbation vector w(t) with respect to J0, in (2), the supremum
is reached, i.e., ∥z∥Q = J0∥w∥P . If ∥z∥2Q = J2

(
∥w∥2P + x⊤

0 X0x0

)
, then {w(t), x0} is the

worst-case pair with respect to J in system (1). The methods of finding such vectors in
individual cases are proposed in [8, 24, 25]. For example, if system (1) is admissible and
there exists a matrix X such that

A⊤
0 X +X⊤A0 +X⊤R0X +Q0 = 0, 0 ≤ E⊤X = X⊤E ≤ J2X0,

where A0 = A + BR−1
1 D⊤QC, R0 = BR−1

1 B⊤, Q0 = C⊤ (
Q + QDR−1

1 D⊤Q
)
C,

R1 = J2P − D⊤QD > 0, then the worst-case pair {w(t), x0} with respect to J can be
defined as w = K∗x with K∗ = R−1

1 (B⊤X +D⊤QC) and x0 ∈ Ker (E⊤X − J2X0) [25].
We present another method of finding the worst-case pair {w(t), x0} with respect to

J for impulse-free system (1) based on the transformation (4). Under condition (5), we
construct the worst-case initial vector in the form

x0 = R

[
ξ10

−A−1
4

(
A3ξ10 +B2w(0)

) ]
, (9)
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where {w(t), ξ10} is the worst-case pair of system (6) with respect to J .
According to the Schur complement lemma [10], the condition (7) is equivalent to the

Riccati matrix inequality

Ā⊤
0 X +XĀ0 +XR̄0X + Q̄0 < 0, (10)

where Ā0 = Ā + B̄ R̄−1
1 D̄⊤QC̄, R̄0 = B̄ R̄−1

1 B̄⊤, Q̄0 = C̄⊤(Q + QD̄ R̄−1
1 D̄⊤Q

)
C̄, R̄1 =

γ2P − D̄⊤QD̄ > 0. If the pair {Ā, B̄} is controllable, the pair {Ā, C̄} is observable, and
J0 < γ, then the corresponding Riccati matrix equation

Ā⊤
0 X +XĀ0 +XR̄0X + Q̄0 = 0 (11)

has the solutions X− and X+ such that σ(Ā0 + R̄0X±) ⊂ C±, 0 < X− < X+, and
every solution of inequality (10) belongs to the interval X− < X < X+ (see [26, 27]).
Moreover, if J < γ (J ≤ γ) and X satisfies (11), then X < γ2H̄ (X ≤ γ2H̄). Indeed,
setting v(ξ1) = ξ⊤1 Xξ1 and

w = K̄∗ξ1, K̄∗ = R̄−1
1

(
B̄⊤X + D̄⊤QC̄

)
, (12)

we get v̇ + z⊤Qz − γ2w⊤Pw = 0, where v̇ is the derivative of the Lyapunov function v
along the trajectory of system (6). Integrating the above equality from zero to infinity
under the condition J < γ, we get ∥z∥2Q − γ2∥w∥2P = ξ⊤10Xξ10 < γ2ξ⊤10H̄ξ10 for any
ξ10 ̸= 0, otherwise J ≥ γ. If J = γ, then under conditions (11) and (12), the equality
ξ⊤10Xξ10 = γ2ξ⊤10H̄ξ10 or its equivalent (X − γ2H̄)ξ10 = 0 is possible for some ξ10 ̸= 0.
At the same time, ∥z∥2Q = J2(∥w∥2P + ξ⊤10H̄ξ10), i.e., in (2), the supremum is reached.
Hence, the following statement holds.

Lemma 2.2 Let X > 0 be the stabilizing solution of the Riccati equation (11) with
γ = J . Then the structured vector of external disturbances (12), where ξ1 is a solution
of the system

ξ̇1 = (Ā+ B̄K̄∗)ξ1, ξ1(0) = ξ10, (13)

and the vector (9) with ξ10 ∈ Ker (X − J2H̄) present the worst-case pair {w(t), x0} with
respect to J in system (1). If X > 0 is the stabilizing solution of (11) with γ = J0 and
ξ1 = ξ1(t, ξ10) is a solution of (13) at ξ10 = 0, then (12) are the worst-case disturbances
with respect to J0 in system (1).

3 Main Results

Consider a class of linear descriptor control system described by

Eẋ = Ax+B1w +B2u, x(0−) = x0,
z = C1x+D11w +D12u,
y = C2x+D21w +D22u,

(14)

where x ∈ Rn is the state, u ∈ Rm is the control input, w ∈ Rs represents the exogenous
input, z ∈ Rk is the controlled output and y ∈ Rl is the measured output. In (14),
all matrix coefficients are constant, rankE = r < n and the pair {E,A} is regular and
impulse-free. The components of w(t) can be both external disturbances acting on the
system and errors of the measured output. This vector must be bounded by the weighted
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norm. The initial perturbations in the system are caused by the unknown initial vector
x0.

We are interested in the stabilizing control laws that guarantee the internal stability
of the closed-loop system and the desired upper estimates of performance measure (2)
for the system with respect to the controlled output z. Static and dynamic controllers
that minimize the performance measure J are called J-optimal. For the identity weight
matrices P and Q, the J0-optimal control is called H∞-optimal. The search for J0- and
J-optimal controllers can be performed based on achieving the corresponding estimates
J0 < γ and J < γ for the minimum possible value of γ.

When studying the class of systems (14), their properties such as C-, R- and I-
controllability, as well as the dual properties C-, R- and I-observability, are used [3, 5].
In particular, for solvability of the generalized H∞ optimization problems, the triple
{E,A,B2} must be stabilizable and I-controllable. This is equivalent to the existence of
a matrix K such that the pair {E,A+B2K} is stable and impulse-free, i.e., admissible.
The I-controllability of the triple {E,A,B2} and I-observability of the triple {E,A,C2}
are equivalent to the corresponding equalities [28]

rank

[
E 0 0
A E B2

]
= n+ r, rank

 E A
0 E
0 C2

 = n+ r. (15)

We apply the equivalent transformation (4) to system (14). Excluding the variable
ξ2 = −A−1

4

(
A3ξ1 +B12w +B22u

)
under condition (5), we get the ordinary system

ξ̇1 = Āξ1 + B̄1w + B̄2u, z = C̄1ξ1 + D̄11w + D̄12u, y = C̄2ξ1 + D̄21w + D̄22u, (16)

where Ā = A1 −A2A
−1
4 A3, B̄1 = B11 −A2A

−1
4 B12, B̄2 = B21 −A2A

−1
4 B22,

C̄1 = C11 − C12A
−1
4 A3, D̄11 = D11 − C12A

−1
4 B12, D̄12 = D12 − C12A

−1
4 B22,

C̄2 = C21 − C22A
−1
4 A3, D̄21 = D21 − C22A

−1
4 B12, D̄22 = D22 − C22A

−1
4 B22,

LB1 =

[
B11

B12

]
, LB2 =

[
B21

B22

]
, C1R =

[
C11 C12

]
, C2R =

[
C21 C22

]
.

Defining the performance measure (2) for this system, we use the expression x⊤
0 X0x0 =

ξ⊤10H̄ξ10, where ξ10 = ξ1(0), H̄ = E⊤
1 HE1 (see the previous section).

Thus, the J0- and J-optimization problems for descriptor system (14) with the
impulse-free pair {E,A} are reduced to the application of well-known methods for solving
similar problems for system (16).

3.1 Static controller

When using for system (16) the static output-feedback controller

u = Ky, det(Im −KD̄22) ̸= 0, (17)

the closed-loop system has the form

ξ̇1 = A∗ξ1 +B∗w, z = C∗ξ1 +D∗w, (18)

where A∗ = Ā + B̄2K0C̄2, B∗ = B̄1 + B̄2K0D̄21, C∗ = C̄1 + D̄12K0C̄2, D∗ = D̄11 +
D̄12K0D̄21 and K0 = (Im − KD̄22)

−1K. The controller (17) will also be used for the
original system (14).



416 A. G. MAZKO

Applying the Schur complement lemma [10], we rewrite the inequality (7) in Lemma
2.1 for system (18) as the LMI with respect to K0:A⊤

∗ X +XA∗ XB∗ C⊤
∗

B⊤
∗ X −γ2P D⊤

∗
C∗ D∗ −Q−1

 = L⊤
0 K0R0 +R⊤

0 K
⊤
0 L0 +Ω < 0, (19)

where R0 =
[
C̄2 D̄21 0l×k

]
, L0 =

[
B̄⊤

2 X 0m×s D̄⊤
12

]
and

Ω =

 Ā⊤X +XĀ XB̄1 C̄⊤
1

B̄⊤
1 X −γ2P D̄⊤

11

C̄1 D̄11 −Q−1

.
Based on Lemma 2.1 and Theorem 5.1 from [7], we have the following result.

Theorem 3.1 For system (14), there is a static output-feedback controller (17) such
that the closed-loop system is admissible and J < γ if and only if (8) and

W⊤
R̄

[
Ā⊤X +XĀ+ C̄⊤

1 QC̄1 XB̄1 + C̄⊤
1 QD̄11

B̄⊤
1 X + D̄⊤

11QC̄1 D̄⊤
11QD̄11 − γ2P

]
WR̄ < 0, (20)

W⊤
L̄

[
ĀY + Y Ā⊤ + B̄1P

−1B̄⊤
1 Y C̄⊤

1 + B̄1P
−1D̄⊤

11

C̄1Y + D̄11P
−1B̄⊤

1 D̄11P
−1D̄⊤

11 − γ2Q−1

]
WL̄ < 0, (21)

W =

[
X γIr
γIr Y

]
≥ 0, rankW = r, (22)

where R̄ =
[
C̄2 D̄21

]
and L̄ =

[
B̄⊤

2 D̄⊤
12

]
, are feasible for some X and Y .

The gain matrix of the controller can be found as K = K0(Il + D̄22K0)
−1, where K0

is a solution of (19).

Note that (22) hold if and only if X = X⊤ > 0, Y = Y ⊤ > 0 and XY = γ2Ir. In
what follows, we present the corollaries of Lemma 2.1 and Theorem 3.1 for

rank C̄2 = r ≤ l, D̄21 = 0, D̄22 = 0, (23)

D̄⊤
11QD̄11 < γ2P. (24)

Conditions (23) are satisfied if, for example,

rank (C2E2) = r, C2E
⊥
2 = 0, D21 = 0, D22 = 0.

Theorem 3.2 Suppose (23) and (24) hold. The following statements are equivalent:
1) for system (14), there is a static state-feedback controller (17), for which the closed-

loop system is admissible and J < γ;
2) there is a matrix Y > H̄−1 that satisfies (21);
3) there exist matrices Y > H̄−1 and Z satisfying the LMI γ2(ĀY + Y Ā⊤+ B̄2Z + Z⊤B̄⊤

2 ) γ2B̄1 Y C̄⊤
1 + Z⊤D̄⊤

12

γ2B̄⊤
1 −γ2P D̄⊤

11

C̄1Y + D̄12Z D̄11 −Q−1

 < 0. (25)

When statement 2) holds, the desired gain matrix K = K0 of controller (17) in
statement 1) can be found as a solution of (19) with X = γ2Y −1. If statement 3) holds,
then this matrix can be defined as a solution of the linear equation KC̄2Y = Z.
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Proof. Given the conditions (23), we have y = C̄2ξ1 = C̄2E
⊤
2 x and l ≥ r. The

equivalence of statements 1) and 2) follows from Theorem 3.1 since WR̄ =
[
0 Is

]⊤
under conditions (23). In this case, the inequality (20) takes the form (24) and does not
depend on X. The desired matrix in (21) has the form Y = γ2X−1. Therefore, instead
of (8), we have the equivalent condition Y > H̄−1. Given (23), the matrix K of the
controller (17) satisfying statement 1) can be an arbitrary solution K0 of the LMI (19).

The equivalence of statements 1) and 3) follows from Lemma 2.1 for the closed-loop
system (18), where K0 = K. At the same time, the inequality (25) in statement 3) arises
as a result of multiplying the first block row on the left-hand side and the first block
column on the right-hand side of (19) by Y = γ2X−1, taking into account (23) and the
notation Z = KC̄2Y . The last correlation can be solved with respect to K:

K =

{
Z(C̄2Y )−1, l = r,
ZY −1C̄+

2 + TC̄⊥⊤
2 , l > r,

where T is an arbitrary m× (l − r) matrix. 2

Remark 3.1 Consider the case when the pair {E,A} in system (14) is not impulse-
free, but there exists a matrix K1 ∈ Rm×l such that

det (Im −K1D22) ̸= 0, det
[
E⊥⊤

1 (A+B2K10C2)E
⊥
2

]
̸= 0, (26)

where K10 = K11K1 and K11 = (Im − K1D22)
−1. It can be established that under

conditions (26), the rank relations (15) are satisfied, i.e., the system is I-controllable and
I-observable.

Under the above assumptions, instead of (17), we use the controller u = K1y + v,
where v is a new control in the system

Eẋ = Ãx+ B̃1w + B̃2v, z = C̃1x+ D̃11w + D̃12v, y = C̃2x+ D̃21w + D̃22v. (27)

Here, under condition (26), the pair {E, Ã} is impulse-free and

Ã = A+B2K10C2, B̃1 = B1 +B2K10D21, B̃2 = B2K11,

C̃1 = C1 +D12K10C2, D̃11 = D11 +D12K10D21, D̃12 = D12K11,

C̃2 = C2 +D22K10C2, D̃21 = D21 +D22K10D21, D̃22 = D22K11.

We perform an equivalent transformation of system (27) based on the relations

LER =

[
Ir 0
0 0

]
, LÃR =

[
Ã1 Ã2

Ã3 Ã4

]
, LB̃1 =

[
B̃11

B̃12

]
, LB̃2 =

[
B̃21

B̃22

]
,

C̃1R =
[
C̃11 C̃12

]
, C̃2R =

[
C̃21 C̃22

]
,

x = R

[
ξ1
ξ2

]
, ξ1 = E⊤

2 x, ξ2 = −Ã−1
4

(
Ã3ξ1 + B̃12w + B̃22v

)
,

where L and R are nonsingular matrices defined in (4). Then we can formulate analogues
of Theorems 3.1 and 3.2 using the static controller v = Ky for the ordinary system

ξ̇1 = Āξ1 + B̄1w + B̄2v, z = C̄1ξ1 + D̄11w + D̄12v, y = C̄2ξ1 + D̄21w + D̄22v, (28)
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where

Ā = Ã1 − Ã2Ã
−1
4 Ã3, B̄1 = B̃11 − Ã2Ã

−1
4 B̃12, B̄2 = B̃21 − Ã2Ã

−1
4 B̃22,

C̄1 = C̃11 − C̃12Ã
−1
4 Ã3, D̄11 = D̃11 − C̃12Ã

−1
4 B̃12, D̄12 = D̃12 − C̃12Ã

−1
4 B̃22,

C̄2 = C̃21 − C̃22Ã
−1
4 Ã3, D̄21 = D̃21 − C̃22Ã

−1
4 B̃12, D̄22 = D̃22 − C̃22Ã

−1
4 B̃22.

As a result, the original system (14) with the control

u =
(
K10C2 +K11K0C̄2E

⊤
2

)
x+

(
K10D21 +K11K0D̄21

)
w

takes the form
Eẋ = A0x+B0w, z = C0x+D0w, (29)

where K0 = (Im −KD̄22)
−1K, det(Im −KD̄22) ̸= 0,

A0 = A+B2

(
K10C2 +K11K0C̄2E

⊤
2

)
, B0 = B1 +B2

(
K10D21 +K11K0D̄21

)
,

C0 = C1 +D12

(
K10C2 +K11K0C̄2E

⊤
2

)
, D0 = D11 +D12

(
K10D21 +K11K0D̄21

)
.

3.2 Dynamic controller

When using for system (16) the dynamic controller of the order p

η̇ = Zη + V y, u = Uη +Ky, η(0) = 0, (30)

the closed-loop system in an extended phase space Rr+p has the form

˙̂x = Â∗x̂+ B̂∗w, z = Ĉ∗x̂+ D̂∗w, x̂(0) = x̂0, (31)

where

Â∗ = Â+ B̂2K̂0Ĉ2, B̂∗ = B̂1+ B̂2K̂0D̂21, Ĉ∗ = Ĉ1+ D̂12K̂0Ĉ2, D̂∗ = D̄11+ D̂12K̂0D̂21,

x̂ =

[
ξ1
η

]
, Â =

[
Ā 0r×p

0p×r 0p×p

]
, B̂1 =

[
B̄1

0p×s

]
, B̂2 =

[
B̄2 0r×p

0p×m Ip

]
,

Ĉ1 =
[
C̄1 0k×p

]
, Ĉ2 =

[
C̄2 0l×p

0p×r Ip

]
, D̂12 =

[
D̄12 0k×p

]
, D̂21 =

[
D̄21

0p×s

]
,

K̂0 =

[
K0 U0

V0 Z0

]
=

[
(Im −KD̄22)

−1K (Im −KD̄22)
−1U

V (Il − D̄22K)−1 Z + V D̄22(Im −KD̄22)
−1U

]
.

We define a performance measure Ĵ for system (31) of the form (2) with the weight

matrices P , Q and X̂0, where X̂0 is some block (r + p) × (r + p) matrix, whose first

diagonal block is H̄. The value of Ĵ coincides with J since η(0) = 0.

Lemma 3.1 [23]. Given positive definite matrices X,Y ∈ Rr×r and a number γ > 0,
there are matrices X1 ∈ Rp×r, X2 ∈ Rp×p, Y1 ∈ Rp×r and Y2 ∈ Rp×p such that

X̂ =

[
X X⊤

1

X1 X2

]
> 0, Ŷ =

[
Y Y ⊤

1

Y1 Y2

]
> 0, X̂Ŷ = γ2Ir+p (32)

if and only if

W =

[
X γIr
γIr Y

]
≥ 0, rankW ≤ r + p. (33)
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Theorem 3.3 For system (14), there is a dynamic controller (30) of order p ≤ r,
such that a closed-loop system is admissible and J < γ if and only if (8), (20), (21) and
(33) are feasible with respect to X and Y . The matrices of such controller can be defined
as [

K U
V Z

]
= (Im+p + K̂0D̂22)

−1K̂0, D̂22 =

[
D̄22 0l×p

0p×m 0p×p

]
, (34)

where K̂0 is a solution of the LMI

L̂⊤K̂0R̂+ R̂⊤K̂⊤
0 L̂+ Ω̂ < 0, (35)

R̂ =
[
Ĉ2 D̂21 0(l+p)×k

]
, L̂ =

[
B̂⊤

2 X̂ 0(m+p)×s D̂⊤
12

]
,

Ω̂ =

 Â⊤X̂ + X̂Â X̂B̂1 Ĉ⊤
1

B̂⊤
1 X̂ −γ2P D̂⊤

11

Ĉ1 D̂11 −Q−1

 .

The block matrix X̂ in (35) is formed on the basis of Lemma 3.1 according to (32), where
X and Y satisfy (8), (20), (21) and (33).

Taking into account the structure of matrices in (31), the system (16) with a dynamic
controller (30) can be represented as a system in the space Rr+p with a static controller:

˙̂x = Â x̂+ B̂1 w + B̂2 û, z = Ĉ1 x̂+ D̂11 w + D̂12 û, ŷ = Ĉ2 x̂+ D̂21 w,

x̂ =

[
ξ1
η

]
, ŷ =

[
y − D̄22u

η

]
, û =

[
u
η̇

]
, û = K̂0ŷ.

Therefore, Theorem 3.3 can be proved as a corollary of Theorem 3.1 and Lemma 3.1.
Note that Theorems 3.1 and 3.3, without using the constraint X < γ2H̄, give the

existence criteria and methods for constructing stabilizing controllers that provide the
estimate J0 < γ for the corresponding closed-loop systems. In the case p = 0, Theorem
3.3 yields a criterion for the existence of a static controller (17) with the properties
specified in Theorem 3.1. The construction of dynamic controllers of the order p = r
satisfying Theorem 3.3 reduces to the solution of the LMI system without additional
constraints. In this case, the rank constraint in (33) holds automatically.

We present the following algorithm for constructing a dynamic controller (30), which
satisfies Theorem 3.3.

Algorithm 3.1
1) Calculating the transforming matrices (4) and coefficient matrices of system (16);
2) calculating WR̄ and WL̄, where R̄ =

[
C̄2 D̄21

]
, L̄ =

[
B̄⊤

2 D̄⊤
12

]
;

3) finding matrices X and Y that satisfy (8), (20), (21) and (33);
4) constructing the decomposition ∆ = Y − γ2X−1 = S⊤S ≥ 0, where S ∈ Rp×r,
kerS = ker∆, and forming the block matrix

X̂ =

[
X X⊤

1

X1 X2

]
> 0, X1 =

1

γ
SX, X2 =

1

γ2
SXS⊤ + Ip;

5) solving the LMI (35) with respect to K̂0 taking into account det(Im +K0D̄22) ̸= 0;
6) calculating the controller matrices according to (34).
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Remark 3.2 Algorithm 3.1 can be implemented, e.g., by means of the MATLAB
software. If ∆ = 0 in step 4) of the algorithm, i.e., rankW = r, then solving the LMI
(19), we obtain the gain matrix of static controller (17), which satisfies Theorem 3.1.

Remark 3.3 If the pair {E,A} in system (14) is not impulse-free, but there is a
matrix K1 ∈ Rm×l satisfying (26), then we set u = K1y + v, where v is a new control
generated by

η̇ = Zη + V y, v = Uη +Ky, η(0) = 0,

which solves the problem for the ordinary system (28) formed on the basis of equivalent
transformation of system (27) (see the previous subsection). As a result, the closed-loop
descriptor system in the extended phase space has the form

Ê ˙̂x = Â0x̂+ B̂0w, z = Ĉ0x̂+ D̂0w, x̂(0) = x̂0, (36)

where

Ê =

[
E 0
0 Ip

]
, x̂ =

[
x
η

]
, x̂0 =

[
x0

0

]
,

Â0 =

[
A+B2(K10C2+K11G1) B2K11G2

V (C̄2E
⊤
2 +D̄22G1) Z + V D̄22G2

]
, B̂0 =

[
B1 +B2(K10D21+K11G3)

V (D̄21 + D̄22G3)

]
,

Ĉ0 =
[
C1 +D12(K10C2+K11G1) D12K11G2

]
, D̂0 = D11 +D12(K10D21 +K11G3),

G1 = K0C̄2E
⊤
2 , G2 = (Im −KD̄22)

−1U, G3 = K0D̄21, K0 = (Im −KD̄22)
−1K.

4 Example

Consider an electric circuit control system of the form described in (14), where [29]

E =

 L 0 0
0 C 0
0 0 0

 , A =

 −R1 −1 1
0 −1/R2 0
1 0 0

 , B1 = B2 =

 0
1
−1

 ,

C1 = C2 =

[
0 1 0
0 0 1

]
, D12 =

[
0
1

]
, D11 = D21 = D22 = 02×1,

x =
[
i v2 v1

]⊤
, z =

[
v2 v1 + u

]⊤
, y =

[
v2 v1

]⊤
, L = 3 is the inductance,

C = 2 is the capacitance, R1 = 2 and R2 = 1 are the resistances, i is the current, v1 and
v2 are the voltages, u is the control signal of a current source with bounded disturbance
w (see Fig. 1). In this system, the pair {E,A} is not impulse-free, the triples {E,A,B2}
and {E,A,C2} are I-controllable and I-observable, respectively.

Figure 1: The electrical circuit.
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We choose K1 =
[
0 1

]
satisfying (26) and the weight matrices for performance

measures (2): P = 1, Q = I2, X0 = E⊤HE, H = 3I3. Using Theorem 3.1 for system
(27) with γ = 1, 03624, we find the controller

v = Ky, K =
[
0.22439 −17.998625

]
,

such that the closed-loop system is admissible and J = 0.94402 < γ. At the same time,
the finite spectrum of the system coincides with σ(Ā) =

{
− 0.59314± 0.39471 i

}
, where

Ā is a system matrix of (28). Applying Lemma 2.2 for closed-loop system (29), the
worst-case pair {w, x0} with respect to J is found as follows:

w = K̄∗ξ1, K̄∗ =
[
−26.31483 −4.74882

]
, (37)

x0 =
[
−0.32886 0.08162 1.50212

]⊤
. (38)

Figure 2: Behavior of a closed-loop system. Figure 3: The worst-case perturbation
with respect to J .

Fig.2 shows the behavior of the solution of the closed-loop system under the worst-
case conditions (37) and (38), and Fig.3 shows the behavior of the worst-case disturbance
(37).

Next, applying Algorithm 3.1, the matrices of the approximate J-optimal dynamic
controller (30) of the order p = 2 are found for system (27) as follows:

[
K U
V Z

]
=

 0.16824 −2.24725 −0.00072 −0.15173
−0.00256 0.00014 −0.00063 0.00259
−0.10392 0.09342 −0.01008 −0.77037

 ,

for which the closed-loop system (36) is admissible with the finite spectrum{
− 0.72210± 0.30576 i, −0.77143, −0.00067

}
and has the minimum value of the performance measure J = 0.28356.
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5 Conclusion

Constructive methods for evaluating and achieving the desired damping level of external
and initial disturbances in descriptor control systems have been developed. The practical
implementation of these methods is based on the equivalent transformation of descriptor
systems and application of well-known methods of H∞ control theory for ordinary lower-
order systems. Thus, the existence conditions and algorithms for constructing a dynamic
controller of the order p = rankE, for which the closed-loop system is admissible with
weighted performance measures J0 < γ or J < γ, reduce to solving LMIs without
additional rank constraints. In the case, when the original descriptor system is not
impulse-free, it is proposed to search for an additional control that provides the specified
property of this system. The equivalent transformation of the descriptor system to the
ordinary one was also applied to find the worst-case external and initial disturbances with
respect to the weighted performance measures. Studying the behavior of a closed-loop
system under such worst-case conditions can be important in the design and testing of
real controlled objects.
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