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Abstract: Over the years, partial reaction-diffusion systems have attracted the at-
tention of numerous researchers due to their application in various fields such as, for
example, population dynamics, the dynamics of gas, dynamic systems, fusion process,
certain biological models, etc. The aim of this work is to prove the global existence of
a solution for an arbitrary-order fractional reaction-diffusion system. The inspiration
for this study arises from the research conducted recently by Barrouk and Mesbahi [2].
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1 Introduction

In recent years, fractional differential equations have garnered significant attention from
researchers because of their extensive applications across various scientific, technological,
and medical fields, we can find important applications, for example, in finance [15],
mechanics [14], biomedicine [9], pattern formation [8], we find numerous real applications
in biology, medicine and ecology, see the works of Djemai and Mesbahi [6], Khayar, Brouri
and Ouzahra [12] and corresponding references therein, etc.
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Our particular objective in this type of anomalous diffusion problems is to study the
following fractional reaction-diffusion system:



∂ϑ1

∂t
− d1 (−∆)

α1 ϑ1 = f1 (t, x, ϑ,∇ϑ) in R+ × Ω,

...
...

∂ϑm

∂t
− dm (−∆)

αm ϑm = fm (t, x, ϑ,∇ϑ) in R+ × Ω,

∂ϑi

∂η = 0 or ϑi = 0 , for all 1 ≤ i ≤ m on R+ × ∂Ω,

ϑi (0, .) = ϑi0 (.) for all 1 ≤ i ≤ m in Ω,

(1)

where ϑ = (ϑ1, . . . , ϑm) , ∇ϑ = (∇ϑ1, . . . ,∇ϑm) , m ≥ 2, Ω is a bounded and regular
domain of RN with boundary ∂Ω, N ≥ 2, ϑi = ϑi (t, x), 1 ≤ i ≤ m for (t, x) ∈ QT =
(0, T ) × Ω and fi are real functions, the presence of the non local operator (−∆)

αi ,
0 < αi < 1 for all 1 ≤ i ≤ m, which accounts for the anomalous diffusion [11,16], means
that the sub-populations face some obstacles that slow their movement, and the constants
of diffusion di are assumed to be nonnegative, fi : (0, T ) × Ω × Rm × RmN → Rm are
enough regular, ϑi0 are nonnegative functions in L1 (Ω), for all 1 ≤ i ≤ m.

The local existence in time of the solution ϑi is classical. The positivity of the solution
stems from the positivity of ϑi0 , which are assumed to be continuous, for all 1 ≤ i ≤ m.

Several mathematical researchers have investigated the system derived from (1) by
substituting the abnormal diffusion operator with the standard Laplacian operator (−∆),
employing various methods and techniques. Notable studies include those by Barrouk
and Mesbahi [2], Barrouk and Abdelmalek [1], Moumeni and Dehimi [17], and Moumeni
and Mebarki [18].

Note that over the past years, very important works have appeared in fractional
reaction-diffusion equations. We mention the following.

The work of Hnaien et al. [10], is devoted to the study of the fractional systems:
an abnormal diffusion system describing the propagation of an epidemic in a confined
population of the SIR type, the fractional temporal Brusselator system and a reaction-
diffusion system, temporal fractional with an equilibrium law. This study is based on
Banach’s fixed point theorem, semigroup estimates and Sobolev’s integration theorem.

In [3], Besteiro and Rial studied the initial value problem for finite dimensional frac-
tional non-autonomous reaction-diffusion equations. They proved the global existence
and the asymptotic behavior of solutions by applying the general time splitting method
and the technique of invariant regions.

We emphasize that there are many other references that approach this subject in
various analytical and numerical ways.

This paper is organized as follows. In the next section, we provide some results
necessary to understand the content of this work. In the next three sections, we give
some results concerning the approximate problem. In Section 6, we state our main result
and also present its proof in detail. The penultimate section is devoted to an application
of the obtained result. Finally, we close with a conclusion.
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2 Important Results

2.1 Hypotheses

To study problem (1), we assume that the functions fi : (0, T ) × Ω × Rm × RmN → R,
1 ≤ i ≤ m, satisfy the following simple assumptions, which allow them to be chosen from
a wide range.

(A1) We preserve for all time the nonnegativity of the solutions, so we assume that fi
are quasipositive for all 1 ≤ i ≤ m.

(A2) There exists C ≥ 0 independent of ϑ1, . . . , ϑm such that

fi (t, x, ϑ,∇ϑ) ≤ C

m∑
i=1

ϑi , ∀ϑi ≥ 0, 1 ≤ i ≤ m. (2)

(A3) The functions fi : (0, T )×Ω×Rm×RmN → R are measurable and fi : Rm×RmN →
R are locally Lipschitz continuous for all 1 ≤ i ≤ m.

2.2 Preliminaries

To prove the main result, we need the following results.

Theorem 2.1 Let Ω be an open bounded domain in RN . The following system
(−∆)

α
φk = λα

kφk in Ω,

∂φk

∂η
= 0 on ∂Ω,

where

D ((−∆)
α
) =

{
ϑ ∈ L2 (Ω) ,

∂ϑ

∂η
= 0, ∥(−∆)

α
ϑ∥L2(Ω) < +∞

}
,

∥(−∆)
α
ϑ∥2L2(Ω) =

+∞∑
k=1

|λα
k ⟨ϑ, φk⟩|2 ,

has a countable sequence of eigenvalues λ1 < λ2 < . . . < λk < . . . and λk → ∞ as
k → ∞, and φk are the corresponding eigenvectors for all k ≥ 1.

So, for ϑ ∈ D ((−∆)
α
) , we have

(−∆)
α
ϑ =

+∞∑
k=1

λα
k ⟨ϑ, φk⟩φk.

Also, we have the formula of integration by parts as follows:∫
Ω

ϑ (x) (−∆)
α
ϑ̄ (x) dx =

∫
Ω

ϑ̄ (x) (−∆)
α
ϑ (x) dx, for ϑ, ϑ̄ ∈ D ((−∆)

α
) . (3)

Proof. See Hnaien et al. [10] and corresponding references therein.
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Lemma 2.1 ( [13]) Let θ ∈ C∞
0 (QT ), θ ≥ 0, then there exists a nonnegative func-

tion Φ ∈ C1,2 (QT ) being the solution of the system
−Φt − d∆Φ = θ in QT ,

Φ (t, x) = 0 on ΣT ,

Φ (T, x) = 0 in Ω,

where ΣT = (0, T )× ∂Ω, for all q ∈ (1,∞), there exists C ≥ 0, not dependent on θ, such
that

∥Φ∥Lq′ (QT ) ≤ C ∥θ∥Lq(QT ) .

And for all ϑ0 ∈ L1 (Ω) and h ∈ L1 (QT ), we obtain the equalities∫
QT

(S (t)ϑ0 (x)) θdxdt =

∫
Ω

ϑ0 (x) Φ (0, x) dx (4)

and ∫
QT

(∫ t

0

S (t− s)h (s, x, ϑ (s) ,∇ϑ (s)) ds

)
θdxdt =∫

QT

h (s, x, ϑ (s) ,∇ϑ (s)) Φ (s, x) dxds. (5)

Proof. To prove this Lemma, see Bonafede and Schmitt [4].

3 Local Existence of the Solution

We will transform the system (1) to an abstract system of first order in the Banach space
X =

(
L1 (Ω)

)m
. For this, we define the functions ϑn

i0
, for all n > 0 and 1 ≤ i ≤ m, by

ϑn
i0 = min {ϑi0 , n} .

Obviously, ϑn
i0

satisfies

ϑn
i0 ∈ L1 (Ω) and ϑn

i0 ≥ 0 for all 1 ≤ i ≤ m.

Now, consider the problem

∂ϑ1n

∂t
− d1 (−∆)

α1 ϑ1n = f1 (t, x, ϑn,∇ϑn) in QT ,

...
∂ϑmn

∂t
− dm (−∆)

αm ϑmn
= fm (t, x, ϑn,∇ϑn) in QT ,

∂ϑin

∂η
= 0 or ϑin = 0 , 1 ≤ i ≤ m in ΣT ,

ϑin (0, x) = ϑn
i0
(x) ≥ 0 , 1 ≤ i ≤ m in Ω.

(6)

Hence, if (ϑ1n , . . . , ϑmn
) is a solution of (6), then it satisfies the following integral equa-

tion:

ϑin (t) = Si (t)ϑ
n
i0 +

∫ t

0

Si (t− s) fi (s, ., ϑn (s) ,∇ϑn (s)) ds, (7)

where Si (t) is the semigroup which is generated by the operator di (−∆)
αi , 1 ≤ i ≤ m.

(See Pazy [19]).
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Theorem 3.1 There exists TM > 0 and (ϑ1n , . . . , ϑmn
) being a local solution of (6)

for all t ∈ [0, TM ] .

Proof. Note that Si (t) are contraction semigroups and F is locally Lipschitz, 0 ≤
ϑn
i0

≤ n, which ensures the existence of TM > 0 such that (ϑ1n , . . . , ϑmn
) becomes a local

solution of (6) on [0, TM ] .

Theorem 3.2 Let ϑn
i0

∈ L1 (Ω), then there exist a maximal time Tmax > 0 and a

unique solution (ϑ1n , . . . , ϑmn) ∈
(
C
(
[0, Tmax) , L

1 (Ω)
))m

of the system (6), with the
alternative:

- either Tmax = +∞,

- or Tmax < +∞ and lim
t→Tmax

(
∑m

i=1 ∥ϑin (t)∥∞) = +∞.

Proof. For T > 0, we define the following Banach space:

ET := {(ϑ1n , . . . , ϑmn) ∈
(
C
(
[0, Tmax) , L

1 (Ω)
))m

,
∥(ϑ1n , . . . , ϑmn)∥ ≤ 2

∥∥(ϑn
10 , . . . , ϑ

n
m0

)∥∥ = R},

where ∥.∥∞ := ∥.∥L∞(Ω) and ∥.∥ is the norm of ET defined by

∥(ϑ1n , . . . , ϑmn
)∥ :=

m∑
i=1

∥ϑin∥L∞([0,T ],L∞(Ω)) .

Next, for every (ϑ1n , . . . , ϑmn
) ∈ ET , we define

Ψ (ϑ1n , . . . , ϑmn
) := (Ψ1 (ϑ1n , . . . , ϑmn

) , . . . ,Ψm (ϑ1n , . . . , ϑmn
)) ,

where for t ∈ [0, T ] and 1 ≤ i ≤ m,

Ψi (ϑ1n , . . . , ϑmn
) = Si (t)ϑ

n
i0 +

∫ t

0

Si (t− s) fi (s, ., ϑn,∇ϑn) ds.

Using the Banach fixed point theorem, we will demonstrate the local existence.

• Ψ : ET → ET . Let (ϑ1n , . . . , ϑmn) ∈ ET , we obtain, by the maximum principle,

∥Ψi (ϑ1n , . . . , ϑmn)∥∞ ≤
∥∥ϑn

i0

∥∥
∞ + C

m∑
i=1

∥ϑin∥∞ T.

So, we have

∥Ψ(ϑ1n , . . . , ϑmn
)∥ ≤

m∑
i=1

∥∥ϑn
i0

∥∥
∞ +mC

m∑
i=1

∥ϑin∥∞ T,

≤ 2

m∑
i=1

∥∥ϑn
i0

∥∥
∞ , by choosing T such that T ≤ 1

2mC
.

Then Ψ (ϑ1n , . . . , ϑmn
) ∈ ET for T ≤ 1

2mC .
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Ψ is a contraction mapping for (ϑ1n , . . . , ϑmn),
(
ϑ̃1n , . . . , ϑ̃mn

)
∈ ET , we have∥∥∥Ψ1 (ϑ1n , . . . , ϑmn

)−Ψ1

(
ϑ̃1n , . . . , ϑ̃mn

)∥∥∥
∞

≤ L

∫ t

0

∥∥∥(ϑ1n , . . . , ϑmn
)−

(
ϑ̃1n , . . . , ϑ̃mn

)∥∥∥
∞

dτ,

≤ LT

(
m∑
i=1

∥∥∥ϑin − ϑ̃in

∥∥∥
∞

)
.

Similarly, we obtain, for 2 ≤ k ≤ m,

∥∥∥Ψk (ϑ1n , . . . , ϑmn
)−Ψk

(
ϑ̃1n , . . . , ϑ̃mn

)∥∥∥
∞

≤ LT

(
m∑
i=1

∥∥∥ϑin − ϑ̃in

∥∥∥
∞

)
.

These estimates imply that∥∥∥Ψ(ϑ1n , . . . , ϑmn
)−Ψ

(
ϑ̃1n , . . . , ϑ̃mn

)∥∥∥
∞

≤ mLT

(
m∑
i=1

∥∥∥ϑin − ϑ̃in

∥∥∥
∞

)
,

≤ 1

2

∥∥∥(ϑ1n , . . . , ϑmn)−
(
ϑ̃1n , . . . , ϑ̃mn

)∥∥∥
for T ≤ max

(
1

2mC , 1
2mL

)
.

Consequently, according to the Banach fixed point theorem, the problem (6) has a
unique mild solution (ϑ1n , . . . , ϑmn) ∈ ET .

We can extend the solution on a maximal interval [0, Tmax) , where

Tmax := sup {T > 0, (ϑ1n , . . . , ϑmn
) is a solution to (6) in ET } .

For the global existence, we need the fact that the solutions are positive.

4 Positivity of the Solution

Lemma 4.1 Let (ϑ1n , . . . , ϑmn) be a solution of the system (6) satisfying

ϑn
i0 (x) ≥ 0, ∀x ∈ Ω.

Then
ϑin (t, x) ≥ 0, ∀ (t, x) ∈ [0, T )× Ω, 1 ≤ i ≤ m.

Proof. Let ϑ̄1n (t, x) = 0 in ]0, T [×Ω, then
∂ϑ̄1n

∂t
= 0,∇ϑ̄1n = 0 and (−∆)

α1 ϑ̄1n = 0,

then according to the hypothesis (A1), we obtain

0 =
∂ϑ1n

∂t
− d1 (−∆)

α1 ϑ1n − f1 (t, x, ϑn,∇ϑn)

≥ ∂ϑ̄1n

∂t
− d1 (−∆)

α1 ϑ̄1n − f1
(
t, x, ϑ̄1n , . . . , ϑmn

,∇ϑ̄1n , . . . ,∇ϑmn

)
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and
ϑ1n (0, x) = ϑn

10 (x) ≥ 0 = ϑ̄1n (0, x) .

Therefore, by the comparison theorem ( [5] or [7]), we get ϑ1n (t, x) ≥ ϑ̄1n (t, x) , where
ϑ1n (t, x) ≥ 0.

In the same way, we find

ϑkn (t, x) ≥ 0 , 2 ≤ k ≤ m.

Then ϑin (t, x) ≥ 0 for all 1 ≤ i ≤ m.

5 Global Existence of the Solution

To show the global existence of the solution of the problem (6) for all t ≥ 0, it suffices to
find an estimate of the solution for all t ≥ 0, from the alternative. The following Lemma
shows the existence of an estimate of the solution of (6) in L1 (Ω).

Lemma 5.1 Consider (ϑ1n , . . . , ϑmn
) as the solution of the system (6), then there

exists M (t), depending only on t, such that for all 0 ≤ t ≤ TM , we have∥∥∥∥∥
m∑
i=1

ϑin

∥∥∥∥∥
L1(Ω)

≤ M (t) .

From this estimate, we conclude that the solution (ϑ1n , . . . , ϑmn) given by Theorem
3.1 is a global solution.

Proof. Adding the equations of system (6), we obtain

∂

∂t

m∑
i=1

ϑin −
m∑
i=1

di (−∆)
αi ϑin =

m∑
i=1

fi (t, x, ϑn,∇ϑn) .

Taking into account (2), we get

∂

∂t

m∑
i=1

ϑin −
m∑
i=1

di (−∆)
αi ϑin ≤ Cm

m∑
i=1

ϑin .

Let us integrate on Ω, so by using the formula (3) of integration by parts∫
Ω

(−∆)
αi ϑin (x) dx = 0,

we obtain
∂

∂t

∫
Ω

m∑
i=1

ϑindx ≤ Cm

∫
Ω

m∑
i=1

ϑindx,

so ∫
Ω

m∑
i=1

ϑindx ≤ exp {Cmt}
∫
Ω

m∑
i=1

ϑn
i0dx,

and for ϑn
i0

≤ ϑi0 , we have∫
Ω

m∑
i=1

ϑindx ≤ exp {Cmt}
∫
Ω

m∑
i=1

ϑi0dx.
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If we put

M (t) = exp {Cmt}

∥∥∥∥∥
m∑
i=1

ϑi0

∥∥∥∥∥
L1(Ω)

,

then ∥∥∥∥∥
m∑
i=1

ϑin

∥∥∥∥∥
L1(Ω)

≤ M (t) , 0 ≤ t ≤ TM .

The following Lemma ensures the existence of estimate of the solution (ϑ1n , . . . , ϑmn
) of

the system (6) in
(
L1 (QT )

)m
.

Lemma 5.2 For any solution (ϑ1n , . . . , ϑmn
) of (6), there exists a constant K (t)

depending only on t and such that∥∥∥∥∥
m∑
i=1

ϑin

∥∥∥∥∥
L1(Q)

≤ K (t)

∥∥∥∥∥
m∑
i=1

ϑi0

∥∥∥∥∥
L1(Ω)

.

Proof. We multiply the first equation of (7) by θ in C∞
0 (Q) with θ ≥ 0 and we

integrate on QT , by using (4) and (5), we obtain, for all 1 ≤ i ≤ m,∫
QT

ϑinθdxdt =

∫
Ω

ϑn
i0 (x) Φ (0, x) dx

+

∫
QT

fi (t, x, ϑn,∇ϑn) Φ (s, x) dxds,

therefore ∫
QT

m∑
i=1

ϑinθdxdt =

∫
Ω

m∑
i=1

ϑn
i0 (x) Φ (0, x) dx+

∫
QT

m∑
i=1

fi (t, x, ϑn,∇ϑn) Φ (s, x) dxds.

According to (3) and as ϑn
i0

≤ ϑi0 , we have∫
QT

m∑
i=1

ϑinθdxdt ≤
∫
Ω

m∑
i=1

ϑi0 (x) Φ (0, x) dx+ Cm

∫
QT

m∑
i=1

ϑinΦ (s, x) dxds.

Using the Hölder inequality, we deduce∫
QT

m∑
i=1

ϑinθdxdt ≤

∥∥∥∥∥
m∑
i=1

ϑi0

∥∥∥∥∥
L1(Ω)

∥Φ (0, .)∥L∞(Q)

+Cm

∥∥∥∥∥
m∑
i=1

ϑin

∥∥∥∥∥
L1(Q)

∥Φ∥L∞(Q) ,

≤

∥∥∥∥∥
m∑
i=1

ϑi0

∥∥∥∥∥
L1(Ω)

+ Cm

∥∥∥∥∥
m∑
i=1

ϑin

∥∥∥∥∥
L1(Q)

 . ∥Φ∥L∞(Q) .
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≤ max {1, Cm}

∥∥∥∥∥
m∑
i=1

ϑi0

∥∥∥∥∥
L1(Ω)

+

∥∥∥∥∥
m∑
i=1

ϑin

∥∥∥∥∥
L1(Q)

 . ∥Φ∥L∞(Q) ,

≤ k1 (t)

∥∥∥∥∥
m∑
i=1

ϑi0

∥∥∥∥∥
L1(Ω)

+

∥∥∥∥∥
m∑
i=1

ϑin

∥∥∥∥∥
L1(Q)

 . ∥θ∥L∞(Q) ,

where k1 (t) ≥ max {c, cCm} .
Since θ is arbitrary in C∞

0 (QT ) , we get∥∥∥∥∥
m∑
i=1

ϑin

∥∥∥∥∥
L1(Q)

≤ k1 (t)

∥∥∥∥∥
m∑
i=1

ϑi0

∥∥∥∥∥
L1(Ω)

+

∥∥∥∥∥
m∑
i=1

ϑin

∥∥∥∥∥
L1(Q)

 .

Taking k (t) = k1(t)
1−k1(t)

, we find∥∥∥∥∥
m∑
i=1

ϑin

∥∥∥∥∥
L1(Q)

≤ k (t)

∥∥∥∥∥
m∑
i=1

ϑi0

∥∥∥∥∥
L1(Ω)

.

6 Main Result

Now, we present the main result of this work, which states that the existence of global
solutions for the system (1) is equivalent to the existence of ϑi for all 1 ≤ i ≤ m, it is
formulated in the following theorem.

Theorem 6.1 Under the hypotheses (A1)-(A3), there exists (ϑ1, . . . , ϑm) being a
solution of the following system:

ϑi ∈ C
(
[0,+∞[ , L1 (Ω)

)
,

fi (t, x, ϑ,∇ϑ) ∈ L1 (QT ) ,

ϑi (t) = Si (t)ϑi0 +
∫ t

0
Si (t− s) fi (s, ., ϑ (s) ,∇ϑ (s)) ds, ∀t ≥ 0,

(8)

where Si (t) are the semigroups of contractions in L1 (Ω) generated by di (−∆)
αi , 1 ≤

i ≤ m.

Proof. We define the map L by

L : (ϑ0, h) → Sd (t)ϑ0 +

∫ t

0

Sd (t− s)h (s, ., ϑ (s) ,∇ϑ (s)) ds,

where Sd (t) is the contraction semigroup generated by the operator −d (−∆)
δ
. Ac-

cording to the compactness of the application L of
(
L1 (QT )

)m
in L1 (QT ) (see [1, 2]),

there is a subsequence
(
ϑj
1n
, . . . , ϑj

mn

)
of (ϑ1n , . . . , ϑmn

) and ϑi of
(
L1 (QT )

)m
such that(

ϑj
1n
, . . . , ϑj

mn

)
converges towards (ϑ1, . . . , ϑm) .

Let us now show that
(
ϑj
1n
, . . . , ϑj

mn

)
is a solution of (7), we have, for all 1 ≤ i ≤ m,

ϑj
in
(t, x) = Si (t)ϑ

j
i0
+

∫ t

0

Si (t− s) fi
(
s, ., ϑj

n,∇ϑj
n

)
ds. (9)
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It suffices to show that (ϑ1, . . . , ϑm) verifies (8). Obviously, if j → +∞, we obtain, for
all 1 ≤ i ≤ m, the limit as follows:

ϑj
i0

→ ϑi0 ,

and
fi
(
s, ., ϑj

n,∇ϑj
n

)
→ fi (s, ., ϑ,∇ϑ) . (10)

Thus, to show that (ϑ1, . . . , ϑm) verifies (8), it remains to show that, for all 1 ≤ i ≤ m,

fi
(
s, x, ϑj

n,∇ϑj
n

)
→ fi (s, x, ϑ,∇ϑ)

in L1 (Q) when j → +∞.
Make the integration by part of (6) on QT by taking (3) into consideration, we obtain

−di

∫
QT

(−∆)
αi ϑj

in
dxdt = 0.

We have ∫
Ω

ϑj
in
dx−

∫
Ω

ϑj
i0
dx =

∫
QT

fi
(
s, ., ϑj

n,∇ϑj
n

)
dxdt,

from where

−
∫
QT

fi
(
s, ., ϑj

n,∇ϑj
n

)
dxdt ≤

∫
Ω

ϑi0dx , 1 ≤ i ≤ m. (11)

We denote

Nin = C

(
m∑
i=1

ϑj
in

)
− fi

(
s, ., ϑj

n,∇ϑj
n

)
, 1 ≤ i ≤ m.

It is clear that Nin are positive according to (2), we obtain∫
QT

Nindxdt ≤ C

∫
QT

(
m∑
i=1

ϑj
in

)
dxdt+

∫
Ω

ϑi0dx.

Lemma 5.2 gives
∫
QT

Nindxdt < +∞, which implies∫
QT

∣∣fi (s, ., ϑj
n,∇ϑj

n

)∣∣ dxdt ≤ C

∫
QT

(
m∑
i=1

ϑj
in

)
dxdt+

∫
QT

Nindxdt < +∞.

Let

hin = Nin + C

(
m∑
i=1

ϑj
in

)
, 1 ≤ i ≤ m,

hin are in L1 (Q) and positive. Furthermore,∣∣fi (s, ., ϑj
n,∇ϑj

n

)∣∣ ≤ hin a.e. 1 ≤ i ≤ m.

Combining this result with (10) and by applying Lebesgue’s dominated convergence
theorem, we obtain

fi
(
s, ., ϑj

n,∇ϑj
n

)
→ fi (s, ., ϑ,∇ϑ) in L1 (Q) .

By passage to the limit when j → +∞ of (9) in L1 (QT ), we find, for all 1 ≤ i ≤ m,

ϑi (t) = Si (t)ϑi0 +

∫ t

0

Si (t− s) fi (s, ., ϑ1 (s) , . . . , ϑm (s) ,∇ϑ1 (s) , . . . ,∇ϑm (s)) ds.

Then (ϑ1, . . . , ϑm) verifies (8), consequently, (ϑ1, . . . , ϑm) is the solution of the system
(1).
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7 Application

The concept of fractional calculus is also found in the study of diffusion phenomena.
Numerous studies have shown the presence of abnormal diffusion processes such as the
Lévy processes, for instance, in physical models where diffusive phenomena are more
accurately represented by the Lévy processes rather than by other processes, reaction-
diffusion equations featuring the fractional Laplacian instead of the standard Laplacian
are used (see, for example, [16]).

The fractional reaction diffusion systems are systems involving constituents locally
transformed into each other by chemical reactions and transported in space by diffusion.
They arise in many applications, in chemistry, chemical engineering, physics, and various
biological processes including population dynamics and biology. They have been the
subject of countless studies in the past few decades. One of the most important aspects
of this broad field is proving the global existence of solutions under certain assumptions
and restrictions

8 Conclusion

This paper has explained the important factors needed to study the global existence of a
solution for fractional nonlinear reaction-diffusion system. We have carried out this study
by using the compact semigroup methods coupled with certain mathematical estimates
and techniques. By building upon previous works, we have confirmed a global existence
of a solution to the fractional system. For attaining our purpose, we have introduced
and derived several theoretical results related to the existence theory.

There will be future research and applications on fractional reaction-diffusion system.
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