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Abstract: The existence of homoclinic orbits in a dynamical system has interesting
consequences for its behavior. This is the case in this paper, where we present a
model of the discrete nonlinear Schrödinger equation under the Helmholtz operator.
We give the fundamental theorem of the existence of a homoclinic (heteroclinic) orbit
for a particular class of reversible planar maps. Homoclinic structures are known
to be sources of sensitivity that, under small perturbations, can bifurcate solutions.
The problem of the existence of solitons has therefore been replaced by that of the
existence of homoclinic solutions. We prove the existence of bright and dark solitons
in a certain case of nonlinearity.
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1 Introduction

Over the last decade, the existence of discrete solitons in DNLS equations has become
a hot topic of many studies, to mention just a few, refer to [7, 11–13, 15–17]. These
include variational methods, central manifold reduction, and the Nehari manifold ap-
proach. A good number of these papers take into account DNLS equations with constant
coefficients, and their conclusions have been presented in [7, 12, 15, 16, 19]. DNLS equa-
tions with periodic coefficients have recently appeared in the physics literature, and this
phenomenon can be identified by numerical simulations [11,13].
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The existence of bright solitons in different cases was then examined using Melnikov’s
method, assuming a small perturbation, and for the anti-integrability method [1], some
localized solutions persist for weak coupling cases. In [6], the variational approach can
also be used, but the allowed frequency region cannot be explicitly determined by the
variational method. We are looking at the homoclinic orbit approach to the existence
of soliton solutions of DNLS equations used in our paper and in [16], it is precisely a
generalization of the work in [7]. Homoclinic structures are recognized as sources of
sensitivity which, under small perturbations, can bifurcate solutions. The existence of
homoclinic orbits in a dynamical system has interesting consequences for its behavior.
The problem of the existence of solitons has therefore been replaced by the problem of
the existence of homoclinic solutions. However, this approach yields the frequency Ω
and the related sequence xn simultaneously, and therefore the interval of existence of the
frequency Ω. Discrete Helmholtz equations are closely related to discrete Schrodinger
equations, which appear naturally in the tight-binding model of electrons in crystals [2].
Similar equations also appear in the case of studies involving time harmonic elastic waves
in lattice models of crystals [3], see for example, [14], especially in the case d = 2.

We consider spatially localized standing waves for the discrete nonlinear Schrödinger
equation (DNLS):

ψ̇n = −Hψn − h(| ψn |)ψn, n ∈ Z,

,

Hψn =
1

wn
(ψn+1 + ψn−1 + dnψn),

where wn > 0, dn ∈ R, and (wnwn+1)
−1, w−1

n dn are bounded sequences. It gives rise to
an operator H, called Helmholtz operator [18], in the weighted Hilbert space l2(Z;w)
with scalar product:

⟨f, g⟩ =
∑

n∈Z wnfngn , f, g ∈ l2(Z;w) .

There is an interesting link between the Jacobi and Helmholtz operators. in [18] (Theo-
rem 1.14, page 21).

Use the stationary wave ansatz

ψn = xn exp(−iωt),

where xn is a sequence with real values and ω ∈ R.
We impose the following boundary condition at infinity: limn→±∞ un = 0, and we

are looking for non-trivial solutions, i.e the solutions that are not equal to 0.
The objective of this paper is to explore the existence of homoclinic solutions for a

given class of periodic difference equations.
We use the symmetry properties of reversible planar maps to improve the ho-

moclinic orbit approach. The results of the existence of the soliton of the discrete
Helmholtz-Schrodinger equation will not be obtained by the variational method or the
anti-integrability method.

This paper is structured as follows. In the second Section, we outline some basics
about reversible planar maps and homoclinic (heteroclinic) points. In addition, we give
the fundamental theorem for the existence of a homoclinic (heteroclinic) orbit for a
particular class of planar maps so that we can prove the existence results rigorously.

In Section 3, we present the conditions for the existence of bright and dark solitons
for local solutions of the discrete Schrödinger equations with the Helmholtz operator.
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We also examine the existence of soliton solutions for DNLS equations in certain cases
of nonlinearity.

2 Homoclinic Orbits of Planar Reversible Maps

We will give a mathematical description of time-reversal symmetry in the context of
dynamical systems. In the most interesting applications, Ω = Rn. We are interested
only in the diffeomorphism of R2n. Let R be a smooth diffeomorphism satisfying the
following conditions:

• R ◦R = identity.

• The dimension of the fixed point set of R, Fix(R), is n.

R is known as inverse involution. A diffeomorphism T is called R-reversible if R ◦ T =
T−1 ◦R.

Several periodic points are easy to find; they are called symmetrical periodic points
and are characterized by the following proposition.

Proposition 2.1 [5] Let p ∈ Fix(R) and suppose that T k(p) ∈ Fix(R), and there-
fore, T 2k(p) = p, then we have

T k(p) = RT k(p) = T−kR(p) = T−k(p), therefore : T 2k(p) = p.

So, symmetrical periodic points can be geometrically identified; we focus on the self-
intersections of the set of fixed points of R under the iteration of T . We might also find
homoclinic geometrically reversible diffeomorphism of R-geometrically reversible diffeo-
morphisms.

Proposition 2.2 [4] Let p ∈ Fix(R) be a symmetric fixed point of T and let W s(p)
andWu(p) denote the stable and unstable manifolds of p, respectively. Then R(Wu(p)) =
W s(p) and R(W s(p)) = Wu(p). In particular, if q ∈ Wu(p) ∩ Fix(R), then q is a
homoclinic point.

Let x ∈Wu(p) such that lim
n−→∞

T−n(x) = p, and so we have

p = R lim
n−→∞

(T−n(x)) = lim
n−→∞

Tn(R(x)).

We have R(x) ∈ W s(p), where RWu(p) ⊂ W s(p). We also have RW s(p) ⊂ Wu(p) such
that RWu(p) = W s(p). If q ∈ Wu(p) ∩ Fix(R). So, q = R(q) ∈ W s(p) ∩ Fix(R) also, q
is a homoclinic point [4].

Hence, to generate homoclinic points for reversible diffeomorphisms, it is sufficient to
find the intersections of Wu(p) with Fix(R). We note that both of these propositions
are valid in much more general terms. Homoclinic points which are also in Fix(R)
are described as symmetric homoclinic points. Homoclinic points are called regular
homoclinic points if the unstable variety (and hence the stable variety) intersects Fix(R)
transversely at the homoclinic point.

Proposition 2.3 [5] Let p be a symmetric fixed point and let q be a symmetric
homoclinic point in Wu(p). Let N be any neighborhood of p in Fix(R). Then there
exists an infinite number of periodic symmetric points in N .
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Proposition 2.4 [4] Let p be a non-symmetric periodic point. Suppose q ∈Wu(p)∩
Fix(R). Then q ∈ Wu(p) ∩ W s(R(p)). Thus some heteroclinic points can be found
geometrically as symmetric homoclinic points. Regular symmetric heteroclinic points are
defined as regular homoclinic points.

Proposition 2.5 [4] Assume that T is an R-reversible diffeomorphism on the plane
and let p be a nonsymmetric saddle point for T . Assume that a branch of Wu(p) and a
branch of W s(p) intersect. Suppose a branch of W s(p) intersects Fix(R) transversely.
Then there exist infinitely many symmetric periodic orbits entering any neighborhood of
p and R(p).

A reversible class of planar maps is derived from symmetrical differential equations
of the form [5,7]

xn+1 + xn−1 = g(xn). (1)

In this paper we treat the most general case. We consider the difference expression

Hnxn = 1
wn

(xn+1 + xn−1 + dnxn),

where wn > 0, dn ∈ R, and (wnwn+1)
−1, w−1

n dn are bounded sequences. It gives rise to
an operator H, called the Helmholtz operator [18], in the weighted Hilbert space l2(Z;w)
with scalar product:

⟨f, g⟩ =
∑

n∈Z wnfngn , f, g ∈ l2(Z;w),

xn+1 + xn−1 = g(xn, wn, dn, h),

which regularly appears in analyses of the stationary state of coupled oscillators in one-
dimensional lattices [5] . The system can be expressed as a planar map, given by T , of
the form {

xn+1 = zn,
zn+1 = −xn + g(zn),

i.e.,
T (x, z) = (z,−x+ g(z)) and gn(xn) = dnxn + ωnh(xn).

It is an easy matter to check that T is invertible and{
xn+1 = −zn + g(xn),
zn+1 = xn

T−1(x, z) = (−z + g(x), x).

Furthermore, T is a C1 diffeomorphism if g is C1. gn(x) is nonlinear and continuous at
x. We have gn+P (x) = gn(x) for all n ∈ Z. In this work, we always suppose that g is a C1

function. We see that T is R1-reversible with respect to the involution R1(x, z) = (z, x),
and R2-reversible with respect to the involution R2(x, z) = (−z,−x) since g is an odd
function.

R1 ◦ T (xn, zn) = R1(zn,−xn + g(zn)) = (−xn + g(zn), zn),

T−1 ◦R1(xn, zn) = T−1(zn, xn) = (−xn + g(zn), zn).

Note that the fixed-point sets Fix(R1) and Fix(R2) are indicated by the lines z = x
and z = −x, denoted by S1 and S2, respectively. Let d = minn∈Z dn > 1 , f(z) = g(z)−dz
and we fix w = wn > 0.
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Theorem 2.1 Suppose that

1. f(z) is a C1 and odd function, and has three real zeros, −z0, 0 and z0 (z0 > 0),
with f ′(0) > 0.

2. supz≥z′((d− 2)z + wf(z) < 0 for given z′ > z0.
Then the planar map T has a homoclinic orbit.

Proof. Because f as an odd function has three different real zeros, we can suppose
that its real zeros are −z0, 0 and z0 with z0 > 0. The planar map T has three fixed points
P (−z0,−z0), O(0, 0) and Q(z0, z0), all of which are symmetrical with the involution R1.
The origin O is hyperbolic if f ‘(0) > 0. In addition, the unstable manifold W u(O) and
the stable manifold W s(O) are tangent to the lines z = λ2x and z = λ1x, respectively,
where λ2 > 1 and 0 < λ1 < 1 are eigenvalues of the Jacobian matrix of T at the origin.
We first prove that the intersection ofW u(O) with the interior of the segment EQ is non-
empty, where E(0, z0) lies on the z-axis. It is simple to verify that a branch of W u(O)
initially enters the interior of the triangle △OEQ, noted by int(△OEQ). For any point
A(x, z) ∈ int(△OEQ), When 0 < x < z < z0, the coordinates of the image point T (A)
are (z,−x + dz + wf(z)). Furthermore, since f(z) is positive and d ≥ 0 for z ∈ (0, z0),

the distance between the point T (A) and the line S1 is
√
2
2 (wf(z)−x+(d− 1)z), greater

than the distance from A to S1. Thus, the unstable manifoldW u(O) inside △OEQ never
intersects the segments OE and OQ. In the next section, we show by contradiction that
W u(O) intersects the segment EQ.

Suppose that the branch of W u(O) in the first quadrant always lies inside △OEQ.
Consider a point B ∈ W u(O) ∩ int(△OEQ). Then all the image points Tn(B) ∈
int(△OEQ) for n = 1, 2, · · · . In addition, the sequences of x-coordinates and z-
coordinates of Tn(B) are at the same time strictly increasing and bounded above, and
therefore converge to x∗ and z∗, respectively. Consequently, the sequence of points
Tn(B) is convergent to N(x∗, z∗), which is a fixed point of T . Based on the facts that
x∗ > 0 and z∗ > 0, it thus follows that N = Q. On the other part, the sequence of
the distance between Tn(B) and S1 is also strictly increasing, implying that N ̸= Q,
there is a contradiction. Consequently, the unstable manifold W u(O) pierces the seg-
ment EQ. Secondly, we show that W u(O) in the first quadrant meets the line S1 at some
point. We note H0(x0, z0), the intersection point of W u(O) with the segment EQ. Let
Hn+1 = T (Hn), n = 0, 1, · · · . The coordinates of Hn are (xn, zn). It then follows that
z1 = −x0 + dz0 + wf(z0) = z0 + ((d − 1)z0 + x0) > z0. Since f(z) < 0 for z > z0, we
derive from assumption (ii) that supz>z1((d− 2)z + wf(z) < 0.
We note

sup
z≥z1

((d− 2)z + wf(z)) < 0, so sup
z≥z1

(d− 2)z + wf(z) = −a, (a > 0).

Suppose that W u(O) in the first quadrant does not cross the line S1. Then W u(O) is
between the z-axis and the line S1. So, the points Hn are above the line S1, meaning
that zn+1 > xn+1 = zn > xn = · · · = z1 > x1 = z0, and (d − 2)zn + wf(zn) ≤ −a for
n = 1, 2, · · · . Consider dn as the distance between Hn and the line S1. Then

distn =

√
2

2
(zn − xn) =

√
2

2
(zn − zn−1), n = 0, 1, (z−1 = x0).

Let zn+1 = −xn + dzn + wf(zn), so zn+1 − zn = zn − zn−1 + (dn − 2)zn + wf(zn).
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Therefore,
√
2disn+1 =

√
2disn + (d− 2)zn + wf(zn), n = 0, 1, . . .. It follows that

√
2dis1 =

√
2dis0 + (d− 2)z0,

√
2dis2 =

√
2dis1 + (d1 − 2)z1 + wf(z1),

√
2disn+1 =

√
2disn + (dn − 2)zn + wf(zn)

and hence

0 ≤
√
2disn+1 =

√
2dis0 +

n∑
i=1

[(disi − 2)zi + wf(zi)] ≤
√
2dis0 − na.

Let n → ∞, we obtain a contradiction. As a result, the intersection of W u(O) with the
line S1 is non empty. From Proposition 2.2, it follows that W u(O) and W s(O) intersect
at a point q on S1, which means that a homoclinic orbit exists. □

Let (x0, x0) be the point of intersection of W u(O) and S1. So, the homoclinic orbit
(xn, zn) = Tn((x0, x0)) in the first quadrant has the following property: xn = z−n and
x−n = zn for n ≥ 1.

From the homoclinic orbit, we derive a sequence {xn} that satisfies (1) and xn → 0
exponentially as n→ +∞ or −∞.

Theorem 2.2 Suppose that
(i) f(z) is a C1 and odd function, and f(z) + 2dz has only three real zeros, −z0, 0, and
z0(z0 > 0) with f ′(0) < −2d.
(ii) infz≥z′ ({wf(z) + 2dz}) > 0, for some z′ > z0.
Therefore the planar map T has a homoclinic orbit.

Proof. Note first that we obtain the following symmetry if xn satisfies the difference
equation

wf(xn) = xn−1 + xn+1 − dxn, (2)

then {yn = (−1)nxn} is a solution of the difference equation. We have g(xn) = xn−1 +
xn+1. So, if n is even, we get,  yn = (−1)nxn,

yn+1 = (−1)n+1xn+1,
yn−1 = (−1)n−1xn−1.

Therefore  yn = xn,
yn+1 = −xn+1,
yn−1 = −xn−1.

From (2), we can find

wf̂(yn) = −yn+1 − yn−1 − dyn,

= −g(yn)− dyn,

= −wf(yn)− d+ yn − dyn,

= −wf(yn)− 2dyn.

Hence, wf̂(z) = −wf(z)− 2dz and vice versa. Assumptions (i) and (ii) are satisfied

for f̂(z). It follows that the planar application T induced has a homoclinic orbit,
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implying the existence of a homoclinic orbit for the planar application T . □

From Theorem 2.2, we derive a sequence {xn} that satisfies (1), sign(xn) = −sign(xn)
and xn → 0 exponentially as n→ +∞ or −∞.

Theorem 2.3 Suppose that f(z) is a C1 and odd function, and admits three real
zeros,−z0, 0 and z0(z0 > 0) with f ′(z0) > 0. Therefore, the planar application T has a
heteroclinic orbit.

Proof. The reversible map T has three fixed points, two of which, P (−z0,−z0) and
Q(z0, z0), are hyperbolic if f ′(z0) > 0. Similarly to the proof of Theorem 3.1, one can
verify that Wu(Q) intersects the x−axis at H(x, 0) with 0 < x < z0. Simple calculations
show that T (H) and H are symmetric with respect to S2. Then the intersection ofWu(Q)
with S2 is nonempty. Consequently, from Proposition 2.2, it follows that the intersection
of Wu(Q) with W s(P ) is nonempty, and hence the planar map T has a heteroclinic
orbit.

From Theorem 2.3, we derive a sequence {xn} that satisfies (1) and xn → z0 as
n→ +∞ and xn → −z0 as n→ −∞.

The proof of the present theorem is the same as that of Theorem 2.2.

Theorem 2.4 Suppose that f(z) is an odd C1 function, and f(z)+2dz has only three
real zeros, −z0, 0 and z0(z0 > 0) with f ′(z0) < −2d, Therefore, the planar application T
has a heteroclinic orbit.

The conclusion of Theorem 2.4, implies the existence of a solution {xn} that satisfies
(1), with the property that sign(xn) = − sign(xn+1) as |xn| → z0.

3 The DNLS Equations with Helmholtz Operator and General Nonlineari-
ties

In this section, we investigate the DNLS equations with the Helmholtz operator and
general nonlinearities

i
∂ψn

∂t
+ h(| ψn |)ψn +

1

wn
(ψn+1 + ψn−1 − dnψn) = 0, (3)

where h is a C1 function. Great attention has been paid to localized solutions of the
form ψn = xne

−iΩt, where xn are time independent. Such solutions are time periodic
and spatially localized. The result is a difference equation

−Ωxn + h(| xn |)xn +
1

wn
(xn+1 + xn−1 − dnxn) = 0,

gn(xn) = xn+1 + xn−1,

xn+1 + xn−1 = [ωn(Ω− h(| xn |)) + dn]xn,

f(z) = [ω(Ω− h(| z |) + d]z − dz,

f(z) = ω(Ω− h(| z |))z.
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Theorem 3.1 1. Assume that h is strictly increasing in [0,+∞[. Then there
exists an unstaggered (staggered) bright solitons of the form xne

iΩt with h(0) <
Ω < h∞ (h(0)− 2d/w < Ω < h∞ − 2d/w) for the system (3) with w > 0.

2. Assume that h is strictly decreasing in [0,+∞[. So there are bright solitons of the
form xne

iΩt with h∞ < Ω < h(0) for the system (3) with w < 0.

Proof. Assume that h is strictly increasing and w > 0. Then it follows that f(z) has
only three zeros if h(0) < Ω < h∞ and f ′(0) = (Ω−h(0))/w < 0 for w > 0. Consequently,
the system (3) admits solutions of bright solitons by Theorem (2.1). Similarly, the other
cases can be proved by Theorem 2.1.

Theorem 3.2 Assume that h′(r) > 0 (< 0) for r ∈ [0,+∞[. Then, there exist dark
solitons of the form xne

iΩt with h(0) < Ω < h∞ (h∞ < Ω < h(0)) for the system (3)
with w < 0 (> 0).

Proof. The proof is obvious by Theorem 2.3.
We are interested in the possibility of finding non-trivial homoclinic solutions for (3).

This problem comes up when we look for the discrete solitons of the periodic equation
DNLS if

h(| ψn |) = σχn | ψn |2

1 + cn | ψn |2
,

where σ = ±1, the given sequences χn, cn are assumed to be T -periodic and positive.
The DNLS with saturable nonlinearities can be used to describe the propagation of
optical pulses in different doped fibers [9] and have been reviewed in [10]. Being spatially
localized and temporally periodic solutions, the solitons decay to zero at infinity. Suppose
xn is a real valued sequence and Ω is the temporal frequency. In this case, (3) becomes

− Ωxn +
σχnx

2
n

1 + cnx2n
xn +

1

wn
(xn+1 + xn−1 − dnxn) = 0. (4)

The problem on the existence of solitons of (3) has therefore been replaced by the problem
on the existence of homoclinic solutions of (4). Pankov [15] in 2005, considered a special
case with h(xn) = σχnx

2
n, then posed an open problem on the existence of gap solitons

for asymptotically linear nonlinearities as in (4).
The existence of bright soliton solutions of type xne

−iΩt has been studied by the
variational method in [8]. The frequency Ω related to the sequence xn, in which xn is a
minimiser for a variational method. Therefore, one must solve a variational problem first
to obtain a minimizer, and then to derive the associated frequency. Thus, one cannot
explicitly derive the allowed region of the frequency Ω by the variational method. This
approach, however, yields the frequency Ω and the related sequence xn simultaneously,
and therefore one can obtain the interval of existence of the frequency Ω.

h(xn) = σχnx
2
n is strictly increasing in [0,+∞) and h(0) = 0, h∞ = ∞. It follows

that the DNLS equation is studied in one-dimensional lattice:

i
∂ψn

∂t
+ σχnψ

3
n +

1

wn
(ψn+1 + ψn−1 − dnψn) = 0. (5)

Then, there exists a unstaggered (staggered) bright soliton of the form xne
iΩt with h(0) <

Ω < h∞ (h(0)− 2d/w < Ω < h∞ − 2d/w) for the system (3) with w > 0.
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The DNLS equation with saturable non-linearity is

i
∂ψn

∂t
+

σχnψ
2
n

1 + cnψ2
n

xn ++
1

wn
(ψn+1 + ψn−1 − dnψn) = 0. (6)

Comparing with (3), one has that h(r) = σχnr
2

1+cnr2
for r positive. Then

h′(r) =
σχn2r

(1 + cnr2)2
.

We can see that h is strictly increasing in [0,+∞) and h(0) = 0, h∞ = ∞.

4 Conclusion

A model of a discrete nonlinear Schrodinger equation has been presented. The existence
of bright soliton solutions has been studied for a discrete Schrodinger equation under the
Helmholtz operator by the reversible systems approach and not by the variational method
or the anti-integrability method. Chaos is often linked to homoclinic orbits in nonlinear
determination dynamics. Recently, DNLS equations with periodic coefficients have been
addressed in the physics literature. Future work will address the existence of homoclinic
solutions for a class of periodic difference equations with saturable nonlinearity. This
gives rise to a more general Jacobi operator using the method of reversible systems.
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