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1 Introduction

Fractional differential equations (FDEs) are a fascinating area of mathematics deal-
ing with derivatives of non-integer order and allowing for a more nuanced description of
systems with memory effects or long-range interactions. Solving FDEs can be challenging
due to the non-integer order of the derivatives, requiring specialized techniques such as
fractional calculus. In general, fractional differential equations provide a powerful tool
for understanding complex systems with given dynamics [1, 6, 7, 9]. Indeed, though the
operations of FDEs are relatively broad, they can not be applied to all systems. The
researchers have shown that certain phenomena related to material heterogeneity cannot
be adequately modeled using fractional derivatives. In view of this fact, a solution to this
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problem was proposed by Caputo in 1967, who introduced a fractional derivative allowing
the application of initial conditions with physical meaning. In his researches, new FDEs
are defined, called generalized fractional derivatives, for a more extensive collection of
fractional calculus.

On the other hand, in the realm of generalized FDEs, the existence and uniqueness
of solutions play a vital role in ensuring the validity and reliability of the mathematical
problem. The investigation of the existence and uniqueness of solutions for differential
equations involving the generalized fractional derivative has been undertaken by numer-
ous researchers (see [3, 10, 13] and the references therein). Furthermore, the stability
theory for FDEs has been a significant area of research. In particular, the Ulam-Hyers
stability is attracting attention due to its importance in understanding the behavior of
dynamic problems. It is essential to predict the long-term evolution and stability of solu-
tions in different applications, making it a key focus in mathematics and science [11,12].
Many researchers focused on developing the methods of solution of the hybrid fractional
differential equations by using different kinds of fixed point theorems, for example, in [2],
the researchers studied the existence of solutions for hybrid fractional integral differential
equations, involving the generalized Caputo derivative. They used the hybrid fixed point
theorem for some of three operators due to Dhage for proving the main results.

This paper is devoted to the study of the existence, uniqueness and stability of so-
lutions for the following second-type hybrid fractional differential equation involving the
generalized Riemann-Liouville fractional derivatives:

Dα,ϕ
0+ (u(t)− f(t, u(t))) + g

(
t, u(t), Dα,ϕ

0+ (u(t)− f(t, u(t)))
)
= 0, t ∈ J = [0, 1],

lim
t→0

(ϕ(t)− ϕ(0))2−α(u(t)− f(t, u(t))) = 0,

u(1) = ω + f(1, u(1)), ω ∈ R.
(P)

where Dα,ϕ
0+ is the ϕ -Riemann-Liouville fractional derivative with 1 < α < 2 .

f ∈ C(J ×R,R) and g ∈ C(J ×R2,R) are non-linear functions. The function ϕ : J → R
is a strictly increasing function such that ϕ ∈ C2(J,R) and ϕ′(t) ̸= 0 for all t ∈ J .

The structure of the paper is outlined as follows. Section 2 provides a detailed
overview of the foundational concepts and definitions that are pertinent to our investiga-
tion. In Section 3, we convert the differential problem into equivalent integral equations
via constructing the Green function. Then we establish certain properties for it and we
assume some sufficient conditions through which we prove the existence of the solution
using Schaefer’s fixed point theorem and the uniqueness of the solution using the Banach
fixed point theorem. We also study the stability of this solution. Finally, the paper
concludes with a practical example to give a clear demonstration of the concepts that
are discussed.

2 Notational Preliminaries

Here, we recall some useful definitions, theorems, and lemmas, which play an important
role in the results of the paper.

Definition 2.1 [2] Let f : [a, b] → R be an integrable function and ϕ : [a, b] → R be
an increasing function such that for all t ∈ [a, b], ϕ′(t) ̸= 0. The left-sided ϕ-Riemann-
Liouville fractional integral of a function f is defined as follows:
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Iα,ϕa+ f(t) =
1

Γ(α)

∫ t

a

ϕ′(s)(ϕ(t)− ϕ(s))α−1f(s) ds.

Definition 2.2 [2] Let n = [α] + 1. The left-sided ϕ-Riemann-Liouville fractional
derivative of order α > 0 of a function f corresponding to the ϕ-Riemann-Liouville
fractional integral is defined as follows:

Dα,ϕ
a+ f(t) =

1

Γ(n− α)

(
1

ϕ′(t)

d

d(t)

)n
t∫

a

ϕ′(s)(ϕ(t)− ϕ(s))n−α−1f(s)ds.

Lemma 2.1 [4, 13] Let z : J → R with 1 < α < 2, then

• Iα,ϕ0+ Dα,ϕ
0+ z(t) = z(t) +C0(ϕ(t)− ϕ(0))α−1 +C1(ϕ(t)− ϕ(0))α−2, where C0, C1 ∈ R.

• Dα,ϕ
0+ Iα,ϕ0+ z(t) = z(t).

Definition 2.3 [11].The problem (P) is said to be Ulam-Hyers stable (UH stable)
if there exists a constant Θ > 0 such that for every function y ∈ C(J,R) satisfying the
inequality

∣∣∣Dα,ϕ
0+ (y(t)− f(t, y(t)))− g

(
t, y(t),Dα,ϕ

0+ (y(t)− f(t, y(t)))
)∣∣∣ ≤ ε, t ∈ J, (1)

for each ε > 0, there exists an exact solution u ∈ C(J,R) of the problem (P) such that

|y(t)− u(t)| ≤ Θε, t ∈ J.

Remark 2.1 A function y ∈ C(J,R) is a solution of the inequality (1) if and only if
there exists a function ψ ∈ C(J,R) (which depends on y) such that

1. |ψ(t)| ≤ ε, t ∈ J.

2. Dα,ϕ
0+ (y(t)− f(t, y(t))) = g

(
t, y(t), Dα,ϕ

0+ (y(t)− f(t, y(t)))
)
+ ψ(t), t ∈ J.

Theorem 2.1 (Banach fixed point theorem) [5] Let E be a non-empty closed subset
of a Banach space. Then any contraction mapping A of E into itself has a unique fixed
point, i.e.,

∃!x ∈ E : A(x) = x.

Theorem 2.2 (Schaefer fixed point theorem) [5] Let E be a non-empty Banach space.
Let also f : E → E be a completely continuous mapping. If the set χ = {y ∈ E : y =
λf(y), 0 < λ < 1} is bounded in E, then f admits at least one fixed point in E.

3 Existence, Uniqueness and Ulam-Hyers Stability Results

The following section is devoted to stating and proving the existence, uniqueness and
Ulam stability results for problem (P).
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Definition 3.1 The function u from C(J,R) is a solution to the problem (P) if it
satisfies the equation

Dα,ϕ
0+ (u(t)− f(t, u(t))) = −g

(
t, u(t), Dα,ϕ

0+ (u(t)− f(t, u(t))
)

(2)

and the conditions

lim
t→0

[
ϕ(t)− ϕ(0))2−α(u(t)− f(t, u(t))

]
= 0, (3)

u (1) = ω + f (1, u (1)) . (4)

Lemma 3.1 Let h : J −→ R be a continuous function. Then u is a solution for the
second-type hybrid fractional differential equation

Dα,ϕ
0+ (u(t)− f(t, u(t))) = −h(t), t ∈ J,

and satisfies the conditions (3)-(4) if and only if u is a solution of the integral equation
via the Green function

u(t) = ωγ(t) + f(t, u(t)) +

1∫
0

G(t, s)ϕ′(s)h(s)ds, t ∈ J, (5)

where

G(t, s) =
γ(t)

Γ(α)

(ϕ(1)− ϕ(s))α−1 − 1

γ(t)
(ϕ(t)− ϕ(s))α−1, 0 ≤ s ≤ t ≤ 1,

(ϕ(1)− ϕ(s))α−1, 0 ≤ t ≤ s ≤ 1,
(6)

with

• K(t) = ϕ(t)− ϕ(0) and γ(t) =
(K(t))α−1

(K(1))α−1
for all t ∈ J.

Proof. We have u as a solution of the problem (P),

Iα,ϕ0+

(
Dα,ϕ

0+ (u(t)− f(t, u(t)))
)
= −Iα,ϕ0+ (h(t))+C0(ϕ(t)−ϕ(0))α−1+C1(ϕ(t)−ϕ(0))α−2,

u(t)− f(t, u(t)) = −Iα,ϕ0+ (h(t)) + C0(ϕ(t)− ϕ(0))α−1 + C1(ϕ(t)− ϕ(0))α−2.

By using the conditions (3)-(4), we obtain C1 = 0 and

C0 =
1

(ϕ(1)− ϕ(0))α−1

(
ω +

1

Γ(α)

∫ 1

0

ϕ′(s)(ϕ(t)− ϕ(s))α−1h(s)ds

)
.

By substitution, we get

u(t) = f(t, u(t)) + ωγ(t)− 1

Γ(α)

t∫
0

ϕ′(s)(ϕ(t)− ϕ(s))α−1h(s)ds

+
γ(t)

Γ(α)

1∫
0

ϕ′(s)(ϕ(1)− ϕ(s))α−1h(s)ds

= f(t, u(t)) + ωγ(t) +

1∫
0

G(t, s)ϕ′(s)h(s)ds.

The converse can be easily inferred from Lemma 2.1.
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Lemma 3.2 The following estimates are satisfied by the Green function G defined
by equation (6):

(i) G(t, s) ≤ (ϕ(1)− ϕ(0))α−1

Γ(α)
for all t, s ∈ J .

(ii) G(t, s) ≥ 0 for all t, s ∈ J .

Proof.
(i) Since ϕ is a strictly increasing function, we have ϕ(t)−ϕ(0) ≤ ϕ(1)−ϕ(0) whenever

t ∈ J ,
which implies that γ(t) ≤ 1. For 0 ≤ t ≤ s ≤ 1, we can easily conclude that

γ(t)

Γ(α)
(ϕ(1)− ϕ(s))α−1 ≤ (ϕ(1)− ϕ(0))α−1

Γ(α)
,

and for 0 ≤ s ≤ t ≤ 1,

γ(t)

Γ(α)

(
(ϕ(1)− ϕ(s))α−1 − 1

γ(t)
(ϕ(t)− ϕ(s))α−1

)
≤ 1

Γ(α)

(
(ϕ(1)− ϕ(0))α−1

− (ϕ(1)− ϕ(0))α−1(ϕ(t)− ϕ(s))α−1

(ϕ(t)− ϕ(0))α−1

)
≤ 1

Γ(α)
(ϕ(1)− ϕ(0))α−1(

1− (ϕ(t)− ϕ(s))α−1

(ϕ(t)− ϕ(0))α−1

)
≤ 1

Γ(α)
(ϕ(1)− ϕ(0))α−1.

Hence, G(t, s) ≤ (ϕ(1)− ϕ(0))α−1

Γ(α)
for t, s ∈ J .

(ii) By a similar calculation, we can prove that G(t, s) ≥ 0 for all t, s ∈ J . This completes
the proof.

Let us define the operator T : C(J,R) −→ C(J,R) by

T (u(t)) = f(t, u(t)) + ωγ(t) +

1∫
0

G(t, s)ϕ′(s)σu(s)ds

with σu(t) = g
(
t, u(t), Dα,ϕ

0+ (u(t)− f(t, u(t)))
)
.

Here, C(J,R) is equipped with the norm

∥u∥∞ = max
t∈J

|u(t)|.

We note that any fixed point of this operator is a solution to the problem (P).

3.1 Existence results

Assume that the functions f : J × R −→ R and g : J × R2 −→ R are continuous and
satisfy the following conditions:
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(H1) There exists a constant Λg ∈ R∗
+ such that for all u, v ∈ R and t ∈ J ,

|g(t, u, v)| ≤ Λg,

(H2) There exists a constant Λf ∈ R∗
+ such that for all u ∈ R and t ∈ J ,

|f(t, u)| ≤ Λf .

Theorem 3.1 We assume that the conditions (H1) − (H2) are satisfied. Then the
problem (P) has at least one solution.

Proof. The proof will be given in four steps.
Step one: T is continuous. Let (un) be a convergent sequence towards u ∈ C(J,R).
Therefore, for all t ∈ J , we have

|T (un(t))−T (u(t))| =
∣∣∣∣f(t, un(t))− f(t, u(t)) + ωγ(t)− ωγ(t)

+

∫ t

0

G(t, s)ϕ′(s)(σun
(s)− σu(s))ds

∣∣∣∣
≤

∣∣∣∣f(t, un(t))− f(t, u(t))

∣∣∣∣+ ∫ 1

0

G(t, s)ϕ′(s)

∣∣∣∣σun(s)− σu(s)

∣∣∣∣ds
≤

∣∣∣∣f(t, un(t))−f(t, u(t))∣∣∣∣+ (ϕ(1)−ϕ(0))α−1

Γ(α)

∫ 1

0

ϕ′(s)

∣∣∣∣σun(s)−σu(s)
∣∣∣∣ds

≤ ∥f(t, un(.))−f(t, u(.))∥∞+
(ϕ(1)−ϕ(0))α

Γ(α)
∥σun

(.)− σu(.)∥∞.

Since the functions f and g are continuous, we get

lim
n→∞

∥T (un(.))− T (u(.))∥∞ = 0.

Hence, T is continuous.
Step two: The image of every bounded set of C(J,R) under T is uniformly bounded
in C(J,R). To establish this, it suffices to demonstrate that for any given r > 0, there
exists a positive constant l > 0. Therefore, for every u ∈ Br, we have ∥T u(.)∥∞ ≤ l with

Br = {u ∈ C(J,R) : ∥u∥∞ ≤ r} .

For every t ∈ J and by using the conditions (H1) and (H2), we get

|T (u(t))| ≤ |ω|γ(t) + |f(t, u(t))|+
∫ 1

0

G(t, s)ϕ′(s)|σu(s)|ds

≤ |ω|γ(t) + Λf +
(ϕ(1)− ϕ(0))α−1

Γ(α)
Λg

∫ 1

0

ϕ′(s)ds

≤ |ω|+ Λf +
(ϕ(1)− ϕ(0))α

Γ(α)
Λg = l.

Hence, T (Br) is uniformly bounded.
Step three: The image of every bounded set of C(J,R) under T is an equicontinuous
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set in C(J,R). For each u ∈ Br and t1, t2 ∈ J, t1 < t2, we have

|T (u(t2))− T (u(t1))| = |f(t2, u(t2))− f(t1, u(t1)) + ω(γ(t2)− γ(t1))

+

∫ 1

0

(G(t2, s)−G(t1, s))ϕ
′(s)σu(s)ds|

≤ |f(t2, u(t2))− f(t1, u(t1))|+ |ω||γ(t2)− γ(t1)|

+

∫ 1

0

|G(t2, s)−G(t1, s)|ϕ′(s)σu(s)ds

and

|G(t2, s)−G(t1, s)| =
∣∣∣∣ (ϕ(1)− ϕ(s))α−1

(ϕ(1)− ϕ(0))α−1Γ(α)

[
(ϕ(t2)− ϕ(0))α−1 − (ϕ(t1)− ϕ(0))α−1

]
+

1

Γ(α)

[
(ϕ(t1)− ϕ(s))α−1 − (ϕ(t2)− ϕ(s))α−1

] ∣∣∣∣.
By applying the mean value theorem [8], we obtain

|G(t2, s)−G(t1, s)| = |t2 − t1|
[

(ϕ(1)− ϕ(s))α−1

(ϕ(1)− ϕ(0))α−1Γ(α)
h1(ξ) +

1

Γ(α)
h2(θ)

]
with

h1(ξ) = (α− 1)ϕ′(ξ)(ϕ(ξ)− ϕ(0))α−2,

h2(θ) = (α− 1)ϕ′(θ)(ϕ(θ)− ϕ(s))α−2,

where t1 < θ, ξ < t2. Therefore, as t1 −→ t2, |T (u(t2))− T (u(t1))| −→ 0.
Hence, by the Arzela-Ascoli theorem, T is completely continuous.
Step four: We will prove that the set χ is bounded, where

χ =
{
u ∈ C(J,R) : u(t) = λT (u(t)), 0 < λ < 1

}
.

Let u ∈ χ. For all t ∈ J, we have

u(t) = λ

[
ωγ(t) + f(t, u(t)) +

∫ 1

0

G(t, s)ϕ′(s)σu(s)ds

]
|u(t)| < |ω|γ(t) + Λf + Λg

∫ 1

0

G(t, s)ϕ′(s)ds

≤ |ω|+ Λf +
(ϕ(1)− ϕ(0))α

Γ(α)
Λg = L.

Hence, χ is bounded. By using Schaefer’s fixed point theorem, we found that the problem
(P) has at least one solution.

Example 3.1 Consider the problem with the following general fractional differential
equations:

D
7
4 ,

et

7

0+ (u(t)− f(t, u(t))) + g

(
t, u(t), D

7
4 ,

et

7

0+ (u(t)− f(t, u(t)))

)
= 0, t ∈ J,

limt→0(ϕ(t)− ϕ(0))2−
7
4 (u(t)− f(t, u(t))) = 0,

u (1) = 1 + f (1, u (1)) ,

(Q)
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where

f(t, u(t)) = (
1

2
+ t) cos(u(t)),

g

(
t, u(t), D

7
4 ,

et

7

0+ (u(t)− f(t, u(t)))

)
= (

1

3
+ t) cos(u(t))+

1

9
sin(D

7
4 ,

et

7

0+ (u(t)− f(t, u(t)))).

Let us put f(t, u) = t
2 cos(u) and g(t, u, v) =

1
3 (1 + t) cos(u) +

1

9
sin(v). For u, v ∈ R and

t ∈ J , we have

|f(t, u)| ≤ 3

2
, |g(t, u, v)| ≤ 7

9
.

We can easily verify all conditions of Theorem 3.1 with Λf = 3
2 ,Λg = 7

9 . Therefore, we
conclude that the problem (Q) has at least one solution.

3.2 Uniqueness results

In what follows, we will establish the existence of a unique solution to the problem (P)
using the Banach fixed point theorem under certain conditions imposed on the functions
f and g. We impose the following conditions:

(H3) There exist constants k1, k3 ∈ R∗
+ and k2 ∈ (0, 1) such that

|g(t, u, v)− g(t, ū, v̄)| ≤ k1|u− ū|+ k2|v − v̄|,

|f(t, u)− f(t, ū)| ≤ k3|u− ū|
for every u, v, ū, v̄ ∈ R and t ∈ J .

Theorem 3.2 We assume that the condition (H3) is satisfied. If

Υ = k3 +
(ϕ(1)− ϕ(0))αk1
Γ(α)(1− k2)

< 1, (7)

then the problem (P) admits a unique solution in C(J,R) .

Proof. We consider the previously defined operator T for all x, y ∈ C(J,R) and
t ∈ J . By the condition (H3), we have

|T (x(t))− T (y(t))| = |f(t, x(t))− f(t, y(t)) + ωγ(t)− ωγ(t)

+

∫ 1

0

G(t, s)ϕ′(s) (σx(s)− σy(s)) ds|

≤ |f(t, x(t))− f(t, y(t))|+
∫ 1

0

G(t, s)ϕ′(s)| (σx(s)− σy(s)) |ds.

Then

|T (x(t))− T (y(t))| ≤ k3|x(t)− y(t)|+ (ϕ(1)− ϕ(0))α

Γ(α)

∫ 1

0

|σx(s)− σy(s)| ds. (8)

On the other hand,

|σx(t)− σy(t)| = |g
(
t, x(t), Dα,ϕ (x(t)− f(t, x(t))

)
− g

(
t, y(t), Dα,ϕ (y(t)− f(t, y(t))

)
|

≤ k1|x(t)− y(t)|+ k2|Dα,ϕ (x(t)− f(t, x(t))−Dα,ϕ (y(t)− f(t, y(t)) |
≤ k1|x(t)− y(t)|+ k2 |σx(s)− σy(s)| .
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Then

|σx(s)− σy(s)| ≤
k1

(1− k2)
|x(t)− y(t)|. (9)

By substituting (9) in (8), we get

|T (x(t))− T (y(t))| ≤ k3|x(t)− y(t)|+ (ϕ(1)− ϕ(0))αk1
Γ(α)(1− k2)

|x(t)− y(t)|

≤
[
k3 +

(ϕ(1)− ϕ(0))αk1
Γ(α)(1− k2)

]
|x(t)− y(t)|.

Thus,

∥T x(.)− T y(.)∥∞ ≤ Υ∥x− y∥∞.

According to (7), the operator T is a contraction. Then, by Banach’s fixed point theorem,
it admits a unique fixed point, and it is the unique solution of the problem (P).

Example 3.2 Consider the problem (Q). According to the condition (H3), we have
for u, v, ū, v̄ ∈ R and t ∈ J,

|f(t, u)− f(t, ū)| ≤ 1

2
|u− ū|,

|g(t, u, v)− g(t, ū, v̄)| ≤ 2

3
|u− ū|+ 1

9
|v − v̄|.

Hence, the satisfaction of the conditions of Theorem (3.2) can be easily checked, and
Υ = 0.5698569 < 1 with k1 = 2

3 , k2 = 1
9 , k3 = 1

2 . Therefore, there exists a unique
solution of the problem (Q).

3.3 Ulam-Hyers stability results

Lemma 3.3 If y is a solution for the following fractional differential inequality:

Dα,ϕ (y(t)− f(t, y(t))) + g
(
t, y(t), Dα,ϕ (y(t)− f(t, y(t)))

)
< ε (10)

for ε > 0, then y is a solution of the following inequality:

|y(t)− T (y(t))| ≤ (ϕ(1)− ϕ(0))α

Γ(α)
ε. (11)

Proof. Let y be a solution of the inequality (11). For ε > 0 and by using Lemma 3.1
and Remark 2.1, |ψ(t)| < ε, t ∈ J, and according to (10), we have

y(t) = ωγ(t) + f(t, y(t)) +

∫ 1

0

G(t, s)ϕ′(s) [σy(s) + ψ(s)] ds.
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Then

|y(t)− T y(t)| =
∣∣∣∣ωγ(t) + f(t, y(t)) +

∫ 1

0

G(t, s)ϕ′(s) [σy(s) + ψ(s)] ds

− ωγ(t)− f(t, y(t))−
∫ 1

0

G(t, s)ϕ′(s)σy(s)ds

∣∣∣∣
=

∣∣∣∣ ∫ 1

0

G(t, s)ϕ′(s)ψ(s)ds

∣∣∣∣
≤

∫ 1

0

G(t, s)ϕ′(s)|ψ(s)|ds

≤ (ϕ(1)− ϕ(0))α

Γ(α)
ε.

Theorem 3.3 We assume that the conditions (H3) and the inequality (7) are satis-
fied. Then the problem (P) is Ulam-Hyers stable.

Proof. Under the condition (H3) and the inequality (7), there exists a unique solution
for the problem (P) in C(J,R). Let y ∈ C(J,R) be a solution to the inequality (11).
Therefore, for t ∈ J, we have

|y(t)− u(t)| =|y(t)− ωγ(t)− f(t, u(t))−
∫ 1

0

G(t, s)ϕ′(s)σu(s)ds|

≤ |y(t)− T (y(t)) + T (y(t))− T (u(t))|
≤ |y(t)− T (y(t))|+ |T (y(t))− T (u(t))|

≤ (ϕ(1)− ϕ(0))α

Γ(α)
ε+Υ|y(t)− u(t)|.

Thus,

|y(t)− u(t)| ≤ (ϕ(1)− ϕ(0))α

Γ(α)(1−Υ)
ε.

We put Θ =
(ϕ(1)− ϕ(0))α

Γ(α)(1−Υ)
, then we get

|y(t)− u(t)| ≤ Θε.

Therefore, the problem (P) is stable according to Ulam-Hyers.

Example 3.3 Consider the problem (Q). All conditions of Theorem 3.3 hold with
Θ = 0.2165387. Then the unique solution of the problem (Q) is Ulam-Hyers stable.

4 Concluding Remarks

In this paper, the authors provided some sufficient conditions guaranteeing the ex-
istence of solutions for a class of second-type hybrid fractional differential equations
involving generalized Riemann-Liouville fractional derivatives of order 1 < α < 2. We
have developed some adequate conditions for the uniqueness of solution. Also, this paper
constitutes a successful application of the Ulam-Hyers stability concept to investigate the
stability of solutions to this class of problems. The respective results have been verified
by providing a suitable example.
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