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Blow up of Nonlinear Hyperbolic Equation with

Variable Damping and Source Terms

S. Abdelhadi ∗ and I. Hamchi

Laboratory of PDE and Applications, Department of Mathematics, University of Batna 2,
Algeria.

Received: November 14, 2024; Revised: June 23, 2025

Abstract: In this work, we consider a nonlinear hyperbolic equation with variable
damping and source terms. Our aim is to prove that the solution with negative initial
energy blows up in finite time.

Keywords: hyperbolic equation; damping term; source term; variable exponents;
blow up.

Mathematics Subject Classification (2020): 35B40, 37D30, 37K58, 46E35.

1 Introduction

In this work, we consider the following problem utt − div (A∇u) + ut |ut|m(.)−2
= u |u|p(.)−2

in Ω× (0, T ) ,
u = 0 on ∂Ω× (0, T ) ,
u(0) = u0 and ut(0) = u1 in Ω,

(P )

where T > 0, Ω is a bounded domain of Rn (n ∈ N∗) with a smooth boundary ∂Ω.
A = A(x, t) is an n×n symmetric matrix with real coefficients. The exponents m(.) and
p(.) are given measurable functions on Ω.

When A = Identity, the bibliography of works concerning problems of existence and
nonexistence of global solution is truly long. In the case of constant damping and
source terms, Ball [3] in 1977, considered the wave equation with source term and
proved the blow up of solution when the energy of the initial data is negative. Haraux
and Zuazua [8] in 1988, proved that the damping term of polynomial or arbitrary growth

∗ Corresponding author: mailto:s.abdelhadi@univ-batna2.dz
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350 S. ABDELHADI AND I. HAMCHI

assured the global estimates of the wave equation for arbitrary initial data. The inter-
action between the damping and the source term was considered by Levine [9] in 1974,
in the linear damping case m = 2. He showed that the solutions with negative initial
energy blow up in finite time. Georgiev and Todorova [6] in 1994, extended Levine’s
result to the nonlinear damping case m > 2. They showed that solutions with any initial
data are global if the damping term dominates the source term, then blow up in finite
time if the source term dominates the damping term and the initial energy is sufficiently
negative. Without imposing the condition that the initial energy is sufficiently negative,
Messaoudi [10] in 2001, proved that any negative initial energy solution blow up in finite
time. In the case of variable damping and source term, these problems have been
considered by many authors using the Lebesgue spaces with variable exponent [5]. For
instance, Antontsev [2] in 2011, considered the wave equation with p(x, t)-Laplacian and
variable source term. In his work, he proved existence and blow up results under some
assumptions on the initial energy data. In a recent study, Messaoudi and Talahmeh [11]
in 2017, considered the quasilinear wave equation with variable exponent nonlinearities
and proved that the solution with negative or positive initial energy blows up in finite
time. In the same year, Messaoudi et al. [12] considered the nonlinear wave equation
with variable source and damping terms and proved the blow up of solution with nega-
tive energy of initial data. In 2018, Ghegal et al. [7] considered the same system. They
used the stable set method to prove the global existence result. Then, by some integral
inequality, they showed the stability of this solution.

When A(x, t) = a(x, t), where a is a given function, Sun et al. [13] in 2016, showed a
result of blow up of solution when the energy of initial data is positive.

When A = A(x, t), Boukhatem and Benyatou [4], in 2012, considered the hyperbolic
equation with constant damping and source terms. They obtained a result of blow up of
solution when the initial energy is positive.

In this work, we consider the case of variable coefficients (A = A(x, t)), variable
damping and source terms and we show that the solution of (P ) with negative initial
energy blows up in finite time.

This paper consists of two sections in addition to Introduction. In Section 2, we give
the assumptions and preliminary results needed to obtain our result. In Section 3, we
prove the main result.

2 Assumptions and Preliminary Results

In this paper, we study the blow up behavior of the system (P ) under the following
assumptions:

• (H1) For the matrix A: Assume that

1. A is of class C1
(
Ω̄× [0,+∞[

)
.

2. There exists a constant a0 > 0 such that for all ξ ∈ Rn, we have

Aξξ ≥ a0 | ξ |2 and A′ξξ ≤ 0.

• (H2) For the exponents: The exponents m(.) and p(.) are measurable functions on
Ω such that
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1. The following log-Holder continuity condition is satisfied:

|q(x)− q(y)| ≤ − A

log |x− y|
for all x, y ∈ Ω, with |x− y| < δ,

where A > 0 and 0 < δ < 1.

2. We have

2 ≤ m1 ≤ m(x) ≤ m2, n = 1, 2.

2 ≤ m1 ≤ m(x) ≤ m2 ≤ 2n

n− 2
, n ≥ 3,

with m1 := ess infx∈Ω m(x) and m2 := ess supx∈Ω m(x).

3. We assume that

2 ≤ p1 ≤ p(x) ≤ p2, n = 1, 2.

2 < p1 ≤ p(x) ≤ p2 ≤ 2
n− 1

n− 2
, n ≥ 3,

with p1 := ess infx∈Ω p(x) and p2 := ess supx∈Ω p(x).

4. We assume that

m2 < p1 ≤ p2 ≤ 2n

n− 2
.

• (H3) For the initial energy data: we assume that

E(0) < 0,

where

E(0) :=
1

2
∥ u1 ∥22 +

1

2

∫
Ω

A(x, 0)∇u0∇u0dx−
∫
Ω

1

p(x)
| u0 |p(x) dx.

Now, we introduce some preliminary results needed to prove our main result. The
existence and uniqueness result for problem (P ) is given in the following Theorem.

Theorem 2.1 Let (u0, u1) ∈ H1
0 (Ω) × L2(Ω). Then the problem (P ) has a unique

local solution

u ∈ L∞((0, T );H1
0 (Ω)),

ut ∈ L∞((0, T );L2(Ω)) ∩ Lm(.)(Ω× (0, T )),

utt ∈ L2((0, T );H1
0 (Ω)) ,

for some T > 0.

We define the energy functional for the local solution u of problem (P ) by

E(t) =
1

2
∥ ut ∥22 +

1

2

∫
Ω

A∇u∇udx−
∫
Ω

1

p(x)
|u|p(x) dx, ∀t ∈ [0, T ].

The following Lemma shows that E is a non-increasing function of t.
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Lemma 2.1 We have

E′(t) =
1

2

∫
Ω

A′∇u∇udx−
∫
Ω

| ut |m(x) dx ≤ 0, ∀ t ∈ [0, T ].

Proof. We multiply the first equation in (P ) by ut, integrate it over Ω, we obtain∫
Ω

ututtdx−
∫
Ω

utdiv (A∇u) dx−
∫
Ω

utu |u|p(x)−2
dx = −

∫
Ω

|ut|m(x)
dx. (1)

First, we have∫
Ω

ututtdx =
1

2

d

dt
∥ut∥22 and

∫
Ω

utu |u|p(x)−2
dx =

d

dt

∫
Ω

1

p(x)
| u |p(x) dx. (2)

On the other hand, by the generalized Green formula, we find

−
∫
Ω

utdiv (A∇u) dx =

∫
Ω

A∇u∇utdx. (3)

But

d

dt

∫
Ω

A∇u∇udx =

∫
Ω

d(A∇u)

dt
∇udx+

∫
Ω

A∇u∇utdx

=

∫
Ω

A′∇u∇udx+

∫
Ω

A∇ut∇udx+

∫
Ω

A∇u∇utdx.

Since A is symmetric∫
Ω

A∇u∇utdx =
1

2

d

dt

∫
Ω

A∇u∇udx− 1

2

∫
Ω

A′∇u∇udx

(3) becomes

−
∫
Ω

utdiv (A∇u) dx =
1

2

d

dt

∫
Ω

A∇u∇udx− 1

2

∫
Ω

A′∇u∇udx. (4)

We replace (2) and (4) in (1) to obtain

d

dt

{
1

2
∥ut∥22 dx+

1

2

∫
Ω

A∇u∇udx−
∫
Ω

1

p(x)
| u |p(x) dx

}
=

1

2

∫
Ω

A′∇u∇udx−
∫
Ω

| ut |m(x) dx.

This implies the desired result. We set

H(t) = −E(t), ∀t ∈ [0, T ].

Lemma 2.2 We have

0 < H(0) ≤ H(t) ≤ 1

p1

∫
Ω

| u |p(x) dx, ∀t ∈ [0, T ]. (5)
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Proof.

• Since E(0) < 0, we find H(0) = −E(0) > 0.

• From the definition of H and the monotonicity of E, we have

H(0) ≤ H(t), ∀t ∈ [0, T ].

• We have

H(t) = −1

2
∥ut∥22 −

1

2

∫
Ω

A∇u∇udx+

∫
Ω

1

p(x)
| u |p(x) dx.

(H1− 2) implies that

H(t) ≤
∫
Ω

1

p(x)
| u |p(x) dx.

By (H2− 3), we arrive at

H(t) ≤ 1

p1

∫
Ω

|u|p(x) dx.

Let C be a generic positive constant and it may change from line to line.
The following two Lemmas are also needed in our work.

Lemma 2.3 There exists a constant C > 0 such that∫
Ω

| u |p(x) dx ≥ C ∥u∥p1

p1
(6)

and ∫
Ω

| u |m(x) dx ≤ C

((∫
Ω

| u |p(x) dx
)m2

p1

+

(∫
Ω

| u |p(x) dx
)m1

p1

)
. (7)

Proof. Proof of (6): We have∫
Ω

| u |p(x) dx =

∫
Ω+

| u |p(x) dx+

∫
Ω−

| u |p(x) dx, (8)

where

Ω+ = {x ∈ Ω/ | u(x, t) |≥ 1} and Ω− = {x ∈ Ω/ | u(x, t) |< 1} .

We have ∫
Ω+

| u |p(x) dx ≥
∫
Ω+

| u |p1 dx (9)

and ∫
Ω−

| u |p(x) dx ≥
∫
Ω−

| u |p2 dx.
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Since p1 ≤ p2, ∫
Ω−

| u |p(x) dx ≥ C

(∫
Ω−

| u |p1 dx

) p2
p1

. (10)

We replace (9) and (10) in (8) to obtain

∫
Ω

| u |p(x) dx ≥
∫
Ω+

| u |p1 dx+ C

(∫
Ω−

| u |p1 dx

) p2
p1

.

This implies that∫
Ω

| u |p(x) dx ≥
∫
Ω+

| u |p1 dx and C

(∫
Ω

| u |p(x) dx
) p1

p2

≥
∫
Ω−

| u |p1 dx.

By addition, we find∫
Ω

| u |p(x) dx+ C

(∫
Ω

| u |p(x) dx
) p1

p2

≥ ∥u∥p1

p1
.

So [
1 + C

(∫
Ω

| u |p(x) dx
) p1

p2
−1
]∫

Ω

| u |p(x) dx ≥ ∥u∥p1

p1
.

But, by (5) and (H2− 3), we find

(p1H(0))
p1
p2

−1 ≥
(∫

Ω

| u |p(x) dx
) p1

p2
−1

.

Then [
1 + C (p1H(0))

p1
p2

−1
] ∫

Ω

| u |p(x) dx ≥ ∥u∥p1

p1
.

Consequently, we obtain (6).
Proof of (7): We have∫

Ω

| u |m(x) dx =

∫
Ω+

| u |m(x) dx+

∫
Ω−

| u |m(x) dx

≤
∫
Ω+

| u |m2 dx+

∫
Ω−

| u |m1 dx.

Since m1 ≤ m2 < p1,∫
Ω

| u |m(x) dx ≤ C

(∫
Ω+

| u |p1 dx

)m2
p1

+

(∫
Ω−

| u |p1 dx

)m1
p1


≤ C

(
∥u∥m2

p1
+ ∥u∥m1

p1

)
.

By (6), we find the desired result.
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Lemma 2.4 For all

0 < α ≤ min

{
p1 − 2

2p1
,

p1 −m2

p1(m2 − 1)

}
and k > 1,

we have∫
Ω

Hα(m(x)−1)(t) | u |m(x) dx ≤ C

(∫
Ω

A∇u∇udx+

∫
Ω

| u |p(x) dx
)

(11)

and ∫
Ω

| u || ut |m(x)−1 dx ≤ C
k1−m1

m1

(∫
Ω

A∇u∇udx+

∫
Ω

| u |p(x) dx
)

+
(m2 − 1)k

m2
H−α(t)H ′(t). (12)

Proof. Proof of (11): We have∫
Ω

Hα(m(x)−1)(t) | u |m(x) dx =

∫
Ω

[
H(t)

H(0)

]α(m(x)−1)

[H(0)]
α(m(x)−1) | u |m(x) dx.

Since
H(t)

H(0)
≥ 1, by (H2− 2), we find

∫
Ω

Hα(m(x)−1)(t) | u |m(x) dx ≤
∫
Ω

[
H(t)

H(0)

]α(m2−1)

[H(0)]
α(m(x)−1) | u |m(x) dx

≤ [H(t)]
α(m2−1)

∫
Ω

[H(0)]
α(m(x)−m2) | u |m(x) dx. (13)

But

[H(0)]
α(m(x)−m2) ≤ C for all x ∈ Ω.

Indeed,

if H(0) ≤ 1, then [H(0)]
α(m(x)−m2) ≤ [H(0)]

α(m1−m2) ,

if H(0) > 1, then [H(0)]
α(m(x)−m2) ≤ [H(0)]

α(m2−m2) = 1.

Then (13) becomes∫
Ω

Hα(m(x)−1)(t) | u |m(x) dx ≤ C [H(t)]
α(m2−1)

∫
Ω

| u |m(x) dx.

By (5) and (7), we find∫
Ω

Hα(m(x)−1)(t) | u |m(x) dx

≤ C

((∫
Ω

| u |p(x) dx
)m2

p1
+α(m2−1)

+

(∫
Ω

| u |p(x) dx
)m1

p1
+α(m2−1)

)
.
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We apply Lemma 4.1 from [12] to

2 ≤ s = m1 + αp1(m2 − 1) ≤ p1,

and

2 ≤ s = m2 + αp1(m2 − 1) ≤ p1,

and by (H1− 1), we obtain (11).
Proof of (12): By the Young inequality

XY ≤ δµ

µ
Xµ +

δ−θ

θ
Y θ for all X, Y ≥ 0, δ > 0 and

1

µ
+

1

θ
= 1 (14)

with

X = |u| , Y =| ut |m(x)−1, µ = m(x) and θ =
m(x)

m(x)− 1
,

we find∫
Ω

| u || ut |m(x)−1 dx ≤
∫
Ω

δm(x)

m(x)
| u |m(x) dx+

∫
Ω

m(x)− 1

m(x)
δ−

m(x)
m(x)−1 | ut |m(x) dx

≤ 1

m1

∫
Ω

δm(x) | u |m(x) dx

+
m2 − 1

m1

∫
Ω

δ−
m(x)

m(x)−1 | ut |m(x) dx.

Let k > 0. If we take

δ =
(
kH−α(t)

)−m(x)−1
m(x) > 0,

then we find∫
Ω

| u || ut |m(x)−1 dx ≤ 1

m1

∫
Ω

k1−m(x)Hα(m(x)−1)(t) | u |m(x) dx

+
(m2 − 1)k

m1
H−α(t)

∫
Ω

| ut |m(x) dx. (15)

But, from the definition of H, Lemma 2.1 and (H1− 2), we have∫
Ω

|ut|m(x)
dx =

1

2

∫
Ω

A′∇u∇udx+H ′(t) ≤ H ′(t).

Then, for k > 1, (15) becomes∫
Ω

| u || ut |m(x)−1 dx ≤ k1−m1

m1

∫
Ω

Hα(m(x)−1)(t) | u |m(x) dx+
(m2 − 1)k

m2
H−α(t)H ′(t).

By (11), we obtain the result.
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3 Main Result

In this section, we state and prove our main result.

Theorem 3.1 The solution of problem (P ) blows up in finite time.

Proof. We proceed in 4 steps.
Step 1. For ϵ > 0, we consider the following functional:

L(t) = H1−α(t) + ϵ

∫
Ω

uutdx, ∀t ∈ [0, T ].

If we derive the function L with respect to t, we obtain

L′(t) = (1− α)H−α(t)H ′(t) + ϵ ∥ut∥22 + ϵ

∫
Ω

uuttdx, ∀t ∈ [0, T ]. (16)

But ∫
Ω

uuttdx =

∫
Ω

udiv(A∇u)dx−
∫
Ω

uut | ut |m(x)−2 dx

+

∫
Ω

| u |p(x) dx.

By the generalized Green formula, we obtain∫
Ω

uuttdx = −
∫
Ω

A∇u∇udx−
∫
Ω

uut | ut |m(x)−2 dx+

∫
Ω

| u |p(x) dx. (17)

Replacing (17) in (16), we find

L′(t) ≥ (1− α)H−α(t)H ′(t) + ϵ ∥ut∥22 − ϵ

∫
Ω

A∇u∇udx

− ϵ

∫
Ω

| u || ut |m(x)−1 dx+ ϵ

∫
Ω

| u |p(x) dx.

By (12), we obtain

L′(t) ≥
[
1− α− ϵ

(m2 − 1)k

m2

]
H−α(t)H ′(t) + ϵ ∥ut∥22

− ϵ

(
1 + C

k1−m1

m1

)∫
Ω

A∇u∇udx

+ ϵ

(
1− C

k1−m1

m1

)∫
Ω

| u |p(x) dx. (18)

Add and subtract ϵ(1 − η)p1H(t) for 0 < η < 1 in the right-hand side of (18) and use
the definition of H to obtain

L′(t) ≥
[
1− α− ϵ

(m2 − 1)k

m2

]
H−α(t)H ′(t) + ϵ(1− η)p1H(t) + ϵ ∥ut∥22

− ϵ

(
1 + C

k1−m1

m1

)∫
Ω

A∇u∇udx+ ϵ

(
1− C

k1−m1

m1

)∫
Ω

| u |p(x) dx

− ϵ(1− η)p1

(
−1

2
∥ut∥22 −

1

2

∫
Ω

A∇u∇udx+
1

p1

∫
Ω

| u |p(x) dx
)
. (19)
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Then

L′(t) ≥
[
1− α− ϵ

(m2 − 1)k

m2

]
H−α(t)H ′(t) + ϵ(1− η)p1H(t)

+ ϵ

(
η − C

k1−m1

m1

)∫
Ω

| u |p(x) dx+ ϵ

(
(1− η)p1

2
+ 1

)
ϵ ∥ut∥22

+ ϵ

(
p1 − 2

2
− ηp1

2
− C

k1−m1

m1

)∫
Ω

A∇u∇udx.

For the fixed k sufficiently large, then for η sufficiently small, we arrive at

L′(t) ≥
[
1− α− ϵ

(m2 − 1)k

m2

]
H−α(t)H ′(t) + ϵγ

[
H(t) +

∫
Ω

| u |p(x) dx+ ϵ ∥ut∥22

]
+ ϵβ

∫
Ω

A∇u∇udx, (20)

where

γ = min

{
(1− η)p1, η − C

k1−m1

m1
,
(1− η)p1

2
+ 1

}
> 0,

and

β =
p1 − 2

2
− ηp1

2
− C

k1−m1

m1
=

p1 − 2

2
− η

(
1 +

p1
2

)
+ η − C

k1−m1

m1
> 0.

If ϵ is chosen sufficiently small such that

1− α− ϵ
m2 − 1

m2
k ≥ 0,

then, by (6), inequality (20) takes the form

L′(t) ≥ ϵC
[
H(t)+ ∥ u ∥p1

p1
+ ∥ ut ∥22

]
. (21)

Step 2. Since

L(0) = H1−α(0) + ϵ

∫
Ω

u0(x)u1(x)dx > 0,

from the increase of L (see (21)), we find

L(t) ≥ 0, ∀t ∈ [0, T ].

Step 3. By the definition of L, we find

L
1

1−α (t) ≤
[
H1−α(t) + ϵ

∫
Ω

| u || ut | dx
] 1

1−α

.

By the following inequality:

(a+ b)m ≤ 2m(am + bm) for all a, b ≥ 0 and m > 0,
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with

a = H1−α(t), b = ϵ

∫
Ω

| u || ut | dx and m =
1

1− α
,

we obtain

L
1

1−α (t) ≤ 2
1

1−α

[
H(t) +

(
ϵ

∫
Ω

| u || ut | dx
) 1

1−α

]
.

But, by the Cauchy–Schwarz inequality, we have(∫
Ω

| u || ut | dx
) 1

1−α

≤ ∥ u ∥
1

1−α

2 ∥ ut ∥
1

1−α

2 .

From the embedding Lp1(Ω) ↪→ L2(Ω), we find(∫
Ω

| u || ut | dx
) 1

1−α

≤ C ∥ u ∥
1

1−α
p1 ∥ ut ∥

1
1−α

2 .

Apply Young’s inequality (14) with

X =∥ u ∥
1

1−α
p1 , Y =∥ ut ∥

1
1−α

2 , µ =
2(1− α)

1− 2α
and θ = 2(1− α),

we have (∫
Ω

| u || ut | dx
) 1

1−α

≤ C

(
∥ u ∥

2
1−2α
p1 + ∥ ut ∥22

)
.

We apply Corollary 4.4 from [12] with 2 ≤ s = 2
1−2α ≤ p1 to find

L
1

1−α (t) ≤ C
[
H(t)+ ∥ u ∥p1

p1
+ ∥ ut ∥22

]
, ∀t ∈ [0, T ]. (22)

Step 4. We proceed by contradiction. By the continuation principal, we obtain that
T = +∞. By combining (21) and (22), we arrive at

L′(t) ≥ CL
1

1−α (t), for all t ≥ 0.

A simple integration over (0, t) gives

L(t) ≥ 1[
L

−α
1−α (0)− αCt

(1−α)

] 1−α
α

, for all t ≥ 0.

This leads to a contradiction.

4 Conclusion

In this work, we study the blow up of solutions of the nonlinear hyperbolic equation with
variable damping and source terms. We present the assumptions and preliminary results
required to obtain our main result. We also provide the energy identity associated with
the solution. Finally, we state and prove the blow up result for the solution.
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1 Introduction

Mycobacterium tuberculosis is the causative agent of tuberculosis (TB), a dangerous
infectious disease that mostly affects the lungs. Despite treatment, tuberculosis is still
one of the deadliest infectious diseases in the world, killing more people than HIV/AIDS
combined [1]. One of the reasons why this disease still exists is the resistance of bac-
teria to the immune system, especially macrophages, which are essential for eliminating
infections. Once TB germs enter the lungs, granulomas, a protective barrier that helps
regulate bacterial development, are activated. The persistence of bacteria allows them
to live inside these structures, postponing the immune response of the body and pro-
longing the illness. TB is difficult to control due to its rapid spread and drug resistance,
even though it can be managed with the right antibiotics. Consequently, prevention,
early detection, and effective management are essential in reducing the global burden of
tuberculosis [2]. Governments, health organizations, and researchers around the world
are working together to develop more comprehensive strategies to control the spread of
tuberculosis and improve case management.

Various strategies and models have been explored in the investigation of TB. Recent
research on TB prevention efforts at the cellular level can be found in several studies such
as [3]. Another novel approach is to use fractional differential equations to model bio-
logical processes. Fractional models, as opposed to traditional models, take into account
”memory” effects, which are situations in which previous occurrences impact future re-
sults. The fractional derivatives can be used to explain phenomena that show relaxation
effects and memory retention since they incorporate memory and genetic characteris-
tics [4]. This makes them especially helpful for tuberculosis, as the history of infection
can affect the immune response and transmission rates. Fractional models provide a
more accurate picture of TB dynamics by taking into consideration elements that are
frequently missed in classical models. For example, Ibarguen-Mondragon et al. [5] for-
mulate a model for the population dynamics of Mycobacterium tuberculosis (Mtb) to
assess the impact of the competition among bacteria on the infection prevalence.

Recently, numerous fractional derivatives have also been investigated in recent works
on tuberculosis epidemic modeling such as [6–8]. Zhang et al. [6] utilized the Caputo
derivative to capture TB’s transmission dynamics, incorporating the concept of memory
behavior to illustrate how past infections affect disease progression and treatment. Mean-
while, Zafar et al. [7] explored machine learning approaches alongside fractional operators
for various fractional orders. Recently, Olayiwola et al. [8] studied a mathematical model
to investigate the impact of treatment on physical limitations in tuberculosis. Studies on
TB control measures such as hospitalization, quarantine, and adherence to treatment,
have used the Atangana-Baleanu-Caputo and Caputo-Fabrizio derivatives [9]. This broad
variety of TB modeling is a result of continuous attempts to use fractional-order deriva-
tives to better understand and treat TB. Based on the previous studies, in this study, we
aim to develop a fractional-order-based mathematical model to analyze the interaction
of MTb with host immune cells. This fractional-order approach was chosen to consider
the memory effect on infection dynamics, which is not fully covered by models based on
integer order [10].

The structure of this paper is as follows. Section 2 defines the methods; in partic-
ular, we describe the model formulation for the interaction between macrophages and
Mycobacterium tuberculosis, the fractional model, and determine the existence and sta-
bility of the equilibrium point. Section 3 provides numerical results and discusses the
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effect of a variation in order. Finally, Section 4 gives the conclusion.

2 Methods

2.1 Model description

In this section, we develop a mathematical model describing the interaction between
macrophages and Mycobacterium tuberculosis (Mtb). The population is divided into
four sub-populations: uninfected macrophages (MU ), infected macrophages (MI), My-
cobacterium tuberculosis bacteria (B), and T cells (T ). The dynamics of Mycobacterium
tuberculosis within granulomas are represented in the schematic diagram in Figure 1.

Figure 1: Schematic diagram of Mtb progression.

The population dynamics of uninfected macrophages (MU (t)) are influenced by sev-
eral factors, including the growth rate of uninfected macrophages per unit of time (ΛU ),
the natural death rate of uninfected macrophages per unit of time (µUMU (t)), and the
interaction between uninfected macrophages and bacteria per unit of time (βB(t)MU (t)).
This change in population is represented by the following equation:

dMU (t)

dt
= ΛU − βB(t)MU (t)− µUMU (t). (1)

The population dynamics of infected macrophages (MI(t)) are influenced by inter-
actions between uninfected macrophages and bacteria per unit of time (βB(t)MU (t)),
interactions of T cells with infected macrophages per unit of time (αTMI(t)T (t)), and
the natural death rate of infected macrophages per unit of time (µIMI(t)):

dMI(t)

dt
= βB(t)MU (t)− αTMI(t)T (t)− µIMI(t). (2)

The population of Mycobacterium tuberculosis bacteria (B(t)) is influenced by factors
such as the bursting of infected macrophages when bacterial growth exceeds a threshold
per unit of time (rµIMI(t)), the logistic growth of bacteria with the growth rate v
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and maximum capacity K, phagocytosis by uninfected macrophages per unit of time
(γUMU (t)B(t)), and the natural death rate of bacteria per unit of time (µBB(t)):

dB(t)

dt
= rµIMI(t) + v

(
1− B(t)

K

)
B(t)− γUMU (t)B(t)− µBB(t). (3)

The T cell population (T (t)) is affected by T cell growth due to signals from infected
macrophages per unit of time (k(1 − T (t))MI(t)), immune memory from vaccination

following a decay function per unit of time
(

cBBT
eBT+1

)
, and the natural death rate of T

cells per unit of time (µTT (t)):

dT (t)

dt
= k

(
1− T (t)

Tmax

)
MI(t) +

cBBT

eBT + 1
− µTT (t). (4)

To simplify the model, we introduce the following non-dimensional variables:

MU =
MU

ΛU/µU
; MI =

MI

ΛU/µU
; B =

B

K
; T =

T

Tmax
.

After substituting these variables into equations (1)–(4), the resulting system of dif-
ferential equations becomes:

ṀU = µU − βBMU − µUMU ,

ṀI = βBMU − αTMIT )− µIMI ,

Ḃ = rµIMI + v(1−B)B − γUMUB − µBB,

Ṫ = k(1− T )MI +
cBBT
eBT+1 − µTT,

(5)

where

αT = αTTmax; β = βK; γU =
γUΛU

µU
; r =

rΛU

KµU
; k =

kΛU

µU
.

2.2 Fractional model of Mycobacterium tuberculosis growth

Incorporating fractional calculus, we replace the integer-order derivatives d
dt in equation

(5) with the Caputo-Fabrizio fractional derivatives (CF
0 Dα

t ) of order α ∈ (0, 1), we get:
CF
0 Dα

t MU (t) = µU − βBMU − µUMU ,
CF
0 Dα

t MI(t) = βBMU − αTMIT − µIMI ,
CF
0 Dα

t B(t) = rµIMI + v(1−B)B − γUMUB − µBB,
CF
0 Dα

t T (t) = k(1− T )MI +
cBBT
eBT+1 − µTT,

(6)

with the initial conditions MU (0) ≥ 0, MI(0) ≥ 0, B(0) ≥ 0, and T (0) ≥ 0.

2.3 Equilibrium points

Equilibrium points can be found by setting each equation in system (6) to zero, so we
have the infection-free equilibrium point

E0 = (MU ,MI , B, T ) = (1, 0, 0, 0).
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Next, the basic reproduction number, R0, can be derived using the next-generation
matrix method, where the classes responsible for infection are MI and B. Thus, the
differential equations used are

CF
0 Dα

t MI = βBMU − αTMIT − µIMI ,

CF
0 Dα

t B = rµIMI + v(1−B)B − γUMUB − µBB.

We can construct matrices F and V, where F represents the rate of infection that
increases the infected class, and V represents the rate of progression, recovery, and death
that decreases the infected class. The matrices F and V are as follows:

F =

(
βBMU

v(1−B)B

)
, V =

(
αTMIT + µIMI

−rµIMI + γUMUB + µBB

)
.

The Jacobian matrices of F and V at E0 are

F =

(
0 β
0 v

)
, V =

(
µI 0

−rµI γU + µB

)
.

Then the matrix G is given by

G = FV −1 =

(
βr

γU+µB

β
γU+µB

vr
γU+µB

v
γU+µB

)
.

The basic reproduction number R0 is the spectral radius of the matrix G, it is

R0 =
βr + v

γU + µB
.

Furthermore, the endemic equilibrium E1 of system (6) is given by

E1 = (M∗
U ,M

∗
I , B

∗, T ∗), (7)

where

M∗
U =

µU

βB∗ + µU
, M∗

I =
βB∗µU

(βB∗ + µU )(αTT + µI)
,

T ∗ =
µI

αTA

(
B∗βv −B∗2βv −B∗(vµU + βµ∗

B) + µU (γU + µ∗
B)(R0 − 1)

)
,

and B∗ is the root of

0 = k(1− T ∗)M∗
I +

cBBT ∗

eBT ∗ + 1
− µTT

∗.

After further substitutions and simplifications, we find that the resulting polynomial
equation is of degree 7. Based on Abel-Ruffini’s theorem, polynomial equations of de-
gree higher than 5 generally cannot be solved algebraically [11], so we will solve them
numerically in Section 3.1.
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2.4 Stability of equilibrium points

The stability of the equilibrium points in the system of equations (6) is provided by the
following theorem.

Theorem 2.1 The infection-free equilibrium point E0 = (MU ,MI , B, T ) = (1, 0, 0, 0)
is locally asymptotically stable if R0 < 1, and unstable if R0 > 1.

Proof. The Jacobian matrix of the linearized system (6) at E0 = (MU ,MI , B, T ) =
(1, 0, 0, 0) is

J(E0) =


−µU 0 −β 0
0 −µI β 0
0 rµI v − γU − µB 0
0 k 0 −µT

 .

The characteristic equation is

0 = (λ+ µU )(λ+ µT ) [(λ+ µI)(λ− v + γU + µB)− βrµI ] .

The first two eigenvalues are

λ1 = −µU , λ2 = −µT ,

and the other two are the roots of the quadratic equation

λ2 + λW1 +W2 = 0, (8)

where W1 = γU + µB − v + µI and W2 = µI(γU + µB − v − βr).
Thus, we have | arg(λ1)| = | arg(λ2)| = π > απ

2 . According to the Routh-Hurwitz
criterion, the roots of equation (8) are negative if W1,W2 > 0. Following Ahmed [12],
the roots of the quadratic equation (8) are negative if and only if | arg(λi)| > απ

2 or,
equivalently, R0 < 1. Thus, the infection-free equilibrium E0 = (MU ,MI , B, T ) =
(1, 0, 0, 0) is locally asymptotically stable if R0 < 1, and unstable if R0 > 1.

Theorem 2.2 Let D = βB∗+µU , E = βB∗, F = γUB
∗, G = αTT

∗+µI , H = rµI ,
I = βM∗

U , K = cBT∗

eBT∗+1 , L = αTM
∗
I , P = cBeBB∗T∗

(eBT∗+1)2 + kM∗
I + µT , Q = cBB∗

eBT∗+1 ,

and R = γUM
∗
U + 2vB∗ + µB. The endemic equilibrium point E1 in (7) is locally

asymptotically stable if s1 > 0, s4 > 0, s1s2 − s3 > 0, (s1s2 − s3)s3 − s21s4 > 0, A > 0,
and Bβv + µU (γU + µB)(R0 − 1) > Y .

Proof. Substituting the endemic equilibrium point E1 into the Jacobian matrix of
system (6), we get

J(E1) =


−D 0 −I 0
E −G I −L
−F H −R+ v 0
0 k − kT ∗ K Q− P

 .

To ensure negative eigenvalues, we form the characteristic polynomial

p1(λ) = det(λI − J(E1)) = λ4 + s1λ
3 + s2λ

2 + s3λ+ s4,
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where

s1 = D +G+ P −Q+R− v,

s2 = (R− v +G+ P −Q)D + (R− v + P −Q)G+ (R− v)P + (v −R)Q− k(T ∗ − 1)L

− FI −HI,

s3 = ((R− v + P −Q)G+ (R− v)P + (v −R)Q− k(T − 1)L−HI)D

+ ((R− v)P + (v −R)Q− FI)G+ (−FI −HI)P + (FI +HI)Q

+ (−k(T − 1)R+ k(T − 1)v +HK)L+ EHI,

s4 = ((P −Q)(R− v)G−HPI +HQI − L(k(T − 1)R− k(T − 1)v −HK))D

− FGI(P −Q) + EHIP − EHIQ+ kFIL(T − 1).

By the Routh-Hurwitz criterion, the polynomial p1(λ) of order 4 will have all negative
roots if and only if s1 > 0, s4 > 0, s1s2 − s3 > 0, (s1s2 − s3)s3 − s21s4 > 0,A > 0, and
Bβv+µU (γU +µB)(R0−1) > Y . Thus, the endemic equilibrium E1 = (M∗

u ,M
∗
I , B

∗, T ∗)
is locally asymptotically stable if these conditions are met.

3 Results and Discussion

3.1 Numerical simulation

In this section, we provided numerical simulations for the system of equations (6) using
the Adams-Bashforth 3-step method.

We perform simulations for a first-order system using the possible parameter values
from [3,5]. We take the set of parameter values

β = 2.5× 10−5, αT = 2.5× 10−5, r = 0.1, v = 0.4, γU = 1.25× 10−8, k = 0.4848, (9)

cB = 5× 10−3, eB = 10−4, µU = 0.02, µI = 0.1, µB = 0.42, µT = 0.02.

With this set of parameter values, we have R0 = 0.8571 and the resulting interaction
graph of MU ,MI , B, T over time t is shown in Figure 2a. It can be seen that eventually
the populations MU ,MI , B, and T will move towards E0.

Furthermore, we performed simulations using the parameter µB = 0.12 and kept
the values of the other parameters as before. With these parameter values, we have
R0 = 3.0 > 1 and the infective equilibrium points E1 = (0.9991673, 1.66529 ×
10−4, 0.6666602, 4.82067× 10−3). The interaction graph of MU ,MI , B, T over t is shown
in Figure 2b. It is observed that the population of uninfected macrophages increases
steadily towards the equilibrium point. Infected macrophages decrease as a result of
interactions with T cells. Bacterial levels initially increase but eventually decrease due
to interactions with uninfected macrophages. T cells increase in response to the presence
of infected cells but decrease as infected macrophages decline.

Next, as for the stability of the equilibrium point E0, Figure 3 shows that with varying
initial conditions, the population will converge to E0. In Figure 3, the simulation with
various initial values shows that all growth graphs of uninfected macrophages, bacteria,
and T cells converge towards the equilibrium point E0, where the population of MU

approaches one, B approaches zero, and T approaches zero. This suggests that the
equilibrium point E0 is asymptotically stable and satisfies the condition R0 < 1, which
confirms Theorem 2.1. In this case, the bacteria cannot infect a sufficient number of
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Figure 2: The dynamics interaction of MU ,MI , B, T with respect to the set of parameter values
in (9), (a) R0 = 0.8571, (b)R0 = 3.00.

Figure 3: Phase portrait with different initial values confirms converge to E0. (a) the phase
portrait of MI , B, T ; (b) the phase portrait of MU ,MI , B.
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Figure 4: Phase portrait with different initial values confirm converge to E1. (a) the phase
portrait of MI , B, T ; (b) the phase portrait of MU ,MI , B.

macrophages, the bacterial growth rate is low, or the immune response is capable of
controlling the infection.

The graphical illustration related to the stability of the endemic equilibrium point
is presented in Figure 4. In Figure 4a, the simulation with various initial values shows
that the infected macrophages, bacteria, and T cells converge towards the endemic equi-
librium point E1. In Figure 4b, the simulation using various initial values shows that
all growth graphs of uninfected macrophages, bacteria, and T cells converge towards the
endemic equilibrium point E1. The movement graphs of uninfected macrophages, in-
fected macrophages, bacteria, and T cells show variables moving towards the equilibrium
point E1 = (M∗

U ,M
∗
I , B

∗, T ∗) with R0 = 3.0, indicating an average of 3 new infected
macrophages per day. This suggests that the equilibrium point E1 is asymptotically sta-
ble and satisfies the conditions A > 0, Bβv + (γUΛU + µUµB)(R0 − 1) > Y, s1 > 0, s4 >
0, s1s2 − s3 > 0, and (s1s2 − s3)s3 − s21s4 > 0, thus confirming Theorem 2.2.

The locally asymptotically stable equilibrium point E1 implies that the number
of uninfected macrophages remains significantly higher than the number of infected
macrophages and bacteria, representing a latent state. This state suggests that bac-
terial growth exists but is still controllable by the immune system. If the immune system
weakens, inactive bacteria may become active again, leading to active tuberculosis. This
is consistent with [13], which states that the BCG tuberculosis vaccine has an efficacy of
60—80% against severe tuberculosis. According to [14], no tuberculosis vaccine has been
shown to fully prevent and eliminate Mycobacterium tuberculosis infection, indicating
that the bacteria remain in the human body.

Following [15], we calculate the sensitivity indices of each parameter with respect to
the basic reproduction number R0 presented in Table 1.

From Table 1, the most influential parameters on R0 are the bacterial growth rate v
and the bacterial death rate µB . The parameter v has a positive relationship with R0,
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Parameter Sensitivity Index
β +6.25× 10−9

r +6.25× 10−9

v +1.000000000
γU −2.5× 10−16

µB −1.00000000

Table 1: Sensitivity indices of R0.

while µB has a negative relationship with R0. If the parameter v is increased by 10%
from 0.4 to 0.44, then R0 increases from 0.8 to 0.88. Conversely, if v is decreased by
10% from 0.4 to 0.36, then R0 decreases from 0.8 to 0.72. This result confirms that the
sensitivity analysis aligns with the tested results on R0.

3.2 Effect of variational order

In this section, we present numerical simulation results with fractional orders α =
0.6, 0.75, 0.85, and 1 using the parameters in (9). The simulation results for uninfected
macrophages, infected macrophages, bacteria, and T cells are illustrated in Figure 5.

Figure 5: Graphs of uninfected macrophages, uninfected macrophages, bacteria Mtb, and T
cells with different orders.

Figure 5a shows the population of uninfected macrophages with orders α =
0.6, 0.75, 0.85, 1, all moving towards the equilibrium point with the same trend, regard-
less of the different orders used. The graph with order 0.6 reaches equilibrium faster
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than with order 0.75, the graph with order 0.8 reaches equilibrium faster than with order
0.85, and so on. From the results of the numerical simulation, the graphs of uninfected
macrophages, infected macrophages, bacteria and T cells converge to the equilibrium
point, even when different orders are used, but follow the same trend as shown in Fig-
ure 5b-d. These figures indicate that the smaller the order used, the faster the immune
response cells grow toward the equilibrium point.

4 Conclusion

This study presents a fractional-order mathematical model with the Caputo-Fabrizio
derivative to understand the dynamics of Mycobacterium tuberculosis (Mtb) infection.
The model offers a novel approach that incorporates memory effects, an aspect often
overlooked in classical models. Key findings show that the fractional order value strongly
influences the stability of the system and the rate of convergence of the immune response
to a steady state. This provides new insights into how infections can persist or be
controlled over time. Furthermore, the sensitivity of the model to certain parameters
such as bacterial growth and death rates, demonstrates the importance of these elements
in determining the overall behavior of the system. These results open up opportunities
for broader applications in nonlinear dynamics, especially in studying other biological
systems with similar characteristics, for example, chronic infections or complex ecological
interactions. By integrating stability analysis, numerical simulations, and a memory
effect-based approach, this study makes novel contributions to understanding complex
biological interactions. This model is not only relevant for understanding TB dynamics,
but also has the potential to develop more effective control strategies in the future.
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Abstract: The occupancy rate of a hotel is an important factor to see the devel-
opment of providers business performance. By forecasting occupancy rate, the hotel
can identify business opportunities or adjust room prices, determine hotel operations,
and take this into consideration for strategic decision making. In this study, occu-
pancy rate forecasting for Hotel XYZ was carried out by comparing the k-nearest
neighbor (k-NN) and neural network methods. The dataset used in this study in-
cluded rooms available, rooms sold out, and available occupancy percentage data in
Hotel XYZ from April 2018 to June 2023. The simulation was carried out by dividing
the data into training data and testing data with a ratio of 70:30 and 80:20. Model
creation was carried out by applying the k-NN and neural network methods to the
Hotel XYZ data set. Forecasting results that were obtained using k-NN showed an
optimal RMSE at 70%:30% split of data with an RMSE of 0.080 at k-value 3, while
forecasting results obtained using the neural network showed an optimal RMSE at
70%:30% data split with an RMSE of 0.007 for two hidden layers. The comparison
of results of forecasting by k-NN and neural network showed an optimal RMSE when
using neural network method with an RMSE of 0.004, a GAP of 0.076 compared
to using k-NN. The results of this study can be used by Hotel XYZ to make better
decisions in determining hotel policies in the future and goals set by the hotel.
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1 Introduction

Business development in the hotel sector in Indonesia has shown a positive trend, as
can be seen from the increasing occupancy rate. The occupancy rate of star classified
hotels in September 2023 reached an average of 53.02%, an increase of 3.00 points com-
pared to the occupancy rate in September 2022 of 50.02% and YTD 2023 reached an
average of 49.43%, an increase of 4.04 compared to the YTD 2022 occupancy rate of
45.40% [1]. The occupancy rate of non-star classified hotels in September 2023 reached
an average of 24.82%, an increase of 1.43 points compared to the occupancy rate in
September 2022 of 23.39% and YTD 2023 reached an average of 23.72%, an increase of
1.52 points compared to the YTD 2022 occupancy rate of 22.21% [2]. Along with this
growth, competition among hoteliers is also increasing. In-depth knowledge of the level
of competition is crucial to identify opportunities, face challenges, and develop effective
strategies to compete competitively.

Occupancy rate is the percentage of sold room occupancy rate [3] and is one of
the indicators that can be used to see the development of business efficiency of hotel
service providers in a certain period [4]. This occupancy can be calculated before the
current date, which is commonly called a forecast, or after the date passed [5]. By
forecasting occupancy rate, the hotel can identify business opportunities or adjust room
prices, determine hotel operations, and take this into consideration for strategic decision
making.

In 1951, Evelyn Fix and Joseph Hodges created the k-nearest neighbor algorithm
(k-NN) in statistics as a non-parametric supervised learning technique. Regression and
classification are two uses for it. The input in both situations consists of a data set’s
k closest training samples [6]. K-NN is referred to as case-based reasoning, which is
a methodology based on reasoning of cases in terms of training data of a case stored,
trained, and accessed to solve new problems [7]. K-NN makes firm predictions on test
data based on k-nearest neighbor comparisons. The near or far of neighbors is usually
calculated based on Euclidian distance. The best k value for this algorithm depends on
the data, usually a high k value will reduce the effect of noise on the application [8].

Neural networks have been around since 1943, when Warren McCulloch and Walter
Pitts introduced the first neural network model calculations. This model describes the
way artificial neurons can be used to process information binary. In 1950, Frank Ronse-
blatt continued his research by discovering a two-layer network called a perceptron. A
neural network is a model with a flexible function structure, so the neural network model
is rapidly developing and has been widely applied in various fields. Neural networks
can be used to find solutions to problems when classical methods prove difficult or fail
frequently [9].

In the previous studies, several forecasting methods were applied for the estimation of
closed hotels and restaurants in Jakarta because of corona virus disease spread using an
adaptive neuro fuzzy inference system [10], forecasting the number of Demam Berdarah
Dengue (DBD) patients using the fuzzy method [11], predicting the number of visitors
per period to beach attractions using triple exponential smoothing [12], classifying the
price range of smartphones in the market using backpropagation and Learning Vector
Quantification (LVQ) [13], for stock price estimation using Unscented Kalman Filter
(UKF) [14], forecasting of occupied rooms in the hotel using linear support vector ma-
chine [15], profitability estimation using H-Infinity and Ensemble Kalman Filter (EnKF)
[16], the analysis of demand and supply of blood in hospital in Surabaya city using panel
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data regression [17], prediction of sunlight intensity using neural network and Adaptive
Neuro Fuzzy Inference System (ANFIS) [18], estimation of closed hotels and restaurants
because of Covid-19 spread using backpropagation neural network [19]. See also the
neural network algorithm for breast cancer diagnosis [20], electronic nose for classifying
civet coffee using Support Vector Machine (SVM), k-nearest neighbors (k-NN), and de-
cision tree [21], forecasting agricultural products in Malang Regency using k-NN [22],
forecasting average room rate using k-NN [23], forecasting occupancy rate using neural
network [24]. In this study, the k-NN and neural network methods with data ratios of
70%: 30% and 80%: 20% are applied for forecasting occupancy rate at Hotel XYZ so
that the results can be used in identifying opportunities, operational implementation,
and strategic decision making for management.

2 Research Method

2.1 Occupancy rate

Occupancy rate is the level of occupancy of hotel rooms calculated based on the number
of rooms rented by guests and compared to the number of rooms available in a certain
period [5]. The calculation of occupancy rate is shown in (1) with the result of the
calculation being a percentage index measured from 0% to 100%.

Occupancy Rate % =
RoomSold

RoomAvailable
× 100%. (1)

The occupancy shows the number of rooms sold out of the number of available rooms.
This ratio can fluctuate every day, the ratio in one month or one year is the average
percentage of rooms sold. The highest occupancy rate is the best indicator for the hotel
and a measure of the success of hotel operations.

2.2 K-Nearest neighbor

K-nearest neighbor (k-NN) is a classification technique that makes firm predictions on
test data based on the comparison of K nearest neighbors [8]. The nearest neighbor is
the trained object that has the greatest similarity value or the smallest dissimilarity with
the previous data. The number of nearest neighbors is expressed by the value of k. The
best k value depends on the data. In general, a high k value will reduce the effect of
noise on classifications but make the boundaries between each classification even more
blurred [25].

The purpose of the k-NN algorithm is to classify new objects based on attributes and
training samples. The results of the new test sample are classified based on the majority
of categories in k-NN using the neighborhood classification as the predictive value of
the new test data sample. The distance used is Euclidean Distance with the following
formula:

di =
√
Σn

i=1(pi − qi)2, (2)

di =
√
(p1 − q1)2 + (p2 − q2)2 + . . .+ (pn − qn)2, (3)

where pi is the sample data; qi is the test data; i is the data variable; d is the distance;
n is the data dimension.

The working principle of k-NN is to find the closest distance between the data to
be evaluated and the nearest k (neighbor) in the training data. The sequence of k-NN
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work processes [25], [26] is as follows. Specify the parameter k (the number of the closest
neighbors). Calculate the square of each object’s Euclid jar (query instance) against the
given sample data using an equation. Then sort the objects into groups that have the
smallest Euclidean distance. Collect the nearest neighbor classification category.

By using the nearest neighbor category, that is, the most majority, one can predict
the value of the query instance that has been calculated.

2.3 Neural network

The basis of neural networks consists of inputs, weights, processing units, and outputs.
Neural networks can be applied to classifying patterns, mapping patterns obtained from
inputs into new patterns in outputs, storing patterns to be recalled, mapping similar
patterns, optimizing problems, and predicting. Neural networks start from preparing
data for training and learning, finding neural network architecture, training and learning
processes, and testing processes [27]. Neural networks can be divided into three parts
called layers. Input layer, responsible for receiving information, signals, features, or
measurements from the external environment. Hidden layers, responsible for extracting
patterns related to the process or system being analyzed. The output layer, responsible
for producing and presenting the final tissue, results from processing by neurons in the
previous layer.

Figure 1: Arrangement of neural networks in layers.

Neural networks can change structures to solve problems based on internal and ex-
ternal information flowing through the network. Neural networks can be used to model
the relationship between input and output to find patterns of data. Neurons are a basic
part of the processing of a neural network. The basic shape of a neuron can be seen in
Figure 2 below.

The weight vector (w) contains weights that connect the various parts of the network.
The term ”w” is used in the terminology of neural networks and is a suggestion of the
expression of connections between two neurons, that is, the weight of information flowing
from neuron to other neurons in the neural network. The first stage is the process of
summing inputs x1, x2, . . . , xn, which is multiplied by its weight w1, w2, . . . , wn and is
expressed as

Net = (w1x1 + w2x2 + w3x3 + . . .+ wnxn) . (4)
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Figure 2: Basic form of neurons.

This concept can be written in vector notation as follows:

Figure 3: Perceptron model.

A threshold value of b is called a bias, which plays an important role for some neuron
models and is referred to as a separate neuron model parameter. Various input conditions
and influences on output are required to include a nonlinear activation function f(·) in
the arrangement of neurons [28]. This aims to achieve an adequate level if the input signal
is small and avoid the risk of output going to inappropriate limits. Like the perceptron
model in Figure 2, the output of the neuron can be expressed in terms of y = f(net).

3 Result and Discussion

The dataset used in this study includes rooms available, rooms sold out, and available
occupancy percentage data in Hotel XYZ. The dataset used is from April 2018 to June
2023 (63 months). Furthermore, the data is split into training data and testing data.
Then a test analysis is carried out with k-nearest neighbor and neural network. After
that, a comparison of RMSE results from several tests of the algorithm is carried out.

3.1 Making a comparison model of K-Nearest neighbor and neural network

At this stage, the Hotel XYZ dataset testing process is carried out using k-NN and neural
network. The Hotel XYZ dataset that has been entered is then selected for the rooms
available, rooms sold out, and available occupancy percentage attributes. The Hotel XYZ
dataset is further divided into training data and testing data using a ratio of 70 : 30 and
80 : 20. The model is designed using k-NN with k-values 3 to 7 and using the neural
network with one hidden layer and two hidden layers.
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3.2 K-Nearest neighbor algorithm test analysis

At this stage, a comparison of the results of the test was carried out using the k-NN
algorithm with k-values 3 to 7 at the split of data with a percentage ratio of 70 : 30 and
80 : 20. The results of the k-NN algorithm testing can be seen in Table 1.

k-Values Training Testing RMSE k-Values Training Testing RMSE
Data Data Data Data

3 70% 30% 0.080 3 80% 20% 0.102
4 70% 30% 0.079 4 80% 20% 0.101
5 70% 30% 0.082 5 80% 20% 0.098
6 70% 30% 0.086 6 80% 20% 0.106
7 70% 30% 0.090 7 80% 20% 0.120

Table 1: Test Results Using k-NN.

From forecasting carried out using k-NN at 70% : 30% split of data, it is clear that the
best RSME is for k-value 3 with an RMSE of 0.080. The comparison of the simulation
with k-values 3 to 7 at 70% : 30% data split can be seen in Figure 4.

Figure 4: Occupancy rate prediction using k-NN (split of data 70% : 30%).

Figure 5 shows the comparison of real occupancy rate data and occupancy rate pre-
diction at 70% : 30% data split using the k-NN algorithm with k-value 3. In the graph,
the black line shows real occupancy data, and the green line shows occupancy forecasting
data with k-value 3. There was a significant decrease in August 2021 with an occupancy
rate of 0.37 in real data and an occupancy rate of 0.39 in forecasting data. The highest
ARR was in July 2019 with an occupancy rate of 0.73 in real data and an occupancy
rate of 0.65 in forecasting data.

From forecasting carried out using k-NN at 80% : 20% split of data, it is clear that the
best RSME is for k-value 5 with an RMSE of 0.098. The comparison of the simulation
with k-values 3 to 7 at 80% : 20% data split can be seen in Figure 6.

Figure 7 shows the comparison of real occupancy rate data and occupancy rate pre-
diction at 80% : 20% data split using the k-NN algorithm with k-value 5. In the graph,
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Figure 5: Occupancy rate prediction using k-NN with k-value 3 (split of data 70% : 30%).

Figure 6: Occupancy rate prediction using k-NN (split of data 80% : 20%).

the black line shows real occupancy data, and the green line shows occupancy forecasting
data using k-NN with k-value 5. There was a significant decrease in April 2020 with an
occupancy rate of 0.19 in real data and an occupancy rate of 0.35 in forecasting data.
The highest ARR was December 2019 with an occupancy rate of 0.73 in real data and
an occupancy rate of 0.57 in forecasting data.

3.3 Neural network algorithm test analysis

At this stage, a comparison of the results of the test was carried out using a neural
network algorithm at the split of data with a percentage ratio of 70:30 and 80:20. In
testing, the neural network algorithms for one hidden layer and two hidden layers were
used. The results of the neural network algorithm testing can be seen in Table 2.

From forecasting carried out using neural network at 70% : 30% split of data, it is
clear that the best RSME is found for one hidden layer with an RMSE of 0.004. The
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Figure 7: Occupancy rate prediction using k-NN with k-value 5 (split of data 80% : 20%).

Hidden Training Testing RMSE Hidden Training Testing RMSE
Layer Data Data Layer Data Data
1 70% 30% 0.004 1 80% 20% 0.005
2 70% 30% 0.007 2 80% 20% 0.015

Table 2: Test Results Using Neural Network.

comparison of the simulation with one hidden layer and two hidden layers at 70% : 30%
data split can be seen in Figure 8.

Figure 8: Occupancy rate prediction using neural network (split of data 70% : 30%).

Figure 9 shows the comparison of real occupancy rate data and occupancy rate pre-
diction at 70% : 30% data split using the neural network algorithm with one hidden
layer. In the graph, the black line shows real occupancy data, and the green line shows
occupancy forecasting data using the neural network with one hidden layer. There was a
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significant decrease in August 2021 with an occupancy rate of 0.367 in real data and an
occupancy rate of 0.372 in forecasting data. The highest ARR was in July 2020 with an
occupancy rate of 0.729 in real data and an occupancy rate of 0.27 in forecasting data.

Figure 9: Occupancy rate prediction using neural network with one hidden layer (split of data
70% : 30%).

From forecasting carried out using neural network at 80% : 20% split of data, it is
clear that the best RSME is found for one hidden layer with an RMSE of 0.005. The
comparison of the simulation with one hidden layer and two hidden layers at 80% : 20%
data split can be seen in Figure 10.

Figure 10: Occupancy rate prediction using neural network (split of data 80% : 20%).

Figure 11 shows the comparison of real occupancy rate data and occupancy rate
prediction at 80% : 20% data split using the neural network algorithm with one hidden
layer. In the graph, the black line shows real occupancy data, and the green line shows
occupancy forecasting data using the neural network with one hidden layer. There was
a significant decrease in August 2021 with an occupancy rate of 0.367 in real data and
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an occupancy rate of 0.372 in forecasting data. The highest ARR was July 2020 with an
occupancy rate of 0.729 in real data and an occupancy rate of 0.27 in forecasting data.

Figure 11: Occupancy rate prediction using neural network with one hidden layer (split of
data 80% : 20%).

3.4 Algorithm testing comparison

At this stage, the most optimal RMSE results from each test with k-NN and neural
network are compared. The results of the comparison of these algorithm tests are shown
in Table 3.

Algorithm Split data (%) RSME Remarks
k-NN 70:30 0.080 k-value = 3

80:20 0.098 k-value = 5
Neural network 70:30 0.004 one hidden layer

80:20 0.005 one hidden layer

Table 3: Comparison of Algorithm Testing.

From the comparison results, the most optimal RMSE result for k-NN at 70% : 30%
data split with k-value 3 is an RMSE of 0.080, while for neural networks also at 70% :
30% data split with one hidden layer, an RMSE is 0.004. The results of comparison of
occupancy rate forecasting using k-NN and neural network at 70% : 30% split of data
can be seen in Figure 12. In the graph, the black line shows real occupancy rate data, the
green line shows occupancy rate prediction data using the k-NN algorithm with k-value
3, and the orange line shows occupancy rate prediction data using the neural network
algorithm with one hidden layer.

The comparison results for occupancy rate forecasting using k-NN and neural network
resulted in the most optimal RMSE for the neural network algorithm with one hidden
layer resulting in an RMSE of 0.004, a difference of 0.076 compared to using the k-NN
algorithm. The evaluation of RMSE results for the k-NN and neural network algorithms
reveals that the neural network, specifically with one hidden layer at 70% : 30% data
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Figure 12: Comparison of occupancy rate predictions using k-NN and neural network (split of
data 70% : 30%).

split, outperforms k-NN with a noticeable margin. The optimal RMSE of 0.004 for the
neural network demonstrates its effectiveness in occupancy rate forecasting compared to
the best-performing k-NN configuration, which achieved an RMSE of 0.080 at 70% : 30%
data split and k-value of 3. These findings underscore the superiority of the neural
network approach in this specific context.

4 Conclusion

Based on a comparison of tests using k-nearest neighbor and neural network to determine
occupancy rate forecasting at Hotel XYZ with split of data 70% : 30% and 80% : 20%,
the most optimal RMSE results were obtained using the neural network with one hidden
layer at 70% : 30% split of data with an RMSE of 0.004. So, it is recommended for Hotel
XYZ to use a neural network with one hidden layers for occupancy rate forecasting, which
can later support better decisions in determining hotel policies in the future and goals
set by the hotel. For other research, this study can be a reference to increase knowledge
and conduct further investigations and develop other methods.
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Abstract: This paper develops a SIR model for COVID-19 that incorporates both
direct and indirect transmission dynamics through two distinct incidence rates. To
capture the infection rate, we employ a nonlinear Beddington-DeAngelis function
and a bilinear incidence function. The model’s solutions are shown to be positive
and bounded, with two equilibrium points identified: the disease-free equilibrium
E0 and the endemic equilibrium E∗. We establish that E0 is locally and globally
asymptotically stable when the basic reproduction number R0 < 1. Conversely,
under specific parameter conditions, E∗ is uniformly asymptotically stable for R0 > 1.
Numerical simulations are provided to validate the theoretical results.
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ity analysis.
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1 Introduction

The COVID-19 pandemic has spurred research across many fields, including the devel-
opment of mathematical models to assess the impact of interventions on disease control.
Kermack and McKendrick [10] pioneered the use of compartmental models for disease
dynamics research, leading to the development of various models such as SIR, SIRS, and
SEIRS [1,2, 7, 9, 11,12].

Incidence functions are crucial in epidemic models as they determine how susceptible
individuals transition to infected, significantly influencing model predictions. Epidemi-
ological models often assume well-mixed populations in uniform environments. These
models typically use the bilinear incidence rate βSI [10,17] or the standard incidence rate
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βSI
N [11,13], where β represents the transmission coefficient and N is the total population.
However, when a model incorporates a more realistic population structure with varied
mixing patterns and potentially nonlinear transmission dynamics, these standard rates
might need adjustments. The probability of infection per contact might be influenced by
the number of infected individuals. As the infected population grows, the infection rate
may not increase proportionally due to saturation effects, leading to a nonlinear relation-
ship. To address this, nonlinear incidence rates such as the Beddington-DeAngelis rate,

βSI
1+α1S+α2I

, [3, 5] have been incorporated into epidemiological models to better capture
the complexities of disease transmission.

Recently, Ahmed et al. [1] conducted a bifurcation analysis of an SIR epidemic model
that incorporates both direct and indirect transmission rates. They employed a standard
incidence rate, βSI

S+I , for direct transmission and a bilinear incidence term, βSI, for indi-
rect transmission. This approach takes into account the various ways in which diseases
spread through different types of contact. However, their study focused on bifurcation
analysis. In this paper, we investigate the stability of an SIR model that incorporates
the Beddington-DeAngelis term for direct transmission and the bilinear term for indirect
transmission. This combination offers a more realistic representation of transmission dy-
namics. A constant recruitment rate Λ ensures a steady flow of susceptible individuals
due to births. Direct transmission is influenced by the average number of meetings mi

between susceptible and infected individuals within a time interval ∆t and the proba-
bility of infection success sc. The Beddington-DeAngelis term βdSI

1+α1S+α2I
captures this,

here, βd = misc > 0 and S
1+α1S+α2I

is the proportion of the susceptible population in
time t. In contrast, indirect transmission occurs when susceptible individuals come into
contact with the virus on surfaces, without directly interacting with infected individu-
als. This is modeled as a mass contact process with an indirect infection rate βi > 0.
The bilinear incidence term βiSI represents the rate of indirect COVID-19 transmission
through contaminated surfaces. To the best of our knowledge, there is no SIR model
that combines direct (Beddington-DeAngelis) and indirect (bilinear) transmissions.

The manuscript is organized as follows. Section 2 establishes the well-posedness of
the model by demonstrating the existence, positivity, and boundedness of its solutions.
In Section 3, we analyze the model, compute the basic reproduction number, and prove
the existence of equilibria. Section 4 delves into the analytical properties of the model,
including the stability analysis of the equilibria. Numerical simulations are given in
Section 5, and concluding remarks are offered in the closing section.

2 Model Formulation and Analysis

We consider the total population at time t, it is denoted by N (t) and divided into three
compartments: susceptible individuals S (t), infected individuals I (t) and recovered in-
dividuals R (t), where N (t) = S (t)+I (t)+R (t). Susceptible individuals are healthy but
vulnerable to infection, while infected individuals can transmit the disease and eventually
transit to the recovered state, either through immunity or treatment.

Based on the previous assumptions, the SIR model with direct and indirect transmis-
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sions is described by the following system of differential equations:

dS

dt
= Λ− βdSI

1 + α1S + α2I
− βiSI − µS,

dI

dt
=

βdSI

1 + α1S + α2I
+ βiSI − (d+ γ + µ) I, (1)

dR

dt
= γI − µR

with the given initial conditions S (0) ≥ 0, I (0) ≥ 0 and R (0) ≥ 0.
The parameters involved in this model and their corresponding interpretations are

given in Table 2. The flowchart of the SIR model is illustrated in Figure 1.

Parameter Description

Λ Recruitment rate
βd Direct transmission rate
βi Indirect transmission rate
α1 Measure of inhibition (taken by susceptibles)
α2 Measure of inhibition (taken by infectives)
µ Natural death rate
d Infection death rate
γ Natural recovery rate

Table 1: Description of biological parameters.

Figure 1: Flowchart of the proposed model.

For problems concerning population dynamics, it is crucial to ensure that solutions
remain non-negative and bounded for all time. To achieve this, we define the region
Ω =

{
(S, I,R) ∈ R3

+ : S ≥ 0, I ≥ 0, R ≥ 0
}
.

Theorem 2.1 For any non-negative initial data, the solutions of (1) exist, remain
bounded and non-negative in Ω. Moreover, we have

N (t) ≤ Λ

µ
.

Proof. Based on the well-established theory of differential equations in a functional
framework (see, e.g., [8]), we can ensure a unique local solution for problem (1). To
establish solution positivity, we prove invariance of the positive set Ω. We have

dS

dt

∣∣∣∣
S=0

= Λ > 0,
dI

dt

∣∣∣∣
I=0

= 0 ≥ 0,
dR

dt

∣∣∣∣
R=0

= γI ≥ 0.

Hence, for all t ≥ 0, the positivity of all solutions initiating in Ω is guaranteed.
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For the boundedness, we utilize the fact that N = S + I + R. By summing the
equations of the model (1), we have

dN

dt
= Λ− µN − dI.

As I ≥ 0, we get
dN

dt
≤ Λ− µN,

and therefore,

N (t) ≤ Λ

µ
+

(
N (0)− Λ

µ

)
e−µt.

Thus, limt→∞ supN (t) ≤ Λ
µ and dN

dt < 0 ifN > Λ
µ . This reveals that the total population

size N (t) is bounded, and so is each compartment S (t), I (t) and R (t).

3 The Steady States

The existence of a disease-free equilibrium (DFE) and that of an endemic equilibrium for
our model are established in this subsection. Due to the fact that the first two equations
of the system (1) are not affected by R (t), and considering that the total population
number is N (t) = S (t) + I (t) +R (t), we may omit the last equation of the system (1).
As a result, the problem can be reduced to

dS

dt
= Λ− βdSI

1 + α1S + α2I
− βiSI − µS,

dI

dt
=

βdSI

1 + α1S + α2I
+ βiSI − δI,

(2)

where δ = d+ γ + µ and S, I ≥ 0.
In order to find the equilibria of the system (2), we solve the following system:

Λ− βdSI

1 + α1S + α2I
− βiSI − µS = 0,

βdSI

1 + α1S + α2I
+ βiSI − δI = 0.

Obviously, E0 =
(

Λ
µ , 0
)
is the DFE of (2).

When the system reaches the DFE point E0, the disease vanishes completely. At this
point, the infected population becomes zero, and the remaining population consists only
of susceptible individuals.

3.1 Basic reproduction number

The basic reproduction number R0 is crucial in epidemiology as it predicts disease spread
and informs control strategies. It estimates the average number of new infections caused
by one infected individual. By using the next-generation matrix method [15], we can
easily find R0. Let X (t) = (S (t) , I (t)), then it follows from model (2) that

dX

dt
= F − V,
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where

F =

(
Λ− βdSI

1+α1S+α2I
− βiSI

βdSI
1+α1S+α2I

+ βiSI

)
and V =

(
µS
δI

)
.

So, the Jacobian matrices of new infected terms F and other transfer terms V at E0 are

F =

(
0 − βdΛ

µ+α1Λ
− βiΛ

µ

0 βdΛ
µ+α1Λ

+ βiΛ
µ

)
and V =

(
µ 0
0 δ

)
.

So

FV −1 =

(
0 − βdΛ

(µ+α1Λ)δ − βiΛ
µδ

0 βdΛ
(µ+α1Λ)δ + βiΛ

µδ

)
.

As R0 is the spectral radius of FV −1, we get

R0 =
βdΛ

(µ+ α1Λ) δ
+

βiΛ

µδ
= Rd

0 +Ri
0.

Note that Rd
0 represents the basic reproduction number for only direct transmission,

where a susceptible individual becomes infected through contact with an infected in-
dividual Ri

0, on the other hand, it captures the contribution of indirect transmission,
where an infected individual contaminates the environment, leading to subsequent in-
fections. Public health interventions can target these specific pathways. Quarantine
measures reduce direct transmission, lowering Rd

0. Improved hygiene practices reduce
indirect transmission, lowering Ri

0. Consequently, the overall ability of the disease to
spread (reflected by R0) will also go down. This makes sense because there are fewer
ways for people to catch it.

3.2 Existence of endemic equilibrium

In the presence of infection, we show, in the following result, that the system (2) has a
unique endemic equilibrium.

Theorem 3.1 If R0 > 1, the model (2) has a unique endemic equilibrium point
E∗ = (S∗, I∗).

Proof. Consider the system (2), where E∗ = (S∗, I∗),

βdS
∗I∗

1 + α1S∗ + α2I∗
+ βiS

∗I∗ = Λ− µS∗,

βdS
∗I∗

1 + α1S∗ + α2I∗
+ βiS

∗I∗ = δI∗,

(3)

which implies that

Λ− µS∗ = δI∗.

We get S∗ as a function of I∗ as follows:

S∗ =
Λ− δI∗

µ
. (4)
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Now, we take the S∗ quadratic equation out from the first equation of (3) as

α1 (βiI
∗ + µ)S∗2

+ (βdI
∗ − α1Λ + (βiI

∗ + µ) (1 + α2I
∗))S∗ − Λ (1 + α2I

∗) = 0. (5)

Substituting (4) into (5) gives the cubic equation in I∗:

a1 (I
∗)

3
+ a2 (I

∗)
2
+ a3I

∗ = 0,

where

a1 = δβi (δα1 − µα2) ,

a2 = δµ (δα1 − µα2) + βiΛ (2δα1 − µα2)− δµ (βi + βd) ,

a3 = µΛβd + Λβi (µ+ Λα1)− δµ (µ+ α1Λ) .

The constant term a3 can be rewritten as

a3 = δµ (µ+ α1Λ)

(
Λβd

δ (µ+ α1Λ)
+

Λβi

δµ
− 1

)
= δµ (µ+ α1Λ) (R0 − 1) .

It is easily seen that a3 > 0 if R0 > 1. Additionally, we note that a1, a2 < 0 if 2δα1 < µα2.
According to the Descartes rule of signs, see Wang [16], the equation (2) possesses a
unique non-negative I∗.

The value of S∗ is then calculated using equation (4). As a result, the model (2) has
a unique endemic equilibrium point E∗ = (S∗, I∗) if R0 > 1.

4 Stability Analysis

4.1 Local stability

The local stability results for the model (2) are ensured by the following results.

Theorem 4.1 If R0 < 1, the model (2) at E0 is locally asymptotically stable and
unstable for R0 > 1.

Proof. The Jacobian matrix of the system (2) at E0 is given by

J =

(
−µ − βdΛ

µ+α1Λ
− βiΛ

µ

0 βdΛ
µ+α1Λ

+ βiΛ
µ − δ

)
.

The eigenvalues of J are λ1 = −µ and λ2 = δ (R0 − 1) . The matrix J has negative
eigenvalues when R0 < 1. Thus, E0 of the model (2) is locally asymptotically stable. If
R0 > 1, the eigenvalue λ2 > 0, so E0 is unstable.

Theorem 4.2 If R0 > 1, the model (2) at the disease endemic equilibrium point E∗

is locally asymptotically stable under the following conditions:

βdS
∗ (1 + α1S

∗)

(1 + α1S∗ + α2I∗)
2 < l, (6)

where

l = min

(
µ+ δ +

βdI
∗ (1 + α2I

∗)

(1 + α1S∗ + α2I∗)
2 + βiI

∗, δ +
βdI

∗ (1 + α2I
∗) δ

µ (1 + α1S∗ + α2I∗)
2 +

βiI
∗δ

µ

)
.
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Proof. The Jacobian matrix of the system (2) at E∗ is given by

J (E∗) =

(
−µ− βdI

∗(1+α2I
∗)

(1+α1S∗+α2I∗)2
− βiI

∗ − βdS
∗(1+α1S

∗)

(1+α1S∗+α2I∗)2
− βiS

∗

βdI
∗(1+α2I

∗)

(1+α1S∗+α2I∗)2
+ βiI

∗ βdS
∗(1+α1S

∗)

(1+α1S∗+α2I∗)2
+ βiS

∗ − δ

)
.

The characteristics equation det (J − λI) associated to J (E∗) is derived and given as

λ2 + a1λ+ a2 = 0, (7)

where

a1 = µ+ δ +
βdI

∗ (1 + α2I
∗)

(1 + α1S∗ + α2I∗)
2 + βiI

∗ − βdS
∗ (1 + α1S

∗)

(1 + α1S∗ + α2I∗)
2 − βiS

∗,

a2 = µδ +
βdI

∗ (1 + α2I
∗) δ

(1 + α1S∗ + α2I∗)
2 + βiI

∗δ − µβdS
∗ (1 + α1S

∗)

(1 + α1S∗ + α2I∗)
2 − µβiS

∗.

Thanks to the assumption (6), we know that ai > 0, i = 1, 2. Therefore, by the Routh–
Hurwitz criterion [4], all roots of (7) have negative real parts. Thus, E∗ is locally
asymptotically stable.

Remark 4.1 Taking into account the sign of real parts of λ in (7), we can establish
the following:

• if

µδ +
βdI

∗ (1 + α2I
∗) δ

(1 + α1S∗ + α2I∗)
2 + βiI

∗δ <
µβdS

∗ (1 + α1S
∗)

(1 + α1S∗ + α2I∗)
2 + µβiS

∗, (8)

the endemic equilibrium E∗ is a saddle point.

• if

µ+ δ +
βdI

∗ (1 + α2I
∗)

(1 + α1S∗ + α2I∗)
2 + βiI

∗ <
βdS

∗ (1 + α1S
∗)

(1 + α1S∗ + α2I∗)
2 + βiS

∗, (9)

the endemic equilibrium E∗ is unstable.

4.2 Global stability

We employed a Lyapunov function to analyze the global stability of both the DFE and
endemic equilibrium of the system. The stability of the DFE is established by the
following theorem.

Theorem 4.3 If R0 ≤ 1, the model (2) at the DFE E0 is globally asymptotically
stable.

Proof. We consider the following Lyapunov function:

L (S, I) =
1

1 + α1S0

(
S − S0 − S0 ln

S

S0

)
+ I. (10)

Taking derivative of (10) with respect to time t, one has

dL

dt
(S, I) =

1

1 + α1S0

(
1− S0

S

)
dS

dt
+

dI

dt

=
1

1 + α1S0

(
1− S0

S

)(
Λ− βdSI

1 + α1S + α2I
− βiSI − µS

)
+

βdSI

1 + α1S + α2I
+ βiSI − δI.
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Given that S0 = Λ
µ and after simplification, we have

dL

dt
=

−µ
(
S0 − S

)2
(1 + α1S0)S

+
δI

(1 + α1S + α2I)
Rd

0 +
δα1SI

(1 + α1S + α2I)
Rd

0

− δI +
δI (1 + α1S)

(1 + α1S0)
Ri

0

=
−µ
(
S0 − S

)2
(1 + α1S0)S

+
δI

(1 + α1S + α2I)

(
Rd

0 − 1
)

+
δα1SI

(1 + α1S + α2I)

(
Rd

0 − 1
)
− δα2I

2

1 + α1S + α2I
+

δI (1 + α1S)

(1 + α1S0)
Ri

0

=
−µ
(
S0 − S

)2
(1 + α1S0)S

+
P

1 + α1S + α2I

(
Rd

0 − 1
)
− δα2I

2

1 + α1S + α2I

+
P

(1 + α1S0)
Ri

0,

where P = δ (α1S + 1) I. We end the proof by noting that

P

1 + α1S + α2I

(
Rd

0 − 1
)
+

P

(1 + α1S0)
Ri

0

≤ P

(1 + α1S + α2I)
(R0 − 1) +

P

(1 + α1S0)
(R0 − 1) .

Thus

dL

dt
≤

−µ
(
S0 − S

)2
(1 + α1S0)S

+
P
((
1 + α1S

0
)
+ (1 + α1S + α2I)

)
(1 + α1S + α2I) (1 + α1S0)

(R0 − 1)

− δα2I
2

1 + α1S + α2I
.

It is obvious that dL
dt < 0 if R0 ≤ 1 for all (S, I) ̸=

(
S0, 0

)
. Also, dL

dt = 0 if and only
if (S, I) is at E0. Hence, the La Salle invariance principle states that the DFE point of
system (2) is globally asymptotically stable.

Theorem 4.4 If R0 > 1, the model (2) at the endemic equilibrium E∗ is globally
asymptotically stable under the following conditions:(

1 + α1S
∗ + α2I

∗

1 + α1S + α2I
− 1

)(
I∗

I
− S∗

S

)
≤ 0. (11)

Proof. We consider the following Lyapunov function:

L (t) = S − S∗ − S∗ ln
S

S∗ +

(
I − I∗ − I∗ ln

I

I∗

)
. (12)

Taking the time derivative of (12), we have

dL (t)

dt
=

(
1− S∗

S

)
dS (t)

dt
+

(
1− I∗

I

)
dI (t)

dt
.
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Substituting the values of dS(t)
dt and dI(t)

dt into the above equation, and using the equalities

Λ =
βdS

∗I∗

1 + α1S∗ + α2I∗
+ βiS

∗I∗ + µS∗,

δI∗ =
βdS

∗I∗

1 + α1S∗ + α2I∗
+ βiS

∗I∗

give

dL (t)

dt
=

(
1− S∗

S

)
(

βdS
∗I∗

1 + α1S∗ + α2I∗
+ βiS

∗I∗ + µS∗ − βdSI

1 + α1S + α2I
− βiSI − µS

)
+

(
1− I∗

I

)(
βdSI

1 + α1S + α2I
+ βiSI − δI

)
= −µ

(S − S∗)
2

S
+

βdS
∗I∗

1 + α1S∗ + α2I∗
+ βiS

∗I∗ − βdSI

1 + α1S + α2I

− βiSI −
βd (S

∗)
2
I∗

S (1 + α1S∗ + α2I∗)
− βi (S

∗)
2
I∗

S
+

βdS
∗I

1 + α1S + α2I

+ βiS
∗I +

βdSI

1 + α1S + α2I
+ βiSI −

βdS
∗I

1 + α1S∗ + α2I∗

− βiS
∗I − βdSI

∗

1 + α1S + α2I
− βiSI

∗ +
βdS

∗I∗

1 + α1S∗ + α2I∗
+ βiS

∗I∗.

It follows that

dL (t)

dt
= µ

(
2− S∗

S
− S

S∗

)
+ βiS

∗I∗
(
2− S∗

S
− S

S∗

)
+

βdS
∗I∗

1 + α1S∗ + α2I∗

(
2− S∗

S
− S

S∗

)
+

βdS
∗I∗

1 + α1S∗ + α2I∗(
I (1 + α1S

∗ + α2I
∗)

I∗ (1 + α1S + α2I)
− I

I∗
− S (1 + α1S

∗ + α2I
∗)

S∗ (1 + α1S + α2I)
+

S

S∗

)
=

(
µ+

βdS
∗I∗

1 + α1S∗ + α2I∗
+ βiS

∗I∗
)(

1− S∗

S

)(
1− S

S∗

)
+

βdS
∗I∗

1 + α1S∗ + α2I∗

(
1 + α1S

∗ + α2I
∗

1 + α1S + α2I
− 1

)(
I∗

I
− S∗

S

)
.

Clearly, (
1− S∗

S

)(
1− S

S∗

)
≤ 0,

and by (11), (
1 + α1S

∗ + α2I
∗

1 + α1S + α2I
− 1

)(
I∗

I
− S∗

S

)
≤ 0,

where strict equality holds when S = S∗ and I = I∗. Thus, E∗ is globally asymptotically
stable.
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5 Numerical Simulations

In this section, we assess the computational performance of the SIR model (2). We
employed the Non-standard Finite Difference scheme for the numerical simulations. All
numerical simulations and figure generations were performed in Matlab

5.1 Stability of disease-free equilibrium

In a disease-free equilibrium, the infection is completely absent among the population.
The specific values used for the biological parameters are presented in Table 2 [14].

Parameter Value

Λ 5
βd 0.003
βi 0.00006 (Assumed)
α1 0.002
α2 0.001
µ 0.05
d 0.06
γ 0.002

Table 2: Parameter values.

For these values of parameters, R0 < 1 and E0 exists at (250, 0). This implies that the
disease eventually disappear from the population. As shown in Figure 2, the solutions
of the system (2) with the initial values S(0) = 85 and I(0) = 12 converge towards E0,
which confirms that that E0 is globally asymptotically stable.
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Figure 2: Dynamical behavior of the susceptible and infected populations.

5.2 Stability of endemic equilibrium

We choose the set of parameters given in Table 3 [6].

We find that R0 > 1 and the condition 2δα1 < µα2 holds. The numerical solutions,
depicted in Figure 3, show that the susceptible and infected populations, with the initial
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Parameter Value

Λ 7
βd 0.003
βi 0.0000001 (Assumed)
α1 0.002
α2 0.5
µ 0.02
d 0.05
γ 0.002

Table 3: Parameter values.

values S(0) = 250 and I(0) = 45, converge towards an endemic equilibrium point E∗ =
(277.8749, 20.0348). This indicates that E∗ is globally asymptotically stable.

Furthermore, in Figure 4, we utilize the parameters from Table 4 to demonstrate
that E∗ = (5.2041, 3.5738) is globally asymptotically stable. This implies that, for the
given parameter set, the trajectories of both S and I will converge towards the same
steady-state value of E∗ regardless of the initial values assigned to S and I.

Parameter Value

Λ 1.97
βd 0.05
βi 0.01 (Assumed)
α1 0.001
α2 0.1
µ 0.2
d 0.03
γ 0.03

Table 4: Parameter values.
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Figure 3: Dynamical behavior of the susceptible and infected populations.
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Figure 4: Global stability of the endemic equilibrium point.

6 Conclusion

This study developed a SIR model incorporating both direct and indirect transmission
pathways to investigate the dynamics of COVID-19. By utilizing a Beddington-DeAngelis
infection rate and a bilinear incidence term, the model captured the intricate complexities
of disease spread. The model’s well-posedness was confirmed through the identification of
a positively invariant region. A rigorous analysis of the DFE E0 and endemic equilibrium
E∗ is conducted. The basic reproduction number R0 is decomposed into its direct Rd

0

and indirect Ri
0 components, reflecting the dual transmission mechanisms. Our findings

demonstrate that E0 is both locally and globally asymptotically stable when R0 < 1,
indicating disease eradication. Conversely, for R0 > 1, E0 becomes unstable, giving rise
to E∗. The local and global stability of E∗ is investigated under specific conditions.

The findings underscore that to effectively eradicate the disease (R0 < 1), a compre-
hensive approach is needed targeting both Rd

0 and Ri
0. Reducing Rd

0 through measures
such as mask-wearing, social distancing, and improved ventilation, in conjunction with
decreasing Ri

0 via hand hygiene and surface disinfection, is crucial. By quantifying the
relative contributions of these transmission modes to the overall R0, policymakers can
optimize resource allocation and implement targeted control strategies. For instance,
environments with high levels of indirect transmission (e.g., hospitals, nursing homes)
necessitate enhanced cleaning protocols and personal protective equipment to reduce
disease spread.

This study provides a basic framework for understanding COVID-19 transmission dy-
namics. Future investigations should incorporate additional factors such as age structure
and vaccination to refine the model’s predictive accuracy. By combining these insights
with real-world data, we can develop more effective public health measures to protect
communities from subsequent outbreaks.
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1 Introduction

A problem with more than a one-hundred year history going back to the seminal work
of Hermann Weyl in [27] is the limit-point/limit-circle problem. It began with his work
on eigenvalue problems for the second order linear differential equation

(a(t)y′)′ + r(t)y = λy, t ∈ [0,∞), λ ∈ C, (C)

which he classified as being of the limit-circle type if every solution is square integrable
(belongs to L2), and to be of limit-point type if at least one solution does not belong to
L2. This problem has important connections to the solution of certain boundary value
problems as can be seen in the works of Titchmarsh [25,26].
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Weyl showed that if ℑ(λ) ̸= 0, then (C) always has a solution y ∈ L2(R+) (the
terminology “limit-point or limit-circle” arises somewhat naturally from the proof of this
fact); and if equation (C) is of the limit-circle type for some λ0 ∈ C, then (C) is limit-
circle for all λ ∈ C. In particular, if equation (C) is limit-circle for λ = 0, then it is
limit–circle for all values of λ, and if (C) is not limit–circle for λ = 0, then it is not
limit–circle for any value of λ.

The problem then reduces to whether equation (C) with ℑ(λ) ̸= 0 has one (limit-point
case) or two linearly independent solutions (limit-circle case) in L2. This is known as the
Weyl Alternative. The limit-point/limit-circle problem then becomes that of determining
conditions under which each of these two cases holds.

For additional discussion on the background and history of the limit-point/limit-circle
problem, we refer the reader to the classic work of Dunford and Schwartz [9], the work
of Coddington and Levinson [6], and the monographs [2] and [3].

Probably the best known limit-circle result for the equation

(a(t)y′(t))′ + r(t)y(t) = 0, t ≥ t0, (L)

is that of Dunford and Schwartz [9, Sect. XIII.6.20, p. 1410].

Theorem 1.1 Assume that∫ ∞

0

∣∣∣∣∣
[
(a(u)r(u))′

a
1
2 (u)r

3
2 (u)

]′

+
{[a(u)r(u)]′}2

4a
3
2 (u)r

5
2 (u)

∣∣∣∣∣du < ∞. (1)

If ∫ ∞

0

[1/(a(u)r(u))
1
2 ]du < ∞, (2)

then equation (L) is of the limit–circle type, i.e., every solution y(t) of (L) satisfies∫ ∞

t0

y2(u)du < ∞.

Their corresponding limit–point result is the following.

Theorem 1.2 Assume that (1) holds. If∫ ∞

0

[1/(a(u)r(u))
1
2 ]du = ∞, (3)

then equation (L) is of the limit–point type, i.e., there is a solution y(t) of (L) such that∫ ∞

t0

y2(u)du = ∞.

Interest in extending these results to nonlinear equations began in the mid-twentieth
century with the papers of Atkinson [1], Burlak [4], Detki [7], Elias [10], Hallam [18],
Suyemoto and Waltman [24], and Wong [28], and continued with the work of Graef and
Spikes [13–15,23].

Here we wish to ask whether results in the spirit of Theorems 1.1 and 1.2 can be
found for equations with fractional derivatives. In particular, we will study the nonlinear
fractional differential equation

(Nα(a(t)(Nαy)(t)))(t) + r(t)y2k−1(t) = 0, (NF)
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where R = (−∞,∞), R+ = [0,∞), α ∈ (0, 1], a, r : R+ → R+ are continuous, a′,
r′ ∈ ACloc(R+), a′′, r′′ ∈ L2

loc(R+), a(t) > 0, r(t) > 0, and k is a positive integer.
Here, Nα is the nonconformable fractional derivative developed by Nápoles Valdes et
al. [17, 19–21], which is defined as follows.

Definition 1.1 ( [17, Definition 2.1], [21, Definition 1]) Let f : [0,∞) → R. The
nonconformable fractional derivative of f of order α ∈ (0, 1) is defined by

(Nαf)(t) = lim
ϵ→0

f(t+ ϵet
−α

)− f(t)

ϵ

for all t > 0.

Corresponding to the nonconformable fractional derivative, we have the noncon-
formable fractional integral.

Definition 1.2 ([21, Definition 2]) Let f : [0,∞) → R. The nonconformable frac-
tional integral of f of order α ∈ (0, 1) is defined by

(NJα
t0f)(t) =

∫ t

t0

f(s)

es−α ds.

In light of Definitions 1.1 and 1.2, we see that the following lemma is needed.

Lemma 1.1 ([21, Theorem 3]) If f is Nα–differentiable on (t0,∞) with α ∈ (0, 1],
then for t > t0:

(a) If f is differentiable, then (NJα
t0(N

αf))(t) = f(t)− f(t0);

(b) (Nα(NJα
t0f))(t) = f(t).

As a convenience to the reader, we next list some properties of the nonconformable
fractional derivative.

Lemma 1.2 ([17, Theorem 2.3]) Let f and g be Nα differentiable at a point t > 0,
with α ∈ (0, 1]. Then:

(1) Nα(c) = 0 for any constant c ∈ R;

(2) Nα(fg)(t) = f(t)(Nαg)(t) + g(t)(Nαf)(t);

(3) Nα
(

f
g

)
=

g(t)(Nαf)(t)− f(t)(Nαg)(t)

g2(t)
;

(4) If f is differentiable (in the ordinary sense), then (Nαf)(t) = et
−α

f ′(t).

One very important advantage of using the nonconformable fractional derivative is
the existence of a chain rule, which we state here.

Lemma 1.3 ([17, Theorem 3.1]) Let α ∈ (0, 1], g be Nα differentiable at t > 0, and
f be differentiable at g(t). Then

Nα(f ◦ g)(t) = f ′(g(t))(Nαg)(t).
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The following Gronwall type inequality for nonconformable fractional derivatives was
obtained in [16].

Lemma 1.4 ([16, Lemma 2.7]) Let c ∈ R+ and a, u : R → R+. If

u(t) ≤ c+ (NJα
t0au)(t), (4)

then

u(t) ≤ c exp{(NJα
t0a)(t)}. (5)

At this point, it seems that some discussion of notation is needed. If f is a function
of u, then (Nαf)(u) denotes the nonconformable fractional derivative of f with respect
to u. However, if f is a function of u, and u in turn is a function of z, then we denote
the derivative of f with respect to z by (Nαf(u))(z), or (Nαf)(z) if no ambiguity exists.
With respect to integration, in the notation (NJα

t0f)(t), t0 denotes the initial point for
the integration and t is the terminal point, which may be ∞.

2 Nonlinear Limit-Point and Limit-Circle Results

We first have to define what we mean by nonlinear limit-point and limit-circle solutions
of equation (NF).

Definition 2.1 A solution y(t) of equation (NF) is said to be of the nonlinear limit-
circle type if

(NJα
t0y

2k)(∞) < ∞,

and to be of the nonlinear limit-point type if

(NJα
t0y

2k)(∞) = ∞.

To simplify the notation in what follows, we let

γ = 1/2(k + 1) and ω = (2k + 1)/2(k + 1).

We begin our analysis of equation (NF) by transforming it as follows. Let

s =

(
NJα

t0

rγ

aω

)
(t), y(t) = x(s(t)), (T)

and notice that

γ + ω = 1 and ω − γ = 2ω − 1 = k/(k + 1).

Then, by Lemma 1.3,

(Nαy)(t) = (Nαx)(s)
ds(t)

dt
= (Nαx)(s) [rγ(t)/aω(t)]

and

a(t)(Nαy)(t) = (Nαx)(s)
[
rγ(t)a1−ω(t)

]
,
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so that

Nα(a(t)(Nαy))(t) = (N2αx)(s)[rγ(t)a1−ω(t)] [rγ(t)/aω(t)] + (Nαx)(s)[rγ(t)a1−ω(t)]′

= (N2αx)(s)[r2γ(t)a1−2ω(t)] + (Nαx)(s)[rγ(t)a1−ω(t)]′

= (N2αx)(s)[r2γ(t)a1−2ω(t)] + (Nαx)(s)[rγ(t)aγ(t)]′

= (N2αx)(s)[r2γ(t)a1−2ω(t)] + γ(Nαx)(s)(r(t)a(t))γ−1(r(t)a(t))′.

Equation (NF) then becomes

(N2αx)(s)[r2γ(t)a1−2ω(t)] + α(Nαx)(s)(r(t)a(t))γ−1(r(t)a(t))′ + r(t)x2k−1(s) = 0,

or

(N2αx)(s) + γ(Nαx)(s)
(a(t)r(t))′

aγ(t)rγ+1(t)
+ (a(t)r(t))ω−γx2k−1(s) = 0,

which we will write as

(N2αx)(s) + γP (t)(Nαx)(s) +R(t)x2k−1(s) = 0, (Es)

where

P (t) =
[a(t)r(t)]′

aγ(t)rγ+1(t)
and R(t) = (a(t)r(t))ω−γ .

Remark 2.1 If k = 1, the transformation (T) does not reduce to the transformation
used, for example, in [9].

3 Limit-Point and Limit-Circle Results

We first have to define what we mean by nonlinear limit-point and limit-circle solutions
of equation (NF).

Definition 3.1 A solution y(t) of equation (NF) is said to be of the nonlinear limit-
circle type if

(NJα
t0y

2k)(∞) < ∞,

and to be of the nonlinear limit-point type if

(NJα
t0y

2k)(∞) = ∞.

Equation (Es) can then be written as the system{
(Nαx)(s) = z(s)− γP (t)x(s),

(Nαz)(s) = γ(NαP )(t)x(s)−R(t)x2k−1(s).
(S)

The motivation for the form of this system is due to Burton and Patula [5].
We define a Liapunov (energy) function V for this system by

V (s) = V (x, z, s) =
z2

2
+R(t)

x2k

2k
.

Then, along solutions of system (S),

(NαV )(s) = γ(NαP (t))(s)xz + x2k

[
(NαR(t))(s)

2k
− γR(t)P (t)

]
. (6)
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Now by Lemma 1.3,

(NαR(t))(s)

2k
=

R′(t)(Nαt)(s)

2k
=

R′(t)

2k

aω(t)

rγ(t)

=
ω − γ

2k
(a(t)r(t))ω−γ−1(a(t)r(t))′

aω

rγ
= γ(a(t)r(t))′

a2ω−γ−1

r2γ−ω+1
(7)

and

γR(t)P (t) = γ(a(t)r(t))′
aω−2γ(t)

r2γ−ω+1(t)
= γ(a(t)r(t))′

a2ω−γ−1(t)

r2γ−ω+1(t)
. (8)

In view of (7) and (8), we see from (6) that

(NαV )(s) = γ(NαP (t))(s)x(s)z(s) = γP ′(t)
aω(t)

rγ(t)
x(s)z(s) (9)

since (NαP (t))(s) = P ′(t)a
ω(t)

rγ(t) . Notice that

|xz| = |R1/2(t)xz|
R1/2(t)

≤
[
R(t)

x2

2
+

z2

2

]
/R1/2(t)

≤
[
R(t)

(
x2k

2k
+ C1

)
+

z2

2

]
/R1/2(t) (10)

≤ V (s)/R1/2(t) + C1R
1/2(t)

for some C1 ≥ 0, a constant. Therefore,

(NαV )(s) ≤ γ(NαP (t))(s)V (s)/R1/2(t) + γ|(NαP (t))(s)|C1R
1/2(t).

Now if τ(s) denotes the inverse function of s(t),(
NJα

t0

{
|(NαP (τ))(s)|/R 1

2 (τ)
})

(s) =
(
NJα

t0

{
|{(ar)′/aγrγ+1}′|/(ar)(ω−γ)/2

})
(s)

and (
NJα

t0 |(N
αP (τ))|R 1

2 (τ))
)
(s) =

(
NJα

t0 |
{
(ar)′/aγrγ+1

}′ |(ar)(ω−γ)/2
)
(t).

Integrating (NαV )(s) gives

V (s) ≤ V (t0) + γ
(
NJα

t0 |N
αP (τ)|V/R 1

2 (τ)
)
(s) + C1γ

(
NJα

t0 |N
αP (τ)|R 1

2 (τ)
)
(s)

= V (t0) + γ
(
NJα

t0

{
|{(ar)′/aγrγ+1}′|/(ar)(ω−γ)/2

})
(s)

+ C1γ
(
NJα

t0 |
{
(ar)′/aγrγ+1

}′ |(ar)(ω−γ)/2
)
(s). (11)

We can now formulate our limit-circle result.

Theorem 3.1 Assume that(
NJα

t0

{
|{ar)′/aγrγ+1}′|/(ar)(ω−γ)/2

})
(∞) < ∞ (12)
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and (
NJα

t0

{
|(ar)′aαrα+1

}′ |(ar)(β−α)/2
)
(∞) < ∞. (13)

If (
NJα

t0

1

(ar)γ−ω

)
(∞) < ∞,

then any solution y of equation (NF) is of the nonlinear limit-circle type, that is,(
NJα

t0y
2k
)
(∞) < ∞.

Proof. From the analysis above, we arrive at (11). We see that condition (12) ensures
that the second term on the right-hand side of (11) is bounded, so by Lemma 1.4, for
some constant C2 > 0,

V (s) ≤ C2 exp
(
NJα

t0 |(N
αP (τ))|R 1

2 (τ)
)
(s).

Condition (13) then shows that V (s) is bounded, say, V (s) ≤ C3 for some C3 > 0.
Therefore,

(a(t)r(t))ω−γy2k(t) = (a(t)r(t))ω−γx2k(s) ≤ 2kC3,

and so it follows that(
NJα

t0y
2k(t)

)
≤ 2kC3

(
NJα

t0 [1/(a(u))r(u))
ω−γ ]

)
(∞) < ∞

by condition (14), and so all solutions of equation (NF) are of the nonlinear limit–circle
type. 2

Notice that if we are in the linear case (i.e., k = 1), then in reconstructing V (s) in
(10), the constant C1 ≡ 0, and so condition (13) is not needed in the theorem.

Next, we wish to formulate and prove a limit-point result for equation (NF).

Theorem 3.2 In addition to conditions (12) and (13), assume that there are con-
stants D1, D2 > 0 such that∣∣∣(Nα(ar))(t)/a1/2(t)r3/2(t)

∣∣∣ ≤ D1 (14)

and
|a 1

2 (t)(Nαr)(t)/r
3
2 (t)| ≤ D2. (15)

In addition, assume that(
NJα

t0

{
[(Nα(ar))(t)]

2
/ar3

})
(∞) < ∞ (16)

and (
NJα

t0{a[(N
αr)(t)]2/r3}

)
(∞) < ∞. (17)

If (
NJα

t0 [1/(ar)
ω−γ ]

)
(∞) = ∞, (18)

then equation (NF) is of the nonlinear limit-point type, that is, there is a solution y of
(NF) such that (

NJα
t0y

2k
)
(∞) = ∞.
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Proof. Suppose that equation (NF) is of the nonlinear limit-circle type, and let y be
one such solution. Then, since y2 ≤ y2k + 1 for all y ∈ R and (17) holds,(

NJα
t0{[(N

α(ar)(t)]2y2/ar3}
)
(s)

≤ D2
1

(
NJα

t0y
2k
)
(t) +

(
NJα

t0{[(N
α(ar)(t)]2/ar3}

)
(s) < ∞. (19)

Now if we multiply equation (NF) by y(t)/r(t), use the identity
y(t)(Nα(a(t)(Nαy)(t)))(t) = y(t)(Nα(a(t)(Nαy)))(t) − a(t)[(Nαy)(t)]2, and inte-
grate by parts, we then obtain

a(t) (Nαy)(t)y/r) (t)− a(t1)(N
αy)(t1)y(t1)/r(t1)

+
(
NJα

t1 [a(t)(N
αy)(t)y(t)(Nαr)(t)/r2]

)
(t) +

(
NJα

t1y
2k
)
(t)

−
(
NJα

t1{a[(N
αy)(t)]2/r}

)
(t) = 0 (20)

for any t1 ≥ t0. An application of the Schwarz inequality gives∣∣(
NJα

t1 [a(N
αy)(t)y(Nαr)(t)/r2]

)
(t)

∣∣
≤

[(
NJα

t1{a[(N
αy)(t)]2/r}

)
(t)

] 1
2
[(

NJα
t1 [ay

2/(Nαr)(t)]2/r3}
)
(t)

] 1
2 .

From (15), we have

a(t)y2(t)[(Nαr)(t)]2/r3(t) ≤ {a(t)[(Nαr)(t)]2/r3(t)}[y2k(t) + 1]

≤ D2
2y

2k(t) + a(t)[(Nαr)(t)]2/r3(t),

so, integrating this expression, applying (17), and using the fact that y is a nonlinear
limit circle solution give(

NJα
t1{ay

2[(Nαr)(t)]2/r3}
)
(∞) ≤ C4 < ∞

for some C4 > 0. If y is not eventually monotonic, let {tj} → ∞ be an increasing
sequence of zeros of (Nαy)(t). Then from (20), we have

C4H
1
2 (tj) + C5 ≥ H(tj),

where
H(t) =

(
NJα

t1{a[(N
αy)(t)]2/r}

)
(t)

and C5 > 0 is a constant. It follows that H(tj) ≤ C6 < ∞ for all j and some constant
C6 > 0, so (

NJα
t0

{
a[(Nαy)(t)]2/r

})
(∞) < ∞. (21)

If y(t) is eventually monotonic, then y(t)(Nαy)(t) ≤ 0 for t ≥ t1 for sufficiently large
t1 ≥ t0 since y is a nonlinear limit-circle type solution. Using this in (20), we can repeat
the style of argument used above to again see that (21) holds.

Finally, we define V (s) as we did in the proof of Theorem 3.1, namely,

V (s) = z2/2 + (a(t)r(t))ω−γx2k/2k;

then
(NαV )(s) ≥ −γ|(NαP )(s)|V (s)/R

1
2 (t)− γ|(NαP )(t)|C1R

1
2 (t),
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so
(NαV )(s) + γ|(NαP )(s)|V (s)/R

1
2 (t) ≥ −γ|(NαP )(t)|C1R

1
2 (t). (22)

If we let G and g : R+ → R be given by

G(t) = γ|(NαP (t))(s)|/R 1
2 (t)

and
g(t) = γ|(NαP (t))(s)|C1R

1
2 (t),

(22) can be written as
(NαV )(s) +G(t)V (s) ≥ −g(t).

Therefore, (
Nα

(
V exp

(
NJα

t0G(τ)
)
(s)

))
≥ −g(t) exp

(
NJα

t0G(τ)
)
(s). (23)

Condition (12) ensures that

exp
(
NJα

t0G(τ)
)
(∞) ≤ C7 < ∞

for some constant C7 > 0, and condition (13) implies that

C7

(
NJα

t0g(τ)
)
(∞) ≤ C8 < ∞

for some C8 > 0.
Let y(t) be any solution of (NF) such that V (t0) = V (x(t0), z(t0), t0) > C8 + 1.

Integrating (23), we have

V (s) exp
(
NJα

t0G(τ)
)
(s) ≥ V (t0)− C8 > 1,

and so
V (s) ≥ 1/C8

for s ≥ 0. Dividing both members of this last inequality by (a(t)r(t))ω−γ and rewriting
the left-hand side in terms of t, we have

a(t)[(Nαy)(t)]2/2r + γ(a(t)r(t))′y(t)y′(t)/r2(t)

+ γ2[(a(t)r(t))′]2y2(t)/2a(t)r3(t) + y2k(t)/2k ≥ 1/C8(a(t)r(t))
ω−γ . (24)

If y(t) is a nonlinear limit–circle solution of (NF), then (19) and (21) hold. By the
Schwarz inequality,∣∣(

NJα
t0

{
(Nα(ar))(t)y(Nαy)(t)/r2

})
(∞)

∣∣
≤

[(
NJα

t0

{
[Nα(ar)(t)]2y2/ar3)

}
(∞)

)] 1
2[(

NJα
t0

{
a[(Nαy)(t)]2/r)

})
(∞)

] 1
2 < ∞

by (19) and (21). Since y(t) is a nonlinear limit-circle type solution, an integration of
(24) contradicts (18). 2

Remark 3.1 From the proof of Theorem 3.2, we can see that if conditions (14) and
(16) hold, then (19) is a necessary condition for the existence of a nonlinear limit-circle
solution of equation (NF). The same thing can be said about (21) if (15) and (17) hold.
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Based on Theorems 3.1 and 3.2, we have the following necessary and sufficient con-
dition for equation (NF) to be of the nonlinear limit-circle type.

Theorem 3.3 Let conditions (12)–(17) hold. Then equation (NF) is of the nonlinear
limit-circle type if and only if(

NJα
t0 [1/(ar)

ω−γ ]
)
(∞) =

(
NJα

t0 [1/(ar)
k/(k+1)]

)
(∞) < ∞. (25)

We conclude this paper with a brief discussion of some possible directions for further
research. One somewhat obvious possibility is to explore sublinear equations, that is,
equations of the form

(Nα(a(t)(Nαy)(t)))(t) + r(t)yδ(t) = 0,

where 0 < δ < 1. Of course, equations with more general nonlinear terms such as f(y)
instead of y2k−1 in (NF), is another possible direction for further research. Adding a
forcing term to equation (NF) should not cause major difficulties. Exploring similar
results to those in this paper for equations with a delay argument or for equations with
a neutral term, would also be of interest.

Another interesting possible direction would be to look at the relationship between
limit-point and limit-circle solutions of (NF) and other asymptotic properties of solutions
such as boundedness, oscillation, convergence to zero, stability, etc.

Equations of higher order are another possible direction of interest. This would require
the notion of deficiency indicies; in this regard, the works of Devinatz [8], Dunford and
Schwartz [9], Everitt [11], Fedorjuk [12], and Naimark [22] would be useful. As a final
suggestion, equation (NF) with r(t) < 0 is another possibility, but in that case, the
continuability of solutions becomes an issue.
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Abstract: The generalized type H∞ control problem is investigated for a class
of linear descriptor systems with nonzero initial state. A generalized performance
measure is used, which characterizes the weighted damping level of external and
initial disturbances. A non-degenerate transformation of the system is proposed,
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1 Introduction

In modern control theory, great attention is paid to descriptor (differential-algebraic)
systems, which are used in modeling the motion of objects in mechanics, robotics, energy,
electrical engineering, economics, etc. (see, e.g., [1–5]). Equations of motion, inputs
and outputs of controlled objects may contain uncertain elements (parameters, external
disturbances, measurement inaccuracies, etc.) that necessitate solving the problems of
robust stabilization and minimize the impact of bounded disturbances on the quality of
transient processes (H∞ optimization).

A typical performance measure in the H∞ optimization problem for systems with zero
initial state is a damping level of external (exogenous) disturbances, which corresponds
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to the maximum value of the ratio for L2-norms of controlled output and disturbances.
For a class of the linear descriptor systems

Eẋ = Ax+Bw, z = Cx+Dw, (1)

this characteristic coincides with the H∞-norm of the matrix transfer function

∥H∥∞ = sup
ω∈R

√
λmax(H⊤(−iω)H(iω)), H(λ) = C(λE −A)−1B +D,

where x ∈ Rn is the state, z ∈ Rk is the controlled output and w ∈ Rs represents the
exogenous input (external disturbances), E, A, B, C and D are the constant matrices
with compatible dimensions, λmax(·) denotes the maximum eigenvalue of a matrix.

In practice, it is advisable to apply generalized performance measures of the form [6,7]

J0 = sup
0<∥w∥P<∞

∥z∥Q
∥w∥P

, J = sup
{w,x0}∈W

∥z∥Q√
∥w∥2P + x⊤

0 X0x0

. (2)

Here, ∥z∥Q and ∥w∥P are the weighted L2-norms of z and w, respectively,

∥z∥Q =

√∫ ∞

0

z⊤Qz dt, ∥w∥P =

√∫ ∞

0

w⊤Pw dt,

W is a set of admissible pairs {w, x0} of the system such that 0 < ∥w∥2P +x⊤
0 X0x0 < ∞,

P = P⊤ > 0, Q = Q⊤ > 0 and X0 = E⊤HE are the weight matrices, H = H⊤ > 0 and
the initial vector x0 = x(0−) (see also [8, 9]). It is obvious that J0 ≤ J . If P = Is and
Q = Ik, then J0 = ∥H∥∞. The value of J characterizes the weighted damping level of
external disturbances, as well as initial disturbances caused by the nonzero initial vector.

Well-known H∞ control design methods are based on the statements of the Bounded
Real Lemma type [10–12], which represent necessary and sufficient conditions for achiev-
ing the upper estimates of the performance measures used. These statements are formu-
lated in terms of quadratic matrix equations and linear matrix inequalities (LMIs). For
a class of linear descriptor systems, similar statements were established in [13–16]. For
the available H∞ optimization methods for such systems, see, e.g., [3, 5, 7, 13,15,17].

This paper proposes new methods for solving the generalized H∞ control problem
for linear descriptor systems with performance measures of the form (2) based on a
nonsingular transformation of such systems into ordinary ones and the application of well-
known methods for synthesis of static and dynamic controllers. As a result, in a number of
cases, the corresponding control synthesis algorithms are based on LMIs solving without
additional rank constraints. In particular, the order of the desired dynamic controller
in such synthesis algorithms does not exceed the rank of the coefficient matrix at the
state derivative in the original system. Also, a distinctive feature of the obtained results
compared to known results is the application of weighted performance measures, which
provide new opportunities for achieving the desired characteristics of descriptor control
systems. By using weight coefficients in these performance criteria, we can establish
priorities between the components of controlled output and the unknown disturbances
in the control system.

Note that quite effective computer tools have been created for solving LMIs, for
example, the LMI Toolbox of MATLAB software [18]. The LMIRank and YALMIP
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tools with MATLAB [19, 20] as well as the Solve Block in Mathcad Prime software [21]
can be used to solve LMIs with rank constraints.

Notations: In is the identity n×nmatrix; 0n×m is the zero n×mmatrix; X = X⊤ > 0
(≥ 0) is a positive (nonnegative) definite symmetric matrix; σ(A) is the spectrum of A;
A−1(A+) is the inverse (pseudo-inverse) of A; KerA is the kernel of A; WA is the right
null matrix of A ∈ Rm×n, that is, AWA = 0, WA ∈ Rn×(n−r), rankWA = n − r, where
r = rankA < n (WA = 0 if r = n); ∥w∥P is the weighted L2-norm of a vector function
w(t); C− is the open half-plane Reλ < 0.

2 Definitions and Auxiliary Statements

Consider the descriptor system (1) with rankE = r < n and the performance measures
(2). The system is said to be admissible if the pair of matrices {E,A} is regular, stable
and impulse-free [1], i.e., detF (λ) ̸≡ 0 (λ ∈ C), σ(F ) ⊂ C− and deg {detF (λ)} = r,
respectively. Here, σ(F ) is the finite spectrum of the matrix pencil F (λ) = A−λE. The
system (1) is called internally stable if it is stable without disturbances (w ≡ 0).

The pair of matrices {E,A} is regular if and only if there exist nonsingular matrices L
and R that transform it to the canonical Weierstrass form [22]. System (1) is impulse-free
if and only if [2]

rank

[
E 0
A E

]
= n+ r. (3)

Let E = E1E
⊤
2 be the skeletal decomposition of E, where E1, E2 ∈ Rn×r are matrices

of full rank r. Denote the corresponding orthogonal complements by E⊥
1 , E⊥

2 ∈ Rn×(n−r)

such that E⊤
i E⊥

i = 0 and det
[
Ei E⊥

i

]
̸= 0, i = 1, 2.

Define a nonsingular transformation of system (1) by

LER =

[
Ir 0
0 0

]
, LAR =

[
A1 A2

A3 A4

]
, x = R

[
ξ1
ξ2

]
, ξ1 ∈ Rr, ξ2 ∈ Rn−r, (4)

where

L =

[
E+

1

E⊥+
1

]
, E+

1 = (E⊤
1 E1)

−1E⊤
1 , E⊥+

1 = (E⊥⊤
1 E⊥

1 )−1E⊥⊤
1 ,

R =
[
E+⊤

2 E⊥+⊤
2

]
, E+

2 = (E⊤
2 E2)

−1E⊤
2 , E⊥+

2 = (E⊥⊤
2 E⊥

2 )−1E⊥⊤
2 ,

A1 = E+
1 AE+⊤

2 , A2 = E+
1 AE⊥+⊤

2 , A3 = E⊥+
1 AE+⊤

2 , A4 = E⊥+
1 AE⊥+⊤

2 .

Note that

L−1 =
[
E1 E⊥

1

]
, R−1 =

[
E⊤

2

E⊥⊤
2

]
, ξ1 = E⊤

2 x, ξ2 = E⊥⊤
2 x.

It is easy to establish that (3) is equivalent to the inequality detA4 ̸= 0, i.e.,

det (E⊥⊤
1 AE⊥

2 ) ̸= 0. (5)

Eliminating the variable ξ2 = −A−1
4

(
A3ξ1 +B2w

)
under the condition (5), based on the

transformation (4), we obtain the ordinary system

ξ̇1 = Āξ1 + B̄w, z = C̄ξ1 + D̄w, ξ1(0) = ξ10, (6)
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where

Ā = A1 −A2A
−1
4 A3, B̄ = B1 −A2A

−1
4 B2, C̄ = C1 − C2A

−1
4 A3, D̄ = D − C2A

−1
4 B2,

LB =

[
B1

B2

]
, CR =

[
C1 C2

]
.

The spectrum of matrix Ā coincides with σ(F ) and the performance measures J0 and
J of impulse-free system (1) do not depend on ξ2 and are determined by system (6) since[

Ir −A2A
−1
4

0 In−r

]
LF (λ)R

[
Ir 0

−A−1
4 A3 In−r

]
=

[
Ā− λIr 0

0 A4

]
,

x⊤
0 X0x0 =

[
ξ⊤10 ξ⊤20

]
R⊤E⊤L⊤L−1⊤HL−1LER

[
ξ10
ξ20

]
= ξ⊤10H̄ξ10,

where H̄ = E⊤
1 HE1. Therefore, applying Lemma 4.1 from [23] to system (6), we have

the following statement.

Lemma 2.1 System (1) is admissible with J0 < γ if and only if (5) holds and there
exists a matrix X = X⊤ > 0 such that

Φ̄(X) =

[
Ā⊤X +XĀ+ C̄⊤QC̄ XB̄ + C̄⊤QD̄

B̄⊤X + D̄⊤QC̄ D̄⊤QD̄ − γ2P

]
< 0. (7)

The system is admissible with J < γ if and only if (5) holds and the LMIs (7) and

0 < X < γ2H̄ (8)

are feasible.

Lemma 2.1 can be used to calculate the characteristics J0 and J of system (1) based
on solving the corresponding optimization problems. At the same time, the restrictions
in these problems are used exclusively in terms of LMIs:

J0 = inf
{
γ : Φ̄(X) < 0, X > 0

}
, J = inf

{
γ : Φ̄(X) < 0, 0 < X < γ2H̄

}
.

For the worst-case perturbation vector w(t) with respect to J0, in (2), the supremum
is reached, i.e., ∥z∥Q = J0∥w∥P . If ∥z∥2Q = J2

(
∥w∥2P + x⊤

0 X0x0

)
, then {w(t), x0} is the

worst-case pair with respect to J in system (1). The methods of finding such vectors in
individual cases are proposed in [8, 24, 25]. For example, if system (1) is admissible and
there exists a matrix X such that

A⊤
0 X +X⊤A0 +X⊤R0X +Q0 = 0, 0 ≤ E⊤X = X⊤E ≤ J2X0,

where A0 = A + BR−1
1 D⊤QC, R0 = BR−1

1 B⊤, Q0 = C⊤ (
Q + QDR−1

1 D⊤Q
)
C,

R1 = J2P − D⊤QD > 0, then the worst-case pair {w(t), x0} with respect to J can be
defined as w = K∗x with K∗ = R−1

1 (B⊤X +D⊤QC) and x0 ∈ Ker (E⊤X − J2X0) [25].
We present another method of finding the worst-case pair {w(t), x0} with respect to

J for impulse-free system (1) based on the transformation (4). Under condition (5), we
construct the worst-case initial vector in the form

x0 = R

[
ξ10

−A−1
4

(
A3ξ10 +B2w(0)

) ]
, (9)
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where {w(t), ξ10} is the worst-case pair of system (6) with respect to J .
According to the Schur complement lemma [10], the condition (7) is equivalent to the

Riccati matrix inequality

Ā⊤
0 X +XĀ0 +XR̄0X + Q̄0 < 0, (10)

where Ā0 = Ā + B̄ R̄−1
1 D̄⊤QC̄, R̄0 = B̄ R̄−1

1 B̄⊤, Q̄0 = C̄⊤(Q + QD̄ R̄−1
1 D̄⊤Q

)
C̄, R̄1 =

γ2P − D̄⊤QD̄ > 0. If the pair {Ā, B̄} is controllable, the pair {Ā, C̄} is observable, and
J0 < γ, then the corresponding Riccati matrix equation

Ā⊤
0 X +XĀ0 +XR̄0X + Q̄0 = 0 (11)

has the solutions X− and X+ such that σ(Ā0 + R̄0X±) ⊂ C±, 0 < X− < X+, and
every solution of inequality (10) belongs to the interval X− < X < X+ (see [26, 27]).
Moreover, if J < γ (J ≤ γ) and X satisfies (11), then X < γ2H̄ (X ≤ γ2H̄). Indeed,
setting v(ξ1) = ξ⊤1 Xξ1 and

w = K̄∗ξ1, K̄∗ = R̄−1
1

(
B̄⊤X + D̄⊤QC̄

)
, (12)

we get v̇ + z⊤Qz − γ2w⊤Pw = 0, where v̇ is the derivative of the Lyapunov function v
along the trajectory of system (6). Integrating the above equality from zero to infinity
under the condition J < γ, we get ∥z∥2Q − γ2∥w∥2P = ξ⊤10Xξ10 < γ2ξ⊤10H̄ξ10 for any
ξ10 ̸= 0, otherwise J ≥ γ. If J = γ, then under conditions (11) and (12), the equality
ξ⊤10Xξ10 = γ2ξ⊤10H̄ξ10 or its equivalent (X − γ2H̄)ξ10 = 0 is possible for some ξ10 ̸= 0.
At the same time, ∥z∥2Q = J2(∥w∥2P + ξ⊤10H̄ξ10), i.e., in (2), the supremum is reached.
Hence, the following statement holds.

Lemma 2.2 Let X > 0 be the stabilizing solution of the Riccati equation (11) with
γ = J . Then the structured vector of external disturbances (12), where ξ1 is a solution
of the system

ξ̇1 = (Ā+ B̄K̄∗)ξ1, ξ1(0) = ξ10, (13)

and the vector (9) with ξ10 ∈ Ker (X − J2H̄) present the worst-case pair {w(t), x0} with
respect to J in system (1). If X > 0 is the stabilizing solution of (11) with γ = J0 and
ξ1 = ξ1(t, ξ10) is a solution of (13) at ξ10 = 0, then (12) are the worst-case disturbances
with respect to J0 in system (1).

3 Main Results

Consider a class of linear descriptor control system described by

Eẋ = Ax+B1w +B2u, x(0−) = x0,
z = C1x+D11w +D12u,
y = C2x+D21w +D22u,

(14)

where x ∈ Rn is the state, u ∈ Rm is the control input, w ∈ Rs represents the exogenous
input, z ∈ Rk is the controlled output and y ∈ Rl is the measured output. In (14),
all matrix coefficients are constant, rankE = r < n and the pair {E,A} is regular and
impulse-free. The components of w(t) can be both external disturbances acting on the
system and errors of the measured output. This vector must be bounded by the weighted
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norm. The initial perturbations in the system are caused by the unknown initial vector
x0.

We are interested in the stabilizing control laws that guarantee the internal stability
of the closed-loop system and the desired upper estimates of performance measure (2)
for the system with respect to the controlled output z. Static and dynamic controllers
that minimize the performance measure J are called J-optimal. For the identity weight
matrices P and Q, the J0-optimal control is called H∞-optimal. The search for J0- and
J-optimal controllers can be performed based on achieving the corresponding estimates
J0 < γ and J < γ for the minimum possible value of γ.

When studying the class of systems (14), their properties such as C-, R- and I-
controllability, as well as the dual properties C-, R- and I-observability, are used [3, 5].
In particular, for solvability of the generalized H∞ optimization problems, the triple
{E,A,B2} must be stabilizable and I-controllable. This is equivalent to the existence of
a matrix K such that the pair {E,A+B2K} is stable and impulse-free, i.e., admissible.
The I-controllability of the triple {E,A,B2} and I-observability of the triple {E,A,C2}
are equivalent to the corresponding equalities [28]

rank

[
E 0 0
A E B2

]
= n+ r, rank

 E A
0 E
0 C2

 = n+ r. (15)

We apply the equivalent transformation (4) to system (14). Excluding the variable
ξ2 = −A−1

4

(
A3ξ1 +B12w +B22u

)
under condition (5), we get the ordinary system

ξ̇1 = Āξ1 + B̄1w + B̄2u, z = C̄1ξ1 + D̄11w + D̄12u, y = C̄2ξ1 + D̄21w + D̄22u, (16)

where Ā = A1 −A2A
−1
4 A3, B̄1 = B11 −A2A

−1
4 B12, B̄2 = B21 −A2A

−1
4 B22,

C̄1 = C11 − C12A
−1
4 A3, D̄11 = D11 − C12A

−1
4 B12, D̄12 = D12 − C12A

−1
4 B22,

C̄2 = C21 − C22A
−1
4 A3, D̄21 = D21 − C22A

−1
4 B12, D̄22 = D22 − C22A

−1
4 B22,

LB1 =

[
B11

B12

]
, LB2 =

[
B21

B22

]
, C1R =

[
C11 C12

]
, C2R =

[
C21 C22

]
.

Defining the performance measure (2) for this system, we use the expression x⊤
0 X0x0 =

ξ⊤10H̄ξ10, where ξ10 = ξ1(0), H̄ = E⊤
1 HE1 (see the previous section).

Thus, the J0- and J-optimization problems for descriptor system (14) with the
impulse-free pair {E,A} are reduced to the application of well-known methods for solving
similar problems for system (16).

3.1 Static controller

When using for system (16) the static output-feedback controller

u = Ky, det(Im −KD̄22) ̸= 0, (17)

the closed-loop system has the form

ξ̇1 = A∗ξ1 +B∗w, z = C∗ξ1 +D∗w, (18)

where A∗ = Ā + B̄2K0C̄2, B∗ = B̄1 + B̄2K0D̄21, C∗ = C̄1 + D̄12K0C̄2, D∗ = D̄11 +
D̄12K0D̄21 and K0 = (Im − KD̄22)

−1K. The controller (17) will also be used for the
original system (14).
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Applying the Schur complement lemma [10], we rewrite the inequality (7) in Lemma
2.1 for system (18) as the LMI with respect to K0:A⊤

∗ X +XA∗ XB∗ C⊤
∗

B⊤
∗ X −γ2P D⊤

∗
C∗ D∗ −Q−1

 = L⊤
0 K0R0 +R⊤

0 K
⊤
0 L0 +Ω < 0, (19)

where R0 =
[
C̄2 D̄21 0l×k

]
, L0 =

[
B̄⊤

2 X 0m×s D̄⊤
12

]
and

Ω =

 Ā⊤X +XĀ XB̄1 C̄⊤
1

B̄⊤
1 X −γ2P D̄⊤

11

C̄1 D̄11 −Q−1

.
Based on Lemma 2.1 and Theorem 5.1 from [7], we have the following result.

Theorem 3.1 For system (14), there is a static output-feedback controller (17) such
that the closed-loop system is admissible and J < γ if and only if (8) and

W⊤
R̄

[
Ā⊤X +XĀ+ C̄⊤

1 QC̄1 XB̄1 + C̄⊤
1 QD̄11

B̄⊤
1 X + D̄⊤

11QC̄1 D̄⊤
11QD̄11 − γ2P

]
WR̄ < 0, (20)

W⊤
L̄

[
ĀY + Y Ā⊤ + B̄1P

−1B̄⊤
1 Y C̄⊤

1 + B̄1P
−1D̄⊤

11

C̄1Y + D̄11P
−1B̄⊤

1 D̄11P
−1D̄⊤

11 − γ2Q−1

]
WL̄ < 0, (21)

W =

[
X γIr
γIr Y

]
≥ 0, rankW = r, (22)

where R̄ =
[
C̄2 D̄21

]
and L̄ =

[
B̄⊤

2 D̄⊤
12

]
, are feasible for some X and Y .

The gain matrix of the controller can be found as K = K0(Il + D̄22K0)
−1, where K0

is a solution of (19).

Note that (22) hold if and only if X = X⊤ > 0, Y = Y ⊤ > 0 and XY = γ2Ir. In
what follows, we present the corollaries of Lemma 2.1 and Theorem 3.1 for

rank C̄2 = r ≤ l, D̄21 = 0, D̄22 = 0, (23)

D̄⊤
11QD̄11 < γ2P. (24)

Conditions (23) are satisfied if, for example,

rank (C2E2) = r, C2E
⊥
2 = 0, D21 = 0, D22 = 0.

Theorem 3.2 Suppose (23) and (24) hold. The following statements are equivalent:
1) for system (14), there is a static state-feedback controller (17), for which the closed-

loop system is admissible and J < γ;
2) there is a matrix Y > H̄−1 that satisfies (21);
3) there exist matrices Y > H̄−1 and Z satisfying the LMI γ2(ĀY + Y Ā⊤+ B̄2Z + Z⊤B̄⊤

2 ) γ2B̄1 Y C̄⊤
1 + Z⊤D̄⊤

12

γ2B̄⊤
1 −γ2P D̄⊤

11

C̄1Y + D̄12Z D̄11 −Q−1

 < 0. (25)

When statement 2) holds, the desired gain matrix K = K0 of controller (17) in
statement 1) can be found as a solution of (19) with X = γ2Y −1. If statement 3) holds,
then this matrix can be defined as a solution of the linear equation KC̄2Y = Z.
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Proof. Given the conditions (23), we have y = C̄2ξ1 = C̄2E
⊤
2 x and l ≥ r. The

equivalence of statements 1) and 2) follows from Theorem 3.1 since WR̄ =
[
0 Is

]⊤
under conditions (23). In this case, the inequality (20) takes the form (24) and does not
depend on X. The desired matrix in (21) has the form Y = γ2X−1. Therefore, instead
of (8), we have the equivalent condition Y > H̄−1. Given (23), the matrix K of the
controller (17) satisfying statement 1) can be an arbitrary solution K0 of the LMI (19).

The equivalence of statements 1) and 3) follows from Lemma 2.1 for the closed-loop
system (18), where K0 = K. At the same time, the inequality (25) in statement 3) arises
as a result of multiplying the first block row on the left-hand side and the first block
column on the right-hand side of (19) by Y = γ2X−1, taking into account (23) and the
notation Z = KC̄2Y . The last correlation can be solved with respect to K:

K =

{
Z(C̄2Y )−1, l = r,
ZY −1C̄+

2 + TC̄⊥⊤
2 , l > r,

where T is an arbitrary m× (l − r) matrix. 2

Remark 3.1 Consider the case when the pair {E,A} in system (14) is not impulse-
free, but there exists a matrix K1 ∈ Rm×l such that

det (Im −K1D22) ̸= 0, det
[
E⊥⊤

1 (A+B2K10C2)E
⊥
2

]
̸= 0, (26)

where K10 = K11K1 and K11 = (Im − K1D22)
−1. It can be established that under

conditions (26), the rank relations (15) are satisfied, i.e., the system is I-controllable and
I-observable.

Under the above assumptions, instead of (17), we use the controller u = K1y + v,
where v is a new control in the system

Eẋ = Ãx+ B̃1w + B̃2v, z = C̃1x+ D̃11w + D̃12v, y = C̃2x+ D̃21w + D̃22v. (27)

Here, under condition (26), the pair {E, Ã} is impulse-free and

Ã = A+B2K10C2, B̃1 = B1 +B2K10D21, B̃2 = B2K11,

C̃1 = C1 +D12K10C2, D̃11 = D11 +D12K10D21, D̃12 = D12K11,

C̃2 = C2 +D22K10C2, D̃21 = D21 +D22K10D21, D̃22 = D22K11.

We perform an equivalent transformation of system (27) based on the relations

LER =

[
Ir 0
0 0

]
, LÃR =

[
Ã1 Ã2

Ã3 Ã4

]
, LB̃1 =

[
B̃11

B̃12

]
, LB̃2 =

[
B̃21

B̃22

]
,

C̃1R =
[
C̃11 C̃12

]
, C̃2R =

[
C̃21 C̃22

]
,

x = R

[
ξ1
ξ2

]
, ξ1 = E⊤

2 x, ξ2 = −Ã−1
4

(
Ã3ξ1 + B̃12w + B̃22v

)
,

where L and R are nonsingular matrices defined in (4). Then we can formulate analogues
of Theorems 3.1 and 3.2 using the static controller v = Ky for the ordinary system

ξ̇1 = Āξ1 + B̄1w + B̄2v, z = C̄1ξ1 + D̄11w + D̄12v, y = C̄2ξ1 + D̄21w + D̄22v, (28)



418 A. G. MAZKO

where

Ā = Ã1 − Ã2Ã
−1
4 Ã3, B̄1 = B̃11 − Ã2Ã

−1
4 B̃12, B̄2 = B̃21 − Ã2Ã

−1
4 B̃22,

C̄1 = C̃11 − C̃12Ã
−1
4 Ã3, D̄11 = D̃11 − C̃12Ã

−1
4 B̃12, D̄12 = D̃12 − C̃12Ã

−1
4 B̃22,

C̄2 = C̃21 − C̃22Ã
−1
4 Ã3, D̄21 = D̃21 − C̃22Ã

−1
4 B̃12, D̄22 = D̃22 − C̃22Ã

−1
4 B̃22.

As a result, the original system (14) with the control

u =
(
K10C2 +K11K0C̄2E

⊤
2

)
x+

(
K10D21 +K11K0D̄21

)
w

takes the form
Eẋ = A0x+B0w, z = C0x+D0w, (29)

where K0 = (Im −KD̄22)
−1K, det(Im −KD̄22) ̸= 0,

A0 = A+B2

(
K10C2 +K11K0C̄2E

⊤
2

)
, B0 = B1 +B2

(
K10D21 +K11K0D̄21

)
,

C0 = C1 +D12

(
K10C2 +K11K0C̄2E

⊤
2

)
, D0 = D11 +D12

(
K10D21 +K11K0D̄21

)
.

3.2 Dynamic controller

When using for system (16) the dynamic controller of the order p

η̇ = Zη + V y, u = Uη +Ky, η(0) = 0, (30)

the closed-loop system in an extended phase space Rr+p has the form

˙̂x = Â∗x̂+ B̂∗w, z = Ĉ∗x̂+ D̂∗w, x̂(0) = x̂0, (31)

where

Â∗ = Â+ B̂2K̂0Ĉ2, B̂∗ = B̂1+ B̂2K̂0D̂21, Ĉ∗ = Ĉ1+ D̂12K̂0Ĉ2, D̂∗ = D̄11+ D̂12K̂0D̂21,

x̂ =

[
ξ1
η

]
, Â =

[
Ā 0r×p

0p×r 0p×p

]
, B̂1 =

[
B̄1

0p×s

]
, B̂2 =

[
B̄2 0r×p

0p×m Ip

]
,

Ĉ1 =
[
C̄1 0k×p

]
, Ĉ2 =

[
C̄2 0l×p

0p×r Ip

]
, D̂12 =

[
D̄12 0k×p

]
, D̂21 =

[
D̄21

0p×s

]
,

K̂0 =

[
K0 U0

V0 Z0

]
=

[
(Im −KD̄22)

−1K (Im −KD̄22)
−1U

V (Il − D̄22K)−1 Z + V D̄22(Im −KD̄22)
−1U

]
.

We define a performance measure Ĵ for system (31) of the form (2) with the weight

matrices P , Q and X̂0, where X̂0 is some block (r + p) × (r + p) matrix, whose first

diagonal block is H̄. The value of Ĵ coincides with J since η(0) = 0.

Lemma 3.1 [23]. Given positive definite matrices X,Y ∈ Rr×r and a number γ > 0,
there are matrices X1 ∈ Rp×r, X2 ∈ Rp×p, Y1 ∈ Rp×r and Y2 ∈ Rp×p such that

X̂ =

[
X X⊤

1

X1 X2

]
> 0, Ŷ =

[
Y Y ⊤

1

Y1 Y2

]
> 0, X̂Ŷ = γ2Ir+p (32)

if and only if

W =

[
X γIr
γIr Y

]
≥ 0, rankW ≤ r + p. (33)
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Theorem 3.3 For system (14), there is a dynamic controller (30) of order p ≤ r,
such that a closed-loop system is admissible and J < γ if and only if (8), (20), (21) and
(33) are feasible with respect to X and Y . The matrices of such controller can be defined
as [

K U
V Z

]
= (Im+p + K̂0D̂22)

−1K̂0, D̂22 =

[
D̄22 0l×p

0p×m 0p×p

]
, (34)

where K̂0 is a solution of the LMI

L̂⊤K̂0R̂+ R̂⊤K̂⊤
0 L̂+ Ω̂ < 0, (35)

R̂ =
[
Ĉ2 D̂21 0(l+p)×k

]
, L̂ =

[
B̂⊤

2 X̂ 0(m+p)×s D̂⊤
12

]
,

Ω̂ =

 Â⊤X̂ + X̂Â X̂B̂1 Ĉ⊤
1

B̂⊤
1 X̂ −γ2P D̂⊤

11

Ĉ1 D̂11 −Q−1

 .

The block matrix X̂ in (35) is formed on the basis of Lemma 3.1 according to (32), where
X and Y satisfy (8), (20), (21) and (33).

Taking into account the structure of matrices in (31), the system (16) with a dynamic
controller (30) can be represented as a system in the space Rr+p with a static controller:

˙̂x = Â x̂+ B̂1 w + B̂2 û, z = Ĉ1 x̂+ D̂11 w + D̂12 û, ŷ = Ĉ2 x̂+ D̂21 w,

x̂ =

[
ξ1
η

]
, ŷ =

[
y − D̄22u

η

]
, û =

[
u
η̇

]
, û = K̂0ŷ.

Therefore, Theorem 3.3 can be proved as a corollary of Theorem 3.1 and Lemma 3.1.
Note that Theorems 3.1 and 3.3, without using the constraint X < γ2H̄, give the

existence criteria and methods for constructing stabilizing controllers that provide the
estimate J0 < γ for the corresponding closed-loop systems. In the case p = 0, Theorem
3.3 yields a criterion for the existence of a static controller (17) with the properties
specified in Theorem 3.1. The construction of dynamic controllers of the order p = r
satisfying Theorem 3.3 reduces to the solution of the LMI system without additional
constraints. In this case, the rank constraint in (33) holds automatically.

We present the following algorithm for constructing a dynamic controller (30), which
satisfies Theorem 3.3.

Algorithm 3.1
1) Calculating the transforming matrices (4) and coefficient matrices of system (16);
2) calculating WR̄ and WL̄, where R̄ =

[
C̄2 D̄21

]
, L̄ =

[
B̄⊤

2 D̄⊤
12

]
;

3) finding matrices X and Y that satisfy (8), (20), (21) and (33);
4) constructing the decomposition ∆ = Y − γ2X−1 = S⊤S ≥ 0, where S ∈ Rp×r,
kerS = ker∆, and forming the block matrix

X̂ =

[
X X⊤

1

X1 X2

]
> 0, X1 =

1

γ
SX, X2 =

1

γ2
SXS⊤ + Ip;

5) solving the LMI (35) with respect to K̂0 taking into account det(Im +K0D̄22) ̸= 0;
6) calculating the controller matrices according to (34).
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Remark 3.2 Algorithm 3.1 can be implemented, e.g., by means of the MATLAB
software. If ∆ = 0 in step 4) of the algorithm, i.e., rankW = r, then solving the LMI
(19), we obtain the gain matrix of static controller (17), which satisfies Theorem 3.1.

Remark 3.3 If the pair {E,A} in system (14) is not impulse-free, but there is a
matrix K1 ∈ Rm×l satisfying (26), then we set u = K1y + v, where v is a new control
generated by

η̇ = Zη + V y, v = Uη +Ky, η(0) = 0,

which solves the problem for the ordinary system (28) formed on the basis of equivalent
transformation of system (27) (see the previous subsection). As a result, the closed-loop
descriptor system in the extended phase space has the form

Ê ˙̂x = Â0x̂+ B̂0w, z = Ĉ0x̂+ D̂0w, x̂(0) = x̂0, (36)

where

Ê =

[
E 0
0 Ip

]
, x̂ =

[
x
η

]
, x̂0 =

[
x0

0

]
,

Â0 =

[
A+B2(K10C2+K11G1) B2K11G2

V (C̄2E
⊤
2 +D̄22G1) Z + V D̄22G2

]
, B̂0 =

[
B1 +B2(K10D21+K11G3)

V (D̄21 + D̄22G3)

]
,

Ĉ0 =
[
C1 +D12(K10C2+K11G1) D12K11G2

]
, D̂0 = D11 +D12(K10D21 +K11G3),

G1 = K0C̄2E
⊤
2 , G2 = (Im −KD̄22)

−1U, G3 = K0D̄21, K0 = (Im −KD̄22)
−1K.

4 Example

Consider an electric circuit control system of the form described in (14), where [29]

E =

 L 0 0
0 C 0
0 0 0

 , A =

 −R1 −1 1
0 −1/R2 0
1 0 0

 , B1 = B2 =

 0
1
−1

 ,

C1 = C2 =

[
0 1 0
0 0 1

]
, D12 =

[
0
1

]
, D11 = D21 = D22 = 02×1,

x =
[
i v2 v1

]⊤
, z =

[
v2 v1 + u

]⊤
, y =

[
v2 v1

]⊤
, L = 3 is the inductance,

C = 2 is the capacitance, R1 = 2 and R2 = 1 are the resistances, i is the current, v1 and
v2 are the voltages, u is the control signal of a current source with bounded disturbance
w (see Fig. 1). In this system, the pair {E,A} is not impulse-free, the triples {E,A,B2}
and {E,A,C2} are I-controllable and I-observable, respectively.

Figure 1: The electrical circuit.
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We choose K1 =
[
0 1

]
satisfying (26) and the weight matrices for performance

measures (2): P = 1, Q = I2, X0 = E⊤HE, H = 3I3. Using Theorem 3.1 for system
(27) with γ = 1, 03624, we find the controller

v = Ky, K =
[
0.22439 −17.998625

]
,

such that the closed-loop system is admissible and J = 0.94402 < γ. At the same time,
the finite spectrum of the system coincides with σ(Ā) =

{
− 0.59314± 0.39471 i

}
, where

Ā is a system matrix of (28). Applying Lemma 2.2 for closed-loop system (29), the
worst-case pair {w, x0} with respect to J is found as follows:

w = K̄∗ξ1, K̄∗ =
[
−26.31483 −4.74882

]
, (37)

x0 =
[
−0.32886 0.08162 1.50212

]⊤
. (38)

Figure 2: Behavior of a closed-loop system. Figure 3: The worst-case perturbation
with respect to J .

Fig.2 shows the behavior of the solution of the closed-loop system under the worst-
case conditions (37) and (38), and Fig.3 shows the behavior of the worst-case disturbance
(37).

Next, applying Algorithm 3.1, the matrices of the approximate J-optimal dynamic
controller (30) of the order p = 2 are found for system (27) as follows:

[
K U
V Z

]
=

 0.16824 −2.24725 −0.00072 −0.15173
−0.00256 0.00014 −0.00063 0.00259
−0.10392 0.09342 −0.01008 −0.77037

 ,

for which the closed-loop system (36) is admissible with the finite spectrum{
− 0.72210± 0.30576 i, −0.77143, −0.00067

}
and has the minimum value of the performance measure J = 0.28356.
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5 Conclusion

Constructive methods for evaluating and achieving the desired damping level of external
and initial disturbances in descriptor control systems have been developed. The practical
implementation of these methods is based on the equivalent transformation of descriptor
systems and application of well-known methods of H∞ control theory for ordinary lower-
order systems. Thus, the existence conditions and algorithms for constructing a dynamic
controller of the order p = rankE, for which the closed-loop system is admissible with
weighted performance measures J0 < γ or J < γ, reduce to solving LMIs without
additional rank constraints. In the case, when the original descriptor system is not
impulse-free, it is proposed to search for an additional control that provides the specified
property of this system. The equivalent transformation of the descriptor system to the
ordinary one was also applied to find the worst-case external and initial disturbances with
respect to the weighted performance measures. Studying the behavior of a closed-loop
system under such worst-case conditions can be important in the design and testing of
real controlled objects.
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Abstract: The existence of homoclinic orbits in a dynamical system has interesting
consequences for its behavior. This is the case in this paper, where we present a
model of the discrete nonlinear Schrödinger equation under the Helmholtz operator.
We give the fundamental theorem of the existence of a homoclinic (heteroclinic) orbit
for a particular class of reversible planar maps. Homoclinic structures are known
to be sources of sensitivity that, under small perturbations, can bifurcate solutions.
The problem of the existence of solitons has therefore been replaced by that of the
existence of homoclinic solutions. We prove the existence of bright and dark solitons
in a certain case of nonlinearity.

Keywords: discrete Schrödinger equation; Helmholtz operator; homoclinic orbits;
heteroclinic orbits; reversible planar maps.

Mathematics Subject Classification (2020): 35Q55, 35Q51, 37K60, 70K44,
93-02.

1 Introduction

Over the last decade, the existence of discrete solitons in DNLS equations has become
a hot topic of many studies, to mention just a few, refer to [7, 11–13, 15–17]. These
include variational methods, central manifold reduction, and the Nehari manifold ap-
proach. A good number of these papers take into account DNLS equations with constant
coefficients, and their conclusions have been presented in [7, 12, 15, 16, 19]. DNLS equa-
tions with periodic coefficients have recently appeared in the physics literature, and this
phenomenon can be identified by numerical simulations [11,13].
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The existence of bright solitons in different cases was then examined using Melnikov’s
method, assuming a small perturbation, and for the anti-integrability method [1], some
localized solutions persist for weak coupling cases. In [6], the variational approach can
also be used, but the allowed frequency region cannot be explicitly determined by the
variational method. We are looking at the homoclinic orbit approach to the existence
of soliton solutions of DNLS equations used in our paper and in [16], it is precisely a
generalization of the work in [7]. Homoclinic structures are recognized as sources of
sensitivity which, under small perturbations, can bifurcate solutions. The existence of
homoclinic orbits in a dynamical system has interesting consequences for its behavior.
The problem of the existence of solitons has therefore been replaced by the problem of
the existence of homoclinic solutions. However, this approach yields the frequency Ω
and the related sequence xn simultaneously, and therefore the interval of existence of the
frequency Ω. Discrete Helmholtz equations are closely related to discrete Schrodinger
equations, which appear naturally in the tight-binding model of electrons in crystals [2].
Similar equations also appear in the case of studies involving time harmonic elastic waves
in lattice models of crystals [3], see for example, [14], especially in the case d = 2.

We consider spatially localized standing waves for the discrete nonlinear Schrödinger
equation (DNLS):

ψ̇n = −Hψn − h(| ψn |)ψn, n ∈ Z,

,

Hψn =
1

wn
(ψn+1 + ψn−1 + dnψn),

where wn > 0, dn ∈ R, and (wnwn+1)
−1, w−1

n dn are bounded sequences. It gives rise to
an operator H, called Helmholtz operator [18], in the weighted Hilbert space l2(Z;w)
with scalar product:

⟨f, g⟩ =
∑

n∈Z wnfngn , f, g ∈ l2(Z;w) .

There is an interesting link between the Jacobi and Helmholtz operators. in [18] (Theo-
rem 1.14, page 21).

Use the stationary wave ansatz

ψn = xn exp(−iωt),

where xn is a sequence with real values and ω ∈ R.
We impose the following boundary condition at infinity: limn→±∞ un = 0, and we

are looking for non-trivial solutions, i.e the solutions that are not equal to 0.
The objective of this paper is to explore the existence of homoclinic solutions for a

given class of periodic difference equations.
We use the symmetry properties of reversible planar maps to improve the ho-

moclinic orbit approach. The results of the existence of the soliton of the discrete
Helmholtz-Schrodinger equation will not be obtained by the variational method or the
anti-integrability method.

This paper is structured as follows. In the second Section, we outline some basics
about reversible planar maps and homoclinic (heteroclinic) points. In addition, we give
the fundamental theorem for the existence of a homoclinic (heteroclinic) orbit for a
particular class of planar maps so that we can prove the existence results rigorously.

In Section 3, we present the conditions for the existence of bright and dark solitons
for local solutions of the discrete Schrödinger equations with the Helmholtz operator.



426 A. MEHAZZEM, M. S. ABDELOUAHAB AND R. AMIRA

We also examine the existence of soliton solutions for DNLS equations in certain cases
of nonlinearity.

2 Homoclinic Orbits of Planar Reversible Maps

We will give a mathematical description of time-reversal symmetry in the context of
dynamical systems. In the most interesting applications, Ω = Rn. We are interested
only in the diffeomorphism of R2n. Let R be a smooth diffeomorphism satisfying the
following conditions:

• R ◦R = identity.

• The dimension of the fixed point set of R, Fix(R), is n.

R is known as inverse involution. A diffeomorphism T is called R-reversible if R ◦ T =
T−1 ◦R.

Several periodic points are easy to find; they are called symmetrical periodic points
and are characterized by the following proposition.

Proposition 2.1 [5] Let p ∈ Fix(R) and suppose that T k(p) ∈ Fix(R), and there-
fore, T 2k(p) = p, then we have

T k(p) = RT k(p) = T−kR(p) = T−k(p), therefore : T 2k(p) = p.

So, symmetrical periodic points can be geometrically identified; we focus on the self-
intersections of the set of fixed points of R under the iteration of T . We might also find
homoclinic geometrically reversible diffeomorphism of R-geometrically reversible diffeo-
morphisms.

Proposition 2.2 [4] Let p ∈ Fix(R) be a symmetric fixed point of T and let W s(p)
andWu(p) denote the stable and unstable manifolds of p, respectively. Then R(Wu(p)) =
W s(p) and R(W s(p)) = Wu(p). In particular, if q ∈ Wu(p) ∩ Fix(R), then q is a
homoclinic point.

Let x ∈Wu(p) such that lim
n−→∞

T−n(x) = p, and so we have

p = R lim
n−→∞

(T−n(x)) = lim
n−→∞

Tn(R(x)).

We have R(x) ∈ W s(p), where RWu(p) ⊂ W s(p). We also have RW s(p) ⊂ Wu(p) such
that RWu(p) = W s(p). If q ∈ Wu(p) ∩ Fix(R). So, q = R(q) ∈ W s(p) ∩ Fix(R) also, q
is a homoclinic point [4].

Hence, to generate homoclinic points for reversible diffeomorphisms, it is sufficient to
find the intersections of Wu(p) with Fix(R). We note that both of these propositions
are valid in much more general terms. Homoclinic points which are also in Fix(R)
are described as symmetric homoclinic points. Homoclinic points are called regular
homoclinic points if the unstable variety (and hence the stable variety) intersects Fix(R)
transversely at the homoclinic point.

Proposition 2.3 [5] Let p be a symmetric fixed point and let q be a symmetric
homoclinic point in Wu(p). Let N be any neighborhood of p in Fix(R). Then there
exists an infinite number of periodic symmetric points in N .
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Proposition 2.4 [4] Let p be a non-symmetric periodic point. Suppose q ∈Wu(p)∩
Fix(R). Then q ∈ Wu(p) ∩ W s(R(p)). Thus some heteroclinic points can be found
geometrically as symmetric homoclinic points. Regular symmetric heteroclinic points are
defined as regular homoclinic points.

Proposition 2.5 [4] Assume that T is an R-reversible diffeomorphism on the plane
and let p be a nonsymmetric saddle point for T . Assume that a branch of Wu(p) and a
branch of W s(p) intersect. Suppose a branch of W s(p) intersects Fix(R) transversely.
Then there exist infinitely many symmetric periodic orbits entering any neighborhood of
p and R(p).

A reversible class of planar maps is derived from symmetrical differential equations
of the form [5,7]

xn+1 + xn−1 = g(xn). (1)

In this paper we treat the most general case. We consider the difference expression

Hnxn = 1
wn

(xn+1 + xn−1 + dnxn),

where wn > 0, dn ∈ R, and (wnwn+1)
−1, w−1

n dn are bounded sequences. It gives rise to
an operator H, called the Helmholtz operator [18], in the weighted Hilbert space l2(Z;w)
with scalar product:

⟨f, g⟩ =
∑

n∈Z wnfngn , f, g ∈ l2(Z;w),

xn+1 + xn−1 = g(xn, wn, dn, h),

which regularly appears in analyses of the stationary state of coupled oscillators in one-
dimensional lattices [5] . The system can be expressed as a planar map, given by T , of
the form {

xn+1 = zn,
zn+1 = −xn + g(zn),

i.e.,
T (x, z) = (z,−x+ g(z)) and gn(xn) = dnxn + ωnh(xn).

It is an easy matter to check that T is invertible and{
xn+1 = −zn + g(xn),
zn+1 = xn

T−1(x, z) = (−z + g(x), x).

Furthermore, T is a C1 diffeomorphism if g is C1. gn(x) is nonlinear and continuous at
x. We have gn+P (x) = gn(x) for all n ∈ Z. In this work, we always suppose that g is a C1

function. We see that T is R1-reversible with respect to the involution R1(x, z) = (z, x),
and R2-reversible with respect to the involution R2(x, z) = (−z,−x) since g is an odd
function.

R1 ◦ T (xn, zn) = R1(zn,−xn + g(zn)) = (−xn + g(zn), zn),

T−1 ◦R1(xn, zn) = T−1(zn, xn) = (−xn + g(zn), zn).

Note that the fixed-point sets Fix(R1) and Fix(R2) are indicated by the lines z = x
and z = −x, denoted by S1 and S2, respectively. Let d = minn∈Z dn > 1 , f(z) = g(z)−dz
and we fix w = wn > 0.
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Theorem 2.1 Suppose that

1. f(z) is a C1 and odd function, and has three real zeros, −z0, 0 and z0 (z0 > 0),
with f ′(0) > 0.

2. supz≥z′((d− 2)z + wf(z) < 0 for given z′ > z0.
Then the planar map T has a homoclinic orbit.

Proof. Because f as an odd function has three different real zeros, we can suppose
that its real zeros are −z0, 0 and z0 with z0 > 0. The planar map T has three fixed points
P (−z0,−z0), O(0, 0) and Q(z0, z0), all of which are symmetrical with the involution R1.
The origin O is hyperbolic if f ‘(0) > 0. In addition, the unstable manifold W u(O) and
the stable manifold W s(O) are tangent to the lines z = λ2x and z = λ1x, respectively,
where λ2 > 1 and 0 < λ1 < 1 are eigenvalues of the Jacobian matrix of T at the origin.
We first prove that the intersection ofW u(O) with the interior of the segment EQ is non-
empty, where E(0, z0) lies on the z-axis. It is simple to verify that a branch of W u(O)
initially enters the interior of the triangle △OEQ, noted by int(△OEQ). For any point
A(x, z) ∈ int(△OEQ), When 0 < x < z < z0, the coordinates of the image point T (A)
are (z,−x + dz + wf(z)). Furthermore, since f(z) is positive and d ≥ 0 for z ∈ (0, z0),

the distance between the point T (A) and the line S1 is
√
2
2 (wf(z)−x+(d− 1)z), greater

than the distance from A to S1. Thus, the unstable manifoldW u(O) inside △OEQ never
intersects the segments OE and OQ. In the next section, we show by contradiction that
W u(O) intersects the segment EQ.

Suppose that the branch of W u(O) in the first quadrant always lies inside △OEQ.
Consider a point B ∈ W u(O) ∩ int(△OEQ). Then all the image points Tn(B) ∈
int(△OEQ) for n = 1, 2, · · · . In addition, the sequences of x-coordinates and z-
coordinates of Tn(B) are at the same time strictly increasing and bounded above, and
therefore converge to x∗ and z∗, respectively. Consequently, the sequence of points
Tn(B) is convergent to N(x∗, z∗), which is a fixed point of T . Based on the facts that
x∗ > 0 and z∗ > 0, it thus follows that N = Q. On the other part, the sequence of
the distance between Tn(B) and S1 is also strictly increasing, implying that N ̸= Q,
there is a contradiction. Consequently, the unstable manifold W u(O) pierces the seg-
ment EQ. Secondly, we show that W u(O) in the first quadrant meets the line S1 at some
point. We note H0(x0, z0), the intersection point of W u(O) with the segment EQ. Let
Hn+1 = T (Hn), n = 0, 1, · · · . The coordinates of Hn are (xn, zn). It then follows that
z1 = −x0 + dz0 + wf(z0) = z0 + ((d − 1)z0 + x0) > z0. Since f(z) < 0 for z > z0, we
derive from assumption (ii) that supz>z1((d− 2)z + wf(z) < 0.
We note

sup
z≥z1

((d− 2)z + wf(z)) < 0, so sup
z≥z1

(d− 2)z + wf(z) = −a, (a > 0).

Suppose that W u(O) in the first quadrant does not cross the line S1. Then W u(O) is
between the z-axis and the line S1. So, the points Hn are above the line S1, meaning
that zn+1 > xn+1 = zn > xn = · · · = z1 > x1 = z0, and (d − 2)zn + wf(zn) ≤ −a for
n = 1, 2, · · · . Consider dn as the distance between Hn and the line S1. Then

distn =

√
2

2
(zn − xn) =

√
2

2
(zn − zn−1), n = 0, 1, (z−1 = x0).

Let zn+1 = −xn + dzn + wf(zn), so zn+1 − zn = zn − zn−1 + (dn − 2)zn + wf(zn).
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Therefore,
√
2disn+1 =

√
2disn + (d− 2)zn + wf(zn), n = 0, 1, . . .. It follows that

√
2dis1 =

√
2dis0 + (d− 2)z0,

√
2dis2 =

√
2dis1 + (d1 − 2)z1 + wf(z1),

√
2disn+1 =

√
2disn + (dn − 2)zn + wf(zn)

and hence

0 ≤
√
2disn+1 =

√
2dis0 +

n∑
i=1

[(disi − 2)zi + wf(zi)] ≤
√
2dis0 − na.

Let n → ∞, we obtain a contradiction. As a result, the intersection of W u(O) with the
line S1 is non empty. From Proposition 2.2, it follows that W u(O) and W s(O) intersect
at a point q on S1, which means that a homoclinic orbit exists. □

Let (x0, x0) be the point of intersection of W u(O) and S1. So, the homoclinic orbit
(xn, zn) = Tn((x0, x0)) in the first quadrant has the following property: xn = z−n and
x−n = zn for n ≥ 1.

From the homoclinic orbit, we derive a sequence {xn} that satisfies (1) and xn → 0
exponentially as n→ +∞ or −∞.

Theorem 2.2 Suppose that
(i) f(z) is a C1 and odd function, and f(z) + 2dz has only three real zeros, −z0, 0, and
z0(z0 > 0) with f ′(0) < −2d.
(ii) infz≥z′ ({wf(z) + 2dz}) > 0, for some z′ > z0.
Therefore the planar map T has a homoclinic orbit.

Proof. Note first that we obtain the following symmetry if xn satisfies the difference
equation

wf(xn) = xn−1 + xn+1 − dxn, (2)

then {yn = (−1)nxn} is a solution of the difference equation. We have g(xn) = xn−1 +
xn+1. So, if n is even, we get,  yn = (−1)nxn,

yn+1 = (−1)n+1xn+1,
yn−1 = (−1)n−1xn−1.

Therefore  yn = xn,
yn+1 = −xn+1,
yn−1 = −xn−1.

From (2), we can find

wf̂(yn) = −yn+1 − yn−1 − dyn,

= −g(yn)− dyn,

= −wf(yn)− d+ yn − dyn,

= −wf(yn)− 2dyn.

Hence, wf̂(z) = −wf(z)− 2dz and vice versa. Assumptions (i) and (ii) are satisfied

for f̂(z). It follows that the planar application T induced has a homoclinic orbit,



430 A. MEHAZZEM, M. S. ABDELOUAHAB AND R. AMIRA

implying the existence of a homoclinic orbit for the planar application T . □

From Theorem 2.2, we derive a sequence {xn} that satisfies (1), sign(xn) = −sign(xn)
and xn → 0 exponentially as n→ +∞ or −∞.

Theorem 2.3 Suppose that f(z) is a C1 and odd function, and admits three real
zeros,−z0, 0 and z0(z0 > 0) with f ′(z0) > 0. Therefore, the planar application T has a
heteroclinic orbit.

Proof. The reversible map T has three fixed points, two of which, P (−z0,−z0) and
Q(z0, z0), are hyperbolic if f ′(z0) > 0. Similarly to the proof of Theorem 3.1, one can
verify that Wu(Q) intersects the x−axis at H(x, 0) with 0 < x < z0. Simple calculations
show that T (H) and H are symmetric with respect to S2. Then the intersection ofWu(Q)
with S2 is nonempty. Consequently, from Proposition 2.2, it follows that the intersection
of Wu(Q) with W s(P ) is nonempty, and hence the planar map T has a heteroclinic
orbit.

From Theorem 2.3, we derive a sequence {xn} that satisfies (1) and xn → z0 as
n→ +∞ and xn → −z0 as n→ −∞.

The proof of the present theorem is the same as that of Theorem 2.2.

Theorem 2.4 Suppose that f(z) is an odd C1 function, and f(z)+2dz has only three
real zeros, −z0, 0 and z0(z0 > 0) with f ′(z0) < −2d, Therefore, the planar application T
has a heteroclinic orbit.

The conclusion of Theorem 2.4, implies the existence of a solution {xn} that satisfies
(1), with the property that sign(xn) = − sign(xn+1) as |xn| → z0.

3 The DNLS Equations with Helmholtz Operator and General Nonlineari-
ties

In this section, we investigate the DNLS equations with the Helmholtz operator and
general nonlinearities

i
∂ψn

∂t
+ h(| ψn |)ψn +

1

wn
(ψn+1 + ψn−1 − dnψn) = 0, (3)

where h is a C1 function. Great attention has been paid to localized solutions of the
form ψn = xne

−iΩt, where xn are time independent. Such solutions are time periodic
and spatially localized. The result is a difference equation

−Ωxn + h(| xn |)xn +
1

wn
(xn+1 + xn−1 − dnxn) = 0,

gn(xn) = xn+1 + xn−1,

xn+1 + xn−1 = [ωn(Ω− h(| xn |)) + dn]xn,

f(z) = [ω(Ω− h(| z |) + d]z − dz,

f(z) = ω(Ω− h(| z |))z.
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Theorem 3.1 1. Assume that h is strictly increasing in [0,+∞[. Then there
exists an unstaggered (staggered) bright solitons of the form xne

iΩt with h(0) <
Ω < h∞ (h(0)− 2d/w < Ω < h∞ − 2d/w) for the system (3) with w > 0.

2. Assume that h is strictly decreasing in [0,+∞[. So there are bright solitons of the
form xne

iΩt with h∞ < Ω < h(0) for the system (3) with w < 0.

Proof. Assume that h is strictly increasing and w > 0. Then it follows that f(z) has
only three zeros if h(0) < Ω < h∞ and f ′(0) = (Ω−h(0))/w < 0 for w > 0. Consequently,
the system (3) admits solutions of bright solitons by Theorem (2.1). Similarly, the other
cases can be proved by Theorem 2.1.

Theorem 3.2 Assume that h′(r) > 0 (< 0) for r ∈ [0,+∞[. Then, there exist dark
solitons of the form xne

iΩt with h(0) < Ω < h∞ (h∞ < Ω < h(0)) for the system (3)
with w < 0 (> 0).

Proof. The proof is obvious by Theorem 2.3.
We are interested in the possibility of finding non-trivial homoclinic solutions for (3).

This problem comes up when we look for the discrete solitons of the periodic equation
DNLS if

h(| ψn |) = σχn | ψn |2

1 + cn | ψn |2
,

where σ = ±1, the given sequences χn, cn are assumed to be T -periodic and positive.
The DNLS with saturable nonlinearities can be used to describe the propagation of
optical pulses in different doped fibers [9] and have been reviewed in [10]. Being spatially
localized and temporally periodic solutions, the solitons decay to zero at infinity. Suppose
xn is a real valued sequence and Ω is the temporal frequency. In this case, (3) becomes

− Ωxn +
σχnx

2
n

1 + cnx2n
xn +

1

wn
(xn+1 + xn−1 − dnxn) = 0. (4)

The problem on the existence of solitons of (3) has therefore been replaced by the problem
on the existence of homoclinic solutions of (4). Pankov [15] in 2005, considered a special
case with h(xn) = σχnx

2
n, then posed an open problem on the existence of gap solitons

for asymptotically linear nonlinearities as in (4).
The existence of bright soliton solutions of type xne

−iΩt has been studied by the
variational method in [8]. The frequency Ω related to the sequence xn, in which xn is a
minimiser for a variational method. Therefore, one must solve a variational problem first
to obtain a minimizer, and then to derive the associated frequency. Thus, one cannot
explicitly derive the allowed region of the frequency Ω by the variational method. This
approach, however, yields the frequency Ω and the related sequence xn simultaneously,
and therefore one can obtain the interval of existence of the frequency Ω.

h(xn) = σχnx
2
n is strictly increasing in [0,+∞) and h(0) = 0, h∞ = ∞. It follows

that the DNLS equation is studied in one-dimensional lattice:

i
∂ψn

∂t
+ σχnψ

3
n +

1

wn
(ψn+1 + ψn−1 − dnψn) = 0. (5)

Then, there exists a unstaggered (staggered) bright soliton of the form xne
iΩt with h(0) <

Ω < h∞ (h(0)− 2d/w < Ω < h∞ − 2d/w) for the system (3) with w > 0.



432 A. MEHAZZEM, M. S. ABDELOUAHAB AND R. AMIRA

The DNLS equation with saturable non-linearity is

i
∂ψn

∂t
+

σχnψ
2
n

1 + cnψ2
n

xn ++
1

wn
(ψn+1 + ψn−1 − dnψn) = 0. (6)

Comparing with (3), one has that h(r) = σχnr
2

1+cnr2
for r positive. Then

h′(r) =
σχn2r

(1 + cnr2)2
.

We can see that h is strictly increasing in [0,+∞) and h(0) = 0, h∞ = ∞.

4 Conclusion

A model of a discrete nonlinear Schrodinger equation has been presented. The existence
of bright soliton solutions has been studied for a discrete Schrodinger equation under the
Helmholtz operator by the reversible systems approach and not by the variational method
or the anti-integrability method. Chaos is often linked to homoclinic orbits in nonlinear
determination dynamics. Recently, DNLS equations with periodic coefficients have been
addressed in the physics literature. Future work will address the existence of homoclinic
solutions for a class of periodic difference equations with saturable nonlinearity. This
gives rise to a more general Jacobi operator using the method of reversible systems.
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Abstract: This research paper deals with the uniqueness of solutions for a
second-type hybrid fractional differential equation that involves generalized Riemann-
Liouville fractional derivatives using the Banach contraction principle. We also dis-
cover at least one solution by employing certain assumptions and the Schaefer fixed
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1 Introduction

Fractional differential equations (FDEs) are a fascinating area of mathematics deal-
ing with derivatives of non-integer order and allowing for a more nuanced description of
systems with memory effects or long-range interactions. Solving FDEs can be challenging
due to the non-integer order of the derivatives, requiring specialized techniques such as
fractional calculus. In general, fractional differential equations provide a powerful tool
for understanding complex systems with given dynamics [1, 6, 7, 9]. Indeed, though the
operations of FDEs are relatively broad, they can not be applied to all systems. The
researchers have shown that certain phenomena related to material heterogeneity cannot
be adequately modeled using fractional derivatives. In view of this fact, a solution to this

∗ Corresponding author: mailto:ibtissem.merzoug@univ-annaba.dz

© 2025 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua434

mailto: ibtissem.merzoug@univ-annaba.dz
http://e-ndst.kiev.ua


NONLINEAR DYNAMICS AND SYSTEMS THEORY, 25 (4) (2025) 434–444 435

problem was proposed by Caputo in 1967, who introduced a fractional derivative allowing
the application of initial conditions with physical meaning. In his researches, new FDEs
are defined, called generalized fractional derivatives, for a more extensive collection of
fractional calculus.

On the other hand, in the realm of generalized FDEs, the existence and uniqueness
of solutions play a vital role in ensuring the validity and reliability of the mathematical
problem. The investigation of the existence and uniqueness of solutions for differential
equations involving the generalized fractional derivative has been undertaken by numer-
ous researchers (see [3, 10, 13] and the references therein). Furthermore, the stability
theory for FDEs has been a significant area of research. In particular, the Ulam-Hyers
stability is attracting attention due to its importance in understanding the behavior of
dynamic problems. It is essential to predict the long-term evolution and stability of solu-
tions in different applications, making it a key focus in mathematics and science [11,12].
Many researchers focused on developing the methods of solution of the hybrid fractional
differential equations by using different kinds of fixed point theorems, for example, in [2],
the researchers studied the existence of solutions for hybrid fractional integral differential
equations, involving the generalized Caputo derivative. They used the hybrid fixed point
theorem for some of three operators due to Dhage for proving the main results.

This paper is devoted to the study of the existence, uniqueness and stability of so-
lutions for the following second-type hybrid fractional differential equation involving the
generalized Riemann-Liouville fractional derivatives:

Dα,ϕ
0+ (u(t)− f(t, u(t))) + g

(
t, u(t), Dα,ϕ

0+ (u(t)− f(t, u(t)))
)
= 0, t ∈ J = [0, 1],

lim
t→0

(ϕ(t)− ϕ(0))2−α(u(t)− f(t, u(t))) = 0,

u(1) = ω + f(1, u(1)), ω ∈ R.
(P)

where Dα,ϕ
0+ is the ϕ -Riemann-Liouville fractional derivative with 1 < α < 2 .

f ∈ C(J ×R,R) and g ∈ C(J ×R2,R) are non-linear functions. The function ϕ : J → R
is a strictly increasing function such that ϕ ∈ C2(J,R) and ϕ′(t) ̸= 0 for all t ∈ J .

The structure of the paper is outlined as follows. Section 2 provides a detailed
overview of the foundational concepts and definitions that are pertinent to our investiga-
tion. In Section 3, we convert the differential problem into equivalent integral equations
via constructing the Green function. Then we establish certain properties for it and we
assume some sufficient conditions through which we prove the existence of the solution
using Schaefer’s fixed point theorem and the uniqueness of the solution using the Banach
fixed point theorem. We also study the stability of this solution. Finally, the paper
concludes with a practical example to give a clear demonstration of the concepts that
are discussed.

2 Notational Preliminaries

Here, we recall some useful definitions, theorems, and lemmas, which play an important
role in the results of the paper.

Definition 2.1 [2] Let f : [a, b] → R be an integrable function and ϕ : [a, b] → R be
an increasing function such that for all t ∈ [a, b], ϕ′(t) ̸= 0. The left-sided ϕ-Riemann-
Liouville fractional integral of a function f is defined as follows:
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Iα,ϕa+ f(t) =
1

Γ(α)

∫ t

a

ϕ′(s)(ϕ(t)− ϕ(s))α−1f(s) ds.

Definition 2.2 [2] Let n = [α] + 1. The left-sided ϕ-Riemann-Liouville fractional
derivative of order α > 0 of a function f corresponding to the ϕ-Riemann-Liouville
fractional integral is defined as follows:

Dα,ϕ
a+ f(t) =

1

Γ(n− α)

(
1

ϕ′(t)

d

d(t)

)n
t∫

a

ϕ′(s)(ϕ(t)− ϕ(s))n−α−1f(s)ds.

Lemma 2.1 [4, 13] Let z : J → R with 1 < α < 2, then

• Iα,ϕ0+ Dα,ϕ
0+ z(t) = z(t) +C0(ϕ(t)− ϕ(0))α−1 +C1(ϕ(t)− ϕ(0))α−2, where C0, C1 ∈ R.

• Dα,ϕ
0+ Iα,ϕ0+ z(t) = z(t).

Definition 2.3 [11].The problem (P) is said to be Ulam-Hyers stable (UH stable)
if there exists a constant Θ > 0 such that for every function y ∈ C(J,R) satisfying the
inequality

∣∣∣Dα,ϕ
0+ (y(t)− f(t, y(t)))− g

(
t, y(t),Dα,ϕ

0+ (y(t)− f(t, y(t)))
)∣∣∣ ≤ ε, t ∈ J, (1)

for each ε > 0, there exists an exact solution u ∈ C(J,R) of the problem (P) such that

|y(t)− u(t)| ≤ Θε, t ∈ J.

Remark 2.1 A function y ∈ C(J,R) is a solution of the inequality (1) if and only if
there exists a function ψ ∈ C(J,R) (which depends on y) such that

1. |ψ(t)| ≤ ε, t ∈ J.

2. Dα,ϕ
0+ (y(t)− f(t, y(t))) = g

(
t, y(t), Dα,ϕ

0+ (y(t)− f(t, y(t)))
)
+ ψ(t), t ∈ J.

Theorem 2.1 (Banach fixed point theorem) [5] Let E be a non-empty closed subset
of a Banach space. Then any contraction mapping A of E into itself has a unique fixed
point, i.e.,

∃!x ∈ E : A(x) = x.

Theorem 2.2 (Schaefer fixed point theorem) [5] Let E be a non-empty Banach space.
Let also f : E → E be a completely continuous mapping. If the set χ = {y ∈ E : y =
λf(y), 0 < λ < 1} is bounded in E, then f admits at least one fixed point in E.

3 Existence, Uniqueness and Ulam-Hyers Stability Results

The following section is devoted to stating and proving the existence, uniqueness and
Ulam stability results for problem (P).
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Definition 3.1 The function u from C(J,R) is a solution to the problem (P) if it
satisfies the equation

Dα,ϕ
0+ (u(t)− f(t, u(t))) = −g

(
t, u(t), Dα,ϕ

0+ (u(t)− f(t, u(t))
)

(2)

and the conditions

lim
t→0

[
ϕ(t)− ϕ(0))2−α(u(t)− f(t, u(t))

]
= 0, (3)

u (1) = ω + f (1, u (1)) . (4)

Lemma 3.1 Let h : J −→ R be a continuous function. Then u is a solution for the
second-type hybrid fractional differential equation

Dα,ϕ
0+ (u(t)− f(t, u(t))) = −h(t), t ∈ J,

and satisfies the conditions (3)-(4) if and only if u is a solution of the integral equation
via the Green function

u(t) = ωγ(t) + f(t, u(t)) +

1∫
0

G(t, s)ϕ′(s)h(s)ds, t ∈ J, (5)

where

G(t, s) =
γ(t)

Γ(α)

(ϕ(1)− ϕ(s))α−1 − 1

γ(t)
(ϕ(t)− ϕ(s))α−1, 0 ≤ s ≤ t ≤ 1,

(ϕ(1)− ϕ(s))α−1, 0 ≤ t ≤ s ≤ 1,
(6)

with

• K(t) = ϕ(t)− ϕ(0) and γ(t) =
(K(t))α−1

(K(1))α−1
for all t ∈ J.

Proof. We have u as a solution of the problem (P),

Iα,ϕ0+

(
Dα,ϕ

0+ (u(t)− f(t, u(t)))
)
= −Iα,ϕ0+ (h(t))+C0(ϕ(t)−ϕ(0))α−1+C1(ϕ(t)−ϕ(0))α−2,

u(t)− f(t, u(t)) = −Iα,ϕ0+ (h(t)) + C0(ϕ(t)− ϕ(0))α−1 + C1(ϕ(t)− ϕ(0))α−2.

By using the conditions (3)-(4), we obtain C1 = 0 and

C0 =
1

(ϕ(1)− ϕ(0))α−1

(
ω +

1

Γ(α)

∫ 1

0

ϕ′(s)(ϕ(t)− ϕ(s))α−1h(s)ds

)
.

By substitution, we get

u(t) = f(t, u(t)) + ωγ(t)− 1

Γ(α)

t∫
0

ϕ′(s)(ϕ(t)− ϕ(s))α−1h(s)ds

+
γ(t)

Γ(α)

1∫
0

ϕ′(s)(ϕ(1)− ϕ(s))α−1h(s)ds

= f(t, u(t)) + ωγ(t) +

1∫
0

G(t, s)ϕ′(s)h(s)ds.

The converse can be easily inferred from Lemma 2.1.
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Lemma 3.2 The following estimates are satisfied by the Green function G defined
by equation (6):

(i) G(t, s) ≤ (ϕ(1)− ϕ(0))α−1

Γ(α)
for all t, s ∈ J .

(ii) G(t, s) ≥ 0 for all t, s ∈ J .

Proof.
(i) Since ϕ is a strictly increasing function, we have ϕ(t)−ϕ(0) ≤ ϕ(1)−ϕ(0) whenever

t ∈ J ,
which implies that γ(t) ≤ 1. For 0 ≤ t ≤ s ≤ 1, we can easily conclude that

γ(t)

Γ(α)
(ϕ(1)− ϕ(s))α−1 ≤ (ϕ(1)− ϕ(0))α−1

Γ(α)
,

and for 0 ≤ s ≤ t ≤ 1,

γ(t)

Γ(α)

(
(ϕ(1)− ϕ(s))α−1 − 1

γ(t)
(ϕ(t)− ϕ(s))α−1

)
≤ 1

Γ(α)

(
(ϕ(1)− ϕ(0))α−1

− (ϕ(1)− ϕ(0))α−1(ϕ(t)− ϕ(s))α−1

(ϕ(t)− ϕ(0))α−1

)
≤ 1

Γ(α)
(ϕ(1)− ϕ(0))α−1(

1− (ϕ(t)− ϕ(s))α−1

(ϕ(t)− ϕ(0))α−1

)
≤ 1

Γ(α)
(ϕ(1)− ϕ(0))α−1.

Hence, G(t, s) ≤ (ϕ(1)− ϕ(0))α−1

Γ(α)
for t, s ∈ J .

(ii) By a similar calculation, we can prove that G(t, s) ≥ 0 for all t, s ∈ J . This completes
the proof.

Let us define the operator T : C(J,R) −→ C(J,R) by

T (u(t)) = f(t, u(t)) + ωγ(t) +

1∫
0

G(t, s)ϕ′(s)σu(s)ds

with σu(t) = g
(
t, u(t), Dα,ϕ

0+ (u(t)− f(t, u(t)))
)
.

Here, C(J,R) is equipped with the norm

∥u∥∞ = max
t∈J

|u(t)|.

We note that any fixed point of this operator is a solution to the problem (P).

3.1 Existence results

Assume that the functions f : J × R −→ R and g : J × R2 −→ R are continuous and
satisfy the following conditions:
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(H1) There exists a constant Λg ∈ R∗
+ such that for all u, v ∈ R and t ∈ J ,

|g(t, u, v)| ≤ Λg,

(H2) There exists a constant Λf ∈ R∗
+ such that for all u ∈ R and t ∈ J ,

|f(t, u)| ≤ Λf .

Theorem 3.1 We assume that the conditions (H1) − (H2) are satisfied. Then the
problem (P) has at least one solution.

Proof. The proof will be given in four steps.
Step one: T is continuous. Let (un) be a convergent sequence towards u ∈ C(J,R).
Therefore, for all t ∈ J , we have

|T (un(t))−T (u(t))| =
∣∣∣∣f(t, un(t))− f(t, u(t)) + ωγ(t)− ωγ(t)

+

∫ t

0

G(t, s)ϕ′(s)(σun
(s)− σu(s))ds

∣∣∣∣
≤

∣∣∣∣f(t, un(t))− f(t, u(t))

∣∣∣∣+ ∫ 1

0

G(t, s)ϕ′(s)

∣∣∣∣σun(s)− σu(s)

∣∣∣∣ds
≤

∣∣∣∣f(t, un(t))−f(t, u(t))∣∣∣∣+ (ϕ(1)−ϕ(0))α−1

Γ(α)

∫ 1

0

ϕ′(s)

∣∣∣∣σun(s)−σu(s)
∣∣∣∣ds

≤ ∥f(t, un(.))−f(t, u(.))∥∞+
(ϕ(1)−ϕ(0))α

Γ(α)
∥σun

(.)− σu(.)∥∞.

Since the functions f and g are continuous, we get

lim
n→∞

∥T (un(.))− T (u(.))∥∞ = 0.

Hence, T is continuous.
Step two: The image of every bounded set of C(J,R) under T is uniformly bounded
in C(J,R). To establish this, it suffices to demonstrate that for any given r > 0, there
exists a positive constant l > 0. Therefore, for every u ∈ Br, we have ∥T u(.)∥∞ ≤ l with

Br = {u ∈ C(J,R) : ∥u∥∞ ≤ r} .

For every t ∈ J and by using the conditions (H1) and (H2), we get

|T (u(t))| ≤ |ω|γ(t) + |f(t, u(t))|+
∫ 1

0

G(t, s)ϕ′(s)|σu(s)|ds

≤ |ω|γ(t) + Λf +
(ϕ(1)− ϕ(0))α−1

Γ(α)
Λg

∫ 1

0

ϕ′(s)ds

≤ |ω|+ Λf +
(ϕ(1)− ϕ(0))α

Γ(α)
Λg = l.

Hence, T (Br) is uniformly bounded.
Step three: The image of every bounded set of C(J,R) under T is an equicontinuous
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set in C(J,R). For each u ∈ Br and t1, t2 ∈ J, t1 < t2, we have

|T (u(t2))− T (u(t1))| = |f(t2, u(t2))− f(t1, u(t1)) + ω(γ(t2)− γ(t1))

+

∫ 1

0

(G(t2, s)−G(t1, s))ϕ
′(s)σu(s)ds|

≤ |f(t2, u(t2))− f(t1, u(t1))|+ |ω||γ(t2)− γ(t1)|

+

∫ 1

0

|G(t2, s)−G(t1, s)|ϕ′(s)σu(s)ds

and

|G(t2, s)−G(t1, s)| =
∣∣∣∣ (ϕ(1)− ϕ(s))α−1

(ϕ(1)− ϕ(0))α−1Γ(α)

[
(ϕ(t2)− ϕ(0))α−1 − (ϕ(t1)− ϕ(0))α−1

]
+

1

Γ(α)

[
(ϕ(t1)− ϕ(s))α−1 − (ϕ(t2)− ϕ(s))α−1

] ∣∣∣∣.
By applying the mean value theorem [8], we obtain

|G(t2, s)−G(t1, s)| = |t2 − t1|
[

(ϕ(1)− ϕ(s))α−1

(ϕ(1)− ϕ(0))α−1Γ(α)
h1(ξ) +

1

Γ(α)
h2(θ)

]
with

h1(ξ) = (α− 1)ϕ′(ξ)(ϕ(ξ)− ϕ(0))α−2,

h2(θ) = (α− 1)ϕ′(θ)(ϕ(θ)− ϕ(s))α−2,

where t1 < θ, ξ < t2. Therefore, as t1 −→ t2, |T (u(t2))− T (u(t1))| −→ 0.
Hence, by the Arzela-Ascoli theorem, T is completely continuous.
Step four: We will prove that the set χ is bounded, where

χ =
{
u ∈ C(J,R) : u(t) = λT (u(t)), 0 < λ < 1

}
.

Let u ∈ χ. For all t ∈ J, we have

u(t) = λ

[
ωγ(t) + f(t, u(t)) +

∫ 1

0

G(t, s)ϕ′(s)σu(s)ds

]
|u(t)| < |ω|γ(t) + Λf + Λg

∫ 1

0

G(t, s)ϕ′(s)ds

≤ |ω|+ Λf +
(ϕ(1)− ϕ(0))α

Γ(α)
Λg = L.

Hence, χ is bounded. By using Schaefer’s fixed point theorem, we found that the problem
(P) has at least one solution.

Example 3.1 Consider the problem with the following general fractional differential
equations:

D
7
4 ,

et

7

0+ (u(t)− f(t, u(t))) + g

(
t, u(t), D

7
4 ,

et

7

0+ (u(t)− f(t, u(t)))

)
= 0, t ∈ J,

limt→0(ϕ(t)− ϕ(0))2−
7
4 (u(t)− f(t, u(t))) = 0,

u (1) = 1 + f (1, u (1)) ,

(Q)
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where

f(t, u(t)) = (
1

2
+ t) cos(u(t)),

g

(
t, u(t), D

7
4 ,

et

7

0+ (u(t)− f(t, u(t)))

)
= (

1

3
+ t) cos(u(t))+

1

9
sin(D

7
4 ,

et

7

0+ (u(t)− f(t, u(t)))).

Let us put f(t, u) = t
2 cos(u) and g(t, u, v) =

1
3 (1 + t) cos(u) +

1

9
sin(v). For u, v ∈ R and

t ∈ J , we have

|f(t, u)| ≤ 3

2
, |g(t, u, v)| ≤ 7

9
.

We can easily verify all conditions of Theorem 3.1 with Λf = 3
2 ,Λg = 7

9 . Therefore, we
conclude that the problem (Q) has at least one solution.

3.2 Uniqueness results

In what follows, we will establish the existence of a unique solution to the problem (P)
using the Banach fixed point theorem under certain conditions imposed on the functions
f and g. We impose the following conditions:

(H3) There exist constants k1, k3 ∈ R∗
+ and k2 ∈ (0, 1) such that

|g(t, u, v)− g(t, ū, v̄)| ≤ k1|u− ū|+ k2|v − v̄|,

|f(t, u)− f(t, ū)| ≤ k3|u− ū|
for every u, v, ū, v̄ ∈ R and t ∈ J .

Theorem 3.2 We assume that the condition (H3) is satisfied. If

Υ = k3 +
(ϕ(1)− ϕ(0))αk1
Γ(α)(1− k2)

< 1, (7)

then the problem (P) admits a unique solution in C(J,R) .

Proof. We consider the previously defined operator T for all x, y ∈ C(J,R) and
t ∈ J . By the condition (H3), we have

|T (x(t))− T (y(t))| = |f(t, x(t))− f(t, y(t)) + ωγ(t)− ωγ(t)

+

∫ 1

0

G(t, s)ϕ′(s) (σx(s)− σy(s)) ds|

≤ |f(t, x(t))− f(t, y(t))|+
∫ 1

0

G(t, s)ϕ′(s)| (σx(s)− σy(s)) |ds.

Then

|T (x(t))− T (y(t))| ≤ k3|x(t)− y(t)|+ (ϕ(1)− ϕ(0))α

Γ(α)

∫ 1

0

|σx(s)− σy(s)| ds. (8)

On the other hand,

|σx(t)− σy(t)| = |g
(
t, x(t), Dα,ϕ (x(t)− f(t, x(t))

)
− g

(
t, y(t), Dα,ϕ (y(t)− f(t, y(t))

)
|

≤ k1|x(t)− y(t)|+ k2|Dα,ϕ (x(t)− f(t, x(t))−Dα,ϕ (y(t)− f(t, y(t)) |
≤ k1|x(t)− y(t)|+ k2 |σx(s)− σy(s)| .
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Then

|σx(s)− σy(s)| ≤
k1

(1− k2)
|x(t)− y(t)|. (9)

By substituting (9) in (8), we get

|T (x(t))− T (y(t))| ≤ k3|x(t)− y(t)|+ (ϕ(1)− ϕ(0))αk1
Γ(α)(1− k2)

|x(t)− y(t)|

≤
[
k3 +

(ϕ(1)− ϕ(0))αk1
Γ(α)(1− k2)

]
|x(t)− y(t)|.

Thus,

∥T x(.)− T y(.)∥∞ ≤ Υ∥x− y∥∞.

According to (7), the operator T is a contraction. Then, by Banach’s fixed point theorem,
it admits a unique fixed point, and it is the unique solution of the problem (P).

Example 3.2 Consider the problem (Q). According to the condition (H3), we have
for u, v, ū, v̄ ∈ R and t ∈ J,

|f(t, u)− f(t, ū)| ≤ 1

2
|u− ū|,

|g(t, u, v)− g(t, ū, v̄)| ≤ 2

3
|u− ū|+ 1

9
|v − v̄|.

Hence, the satisfaction of the conditions of Theorem (3.2) can be easily checked, and
Υ = 0.5698569 < 1 with k1 = 2

3 , k2 = 1
9 , k3 = 1

2 . Therefore, there exists a unique
solution of the problem (Q).

3.3 Ulam-Hyers stability results

Lemma 3.3 If y is a solution for the following fractional differential inequality:

Dα,ϕ (y(t)− f(t, y(t))) + g
(
t, y(t), Dα,ϕ (y(t)− f(t, y(t)))

)
< ε (10)

for ε > 0, then y is a solution of the following inequality:

|y(t)− T (y(t))| ≤ (ϕ(1)− ϕ(0))α

Γ(α)
ε. (11)

Proof. Let y be a solution of the inequality (11). For ε > 0 and by using Lemma 3.1
and Remark 2.1, |ψ(t)| < ε, t ∈ J, and according to (10), we have

y(t) = ωγ(t) + f(t, y(t)) +

∫ 1

0

G(t, s)ϕ′(s) [σy(s) + ψ(s)] ds.
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Then

|y(t)− T y(t)| =
∣∣∣∣ωγ(t) + f(t, y(t)) +

∫ 1

0

G(t, s)ϕ′(s) [σy(s) + ψ(s)] ds

− ωγ(t)− f(t, y(t))−
∫ 1

0

G(t, s)ϕ′(s)σy(s)ds

∣∣∣∣
=

∣∣∣∣ ∫ 1

0

G(t, s)ϕ′(s)ψ(s)ds

∣∣∣∣
≤

∫ 1

0

G(t, s)ϕ′(s)|ψ(s)|ds

≤ (ϕ(1)− ϕ(0))α

Γ(α)
ε.

Theorem 3.3 We assume that the conditions (H3) and the inequality (7) are satis-
fied. Then the problem (P) is Ulam-Hyers stable.

Proof. Under the condition (H3) and the inequality (7), there exists a unique solution
for the problem (P) in C(J,R). Let y ∈ C(J,R) be a solution to the inequality (11).
Therefore, for t ∈ J, we have

|y(t)− u(t)| =|y(t)− ωγ(t)− f(t, u(t))−
∫ 1

0

G(t, s)ϕ′(s)σu(s)ds|

≤ |y(t)− T (y(t)) + T (y(t))− T (u(t))|
≤ |y(t)− T (y(t))|+ |T (y(t))− T (u(t))|

≤ (ϕ(1)− ϕ(0))α

Γ(α)
ε+Υ|y(t)− u(t)|.

Thus,

|y(t)− u(t)| ≤ (ϕ(1)− ϕ(0))α

Γ(α)(1−Υ)
ε.

We put Θ =
(ϕ(1)− ϕ(0))α

Γ(α)(1−Υ)
, then we get

|y(t)− u(t)| ≤ Θε.

Therefore, the problem (P) is stable according to Ulam-Hyers.

Example 3.3 Consider the problem (Q). All conditions of Theorem 3.3 hold with
Θ = 0.2165387. Then the unique solution of the problem (Q) is Ulam-Hyers stable.

4 Concluding Remarks

In this paper, the authors provided some sufficient conditions guaranteeing the ex-
istence of solutions for a class of second-type hybrid fractional differential equations
involving generalized Riemann-Liouville fractional derivatives of order 1 < α < 2. We
have developed some adequate conditions for the uniqueness of solution. Also, this paper
constitutes a successful application of the Ulam-Hyers stability concept to investigate the
stability of solutions to this class of problems. The respective results have been verified
by providing a suitable example.
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Abstract: Over the years, partial reaction-diffusion systems have attracted the at-
tention of numerous researchers due to their application in various fields such as, for
example, population dynamics, the dynamics of gas, dynamic systems, fusion process,
certain biological models, etc. The aim of this work is to prove the global existence of
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1 Introduction

In recent years, fractional differential equations have garnered significant attention from
researchers because of their extensive applications across various scientific, technological,
and medical fields, we can find important applications, for example, in finance [15],
mechanics [14], biomedicine [9], pattern formation [8], we find numerous real applications
in biology, medicine and ecology, see the works of Djemai and Mesbahi [6], Khayar, Brouri
and Ouzahra [12] and corresponding references therein, etc.
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Our particular objective in this type of anomalous diffusion problems is to study the
following fractional reaction-diffusion system:



∂ϑ1

∂t
− d1 (−∆)

α1 ϑ1 = f1 (t, x, ϑ,∇ϑ) in R+ × Ω,

...
...

∂ϑm

∂t
− dm (−∆)

αm ϑm = fm (t, x, ϑ,∇ϑ) in R+ × Ω,

∂ϑi

∂η = 0 or ϑi = 0 , for all 1 ≤ i ≤ m on R+ × ∂Ω,

ϑi (0, .) = ϑi0 (.) for all 1 ≤ i ≤ m in Ω,

(1)

where ϑ = (ϑ1, . . . , ϑm) , ∇ϑ = (∇ϑ1, . . . ,∇ϑm) , m ≥ 2, Ω is a bounded and regular
domain of RN with boundary ∂Ω, N ≥ 2, ϑi = ϑi (t, x), 1 ≤ i ≤ m for (t, x) ∈ QT =
(0, T ) × Ω and fi are real functions, the presence of the non local operator (−∆)

αi ,
0 < αi < 1 for all 1 ≤ i ≤ m, which accounts for the anomalous diffusion [11,16], means
that the sub-populations face some obstacles that slow their movement, and the constants
of diffusion di are assumed to be nonnegative, fi : (0, T ) × Ω × Rm × RmN → Rm are
enough regular, ϑi0 are nonnegative functions in L1 (Ω), for all 1 ≤ i ≤ m.

The local existence in time of the solution ϑi is classical. The positivity of the solution
stems from the positivity of ϑi0 , which are assumed to be continuous, for all 1 ≤ i ≤ m.

Several mathematical researchers have investigated the system derived from (1) by
substituting the abnormal diffusion operator with the standard Laplacian operator (−∆),
employing various methods and techniques. Notable studies include those by Barrouk
and Mesbahi [2], Barrouk and Abdelmalek [1], Moumeni and Dehimi [17], and Moumeni
and Mebarki [18].

Note that over the past years, very important works have appeared in fractional
reaction-diffusion equations. We mention the following.

The work of Hnaien et al. [10], is devoted to the study of the fractional systems:
an abnormal diffusion system describing the propagation of an epidemic in a confined
population of the SIR type, the fractional temporal Brusselator system and a reaction-
diffusion system, temporal fractional with an equilibrium law. This study is based on
Banach’s fixed point theorem, semigroup estimates and Sobolev’s integration theorem.

In [3], Besteiro and Rial studied the initial value problem for finite dimensional frac-
tional non-autonomous reaction-diffusion equations. They proved the global existence
and the asymptotic behavior of solutions by applying the general time splitting method
and the technique of invariant regions.

We emphasize that there are many other references that approach this subject in
various analytical and numerical ways.

This paper is organized as follows. In the next section, we provide some results
necessary to understand the content of this work. In the next three sections, we give
some results concerning the approximate problem. In Section 6, we state our main result
and also present its proof in detail. The penultimate section is devoted to an application
of the obtained result. Finally, we close with a conclusion.
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2 Important Results

2.1 Hypotheses

To study problem (1), we assume that the functions fi : (0, T ) × Ω × Rm × RmN → R,
1 ≤ i ≤ m, satisfy the following simple assumptions, which allow them to be chosen from
a wide range.

(A1) We preserve for all time the nonnegativity of the solutions, so we assume that fi
are quasipositive for all 1 ≤ i ≤ m.

(A2) There exists C ≥ 0 independent of ϑ1, . . . , ϑm such that

fi (t, x, ϑ,∇ϑ) ≤ C

m∑
i=1

ϑi , ∀ϑi ≥ 0, 1 ≤ i ≤ m. (2)

(A3) The functions fi : (0, T )×Ω×Rm×RmN → R are measurable and fi : Rm×RmN →
R are locally Lipschitz continuous for all 1 ≤ i ≤ m.

2.2 Preliminaries

To prove the main result, we need the following results.

Theorem 2.1 Let Ω be an open bounded domain in RN . The following system
(−∆)

α
φk = λα

kφk in Ω,

∂φk

∂η
= 0 on ∂Ω,

where

D ((−∆)
α
) =

{
ϑ ∈ L2 (Ω) ,

∂ϑ

∂η
= 0, ∥(−∆)

α
ϑ∥L2(Ω) < +∞

}
,

∥(−∆)
α
ϑ∥2L2(Ω) =

+∞∑
k=1

|λα
k ⟨ϑ, φk⟩|2 ,

has a countable sequence of eigenvalues λ1 < λ2 < . . . < λk < . . . and λk → ∞ as
k → ∞, and φk are the corresponding eigenvectors for all k ≥ 1.

So, for ϑ ∈ D ((−∆)
α
) , we have

(−∆)
α
ϑ =

+∞∑
k=1

λα
k ⟨ϑ, φk⟩φk.

Also, we have the formula of integration by parts as follows:∫
Ω

ϑ (x) (−∆)
α
ϑ̄ (x) dx =

∫
Ω

ϑ̄ (x) (−∆)
α
ϑ (x) dx, for ϑ, ϑ̄ ∈ D ((−∆)

α
) . (3)

Proof. See Hnaien et al. [10] and corresponding references therein.
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Lemma 2.1 ( [13]) Let θ ∈ C∞
0 (QT ), θ ≥ 0, then there exists a nonnegative func-

tion Φ ∈ C1,2 (QT ) being the solution of the system
−Φt − d∆Φ = θ in QT ,

Φ (t, x) = 0 on ΣT ,

Φ (T, x) = 0 in Ω,

where ΣT = (0, T )× ∂Ω, for all q ∈ (1,∞), there exists C ≥ 0, not dependent on θ, such
that

∥Φ∥Lq′ (QT ) ≤ C ∥θ∥Lq(QT ) .

And for all ϑ0 ∈ L1 (Ω) and h ∈ L1 (QT ), we obtain the equalities∫
QT

(S (t)ϑ0 (x)) θdxdt =

∫
Ω

ϑ0 (x) Φ (0, x) dx (4)

and ∫
QT

(∫ t

0

S (t− s)h (s, x, ϑ (s) ,∇ϑ (s)) ds

)
θdxdt =∫

QT

h (s, x, ϑ (s) ,∇ϑ (s)) Φ (s, x) dxds. (5)

Proof. To prove this Lemma, see Bonafede and Schmitt [4].

3 Local Existence of the Solution

We will transform the system (1) to an abstract system of first order in the Banach space
X =

(
L1 (Ω)

)m
. For this, we define the functions ϑn

i0
, for all n > 0 and 1 ≤ i ≤ m, by

ϑn
i0 = min {ϑi0 , n} .

Obviously, ϑn
i0

satisfies

ϑn
i0 ∈ L1 (Ω) and ϑn

i0 ≥ 0 for all 1 ≤ i ≤ m.

Now, consider the problem

∂ϑ1n

∂t
− d1 (−∆)

α1 ϑ1n = f1 (t, x, ϑn,∇ϑn) in QT ,

...
∂ϑmn

∂t
− dm (−∆)

αm ϑmn
= fm (t, x, ϑn,∇ϑn) in QT ,

∂ϑin

∂η
= 0 or ϑin = 0 , 1 ≤ i ≤ m in ΣT ,

ϑin (0, x) = ϑn
i0
(x) ≥ 0 , 1 ≤ i ≤ m in Ω.

(6)

Hence, if (ϑ1n , . . . , ϑmn
) is a solution of (6), then it satisfies the following integral equa-

tion:

ϑin (t) = Si (t)ϑ
n
i0 +

∫ t

0

Si (t− s) fi (s, ., ϑn (s) ,∇ϑn (s)) ds, (7)

where Si (t) is the semigroup which is generated by the operator di (−∆)
αi , 1 ≤ i ≤ m.

(See Pazy [19]).
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Theorem 3.1 There exists TM > 0 and (ϑ1n , . . . , ϑmn
) being a local solution of (6)

for all t ∈ [0, TM ] .

Proof. Note that Si (t) are contraction semigroups and F is locally Lipschitz, 0 ≤
ϑn
i0

≤ n, which ensures the existence of TM > 0 such that (ϑ1n , . . . , ϑmn
) becomes a local

solution of (6) on [0, TM ] .

Theorem 3.2 Let ϑn
i0

∈ L1 (Ω), then there exist a maximal time Tmax > 0 and a

unique solution (ϑ1n , . . . , ϑmn) ∈
(
C
(
[0, Tmax) , L

1 (Ω)
))m

of the system (6), with the
alternative:

- either Tmax = +∞,

- or Tmax < +∞ and lim
t→Tmax

(
∑m

i=1 ∥ϑin (t)∥∞) = +∞.

Proof. For T > 0, we define the following Banach space:

ET := {(ϑ1n , . . . , ϑmn) ∈
(
C
(
[0, Tmax) , L

1 (Ω)
))m

,
∥(ϑ1n , . . . , ϑmn)∥ ≤ 2

∥∥(ϑn
10 , . . . , ϑ

n
m0

)∥∥ = R},

where ∥.∥∞ := ∥.∥L∞(Ω) and ∥.∥ is the norm of ET defined by

∥(ϑ1n , . . . , ϑmn
)∥ :=

m∑
i=1

∥ϑin∥L∞([0,T ],L∞(Ω)) .

Next, for every (ϑ1n , . . . , ϑmn
) ∈ ET , we define

Ψ (ϑ1n , . . . , ϑmn
) := (Ψ1 (ϑ1n , . . . , ϑmn

) , . . . ,Ψm (ϑ1n , . . . , ϑmn
)) ,

where for t ∈ [0, T ] and 1 ≤ i ≤ m,

Ψi (ϑ1n , . . . , ϑmn
) = Si (t)ϑ

n
i0 +

∫ t

0

Si (t− s) fi (s, ., ϑn,∇ϑn) ds.

Using the Banach fixed point theorem, we will demonstrate the local existence.

• Ψ : ET → ET . Let (ϑ1n , . . . , ϑmn) ∈ ET , we obtain, by the maximum principle,

∥Ψi (ϑ1n , . . . , ϑmn)∥∞ ≤
∥∥ϑn

i0

∥∥
∞ + C

m∑
i=1

∥ϑin∥∞ T.

So, we have

∥Ψ(ϑ1n , . . . , ϑmn
)∥ ≤

m∑
i=1

∥∥ϑn
i0

∥∥
∞ +mC

m∑
i=1

∥ϑin∥∞ T,

≤ 2

m∑
i=1

∥∥ϑn
i0

∥∥
∞ , by choosing T such that T ≤ 1

2mC
.

Then Ψ (ϑ1n , . . . , ϑmn
) ∈ ET for T ≤ 1

2mC .
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Ψ is a contraction mapping for (ϑ1n , . . . , ϑmn),
(
ϑ̃1n , . . . , ϑ̃mn

)
∈ ET , we have∥∥∥Ψ1 (ϑ1n , . . . , ϑmn

)−Ψ1

(
ϑ̃1n , . . . , ϑ̃mn

)∥∥∥
∞

≤ L

∫ t

0

∥∥∥(ϑ1n , . . . , ϑmn
)−

(
ϑ̃1n , . . . , ϑ̃mn

)∥∥∥
∞

dτ,

≤ LT

(
m∑
i=1

∥∥∥ϑin − ϑ̃in

∥∥∥
∞

)
.

Similarly, we obtain, for 2 ≤ k ≤ m,

∥∥∥Ψk (ϑ1n , . . . , ϑmn
)−Ψk

(
ϑ̃1n , . . . , ϑ̃mn

)∥∥∥
∞

≤ LT

(
m∑
i=1

∥∥∥ϑin − ϑ̃in

∥∥∥
∞

)
.

These estimates imply that∥∥∥Ψ(ϑ1n , . . . , ϑmn
)−Ψ

(
ϑ̃1n , . . . , ϑ̃mn

)∥∥∥
∞

≤ mLT

(
m∑
i=1

∥∥∥ϑin − ϑ̃in

∥∥∥
∞

)
,

≤ 1

2

∥∥∥(ϑ1n , . . . , ϑmn)−
(
ϑ̃1n , . . . , ϑ̃mn

)∥∥∥
for T ≤ max

(
1

2mC , 1
2mL

)
.

Consequently, according to the Banach fixed point theorem, the problem (6) has a
unique mild solution (ϑ1n , . . . , ϑmn) ∈ ET .

We can extend the solution on a maximal interval [0, Tmax) , where

Tmax := sup {T > 0, (ϑ1n , . . . , ϑmn
) is a solution to (6) in ET } .

For the global existence, we need the fact that the solutions are positive.

4 Positivity of the Solution

Lemma 4.1 Let (ϑ1n , . . . , ϑmn) be a solution of the system (6) satisfying

ϑn
i0 (x) ≥ 0, ∀x ∈ Ω.

Then
ϑin (t, x) ≥ 0, ∀ (t, x) ∈ [0, T )× Ω, 1 ≤ i ≤ m.

Proof. Let ϑ̄1n (t, x) = 0 in ]0, T [×Ω, then
∂ϑ̄1n

∂t
= 0,∇ϑ̄1n = 0 and (−∆)

α1 ϑ̄1n = 0,

then according to the hypothesis (A1), we obtain

0 =
∂ϑ1n

∂t
− d1 (−∆)

α1 ϑ1n − f1 (t, x, ϑn,∇ϑn)

≥ ∂ϑ̄1n

∂t
− d1 (−∆)

α1 ϑ̄1n − f1
(
t, x, ϑ̄1n , . . . , ϑmn

,∇ϑ̄1n , . . . ,∇ϑmn

)
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and
ϑ1n (0, x) = ϑn

10 (x) ≥ 0 = ϑ̄1n (0, x) .

Therefore, by the comparison theorem ( [5] or [7]), we get ϑ1n (t, x) ≥ ϑ̄1n (t, x) , where
ϑ1n (t, x) ≥ 0.

In the same way, we find

ϑkn (t, x) ≥ 0 , 2 ≤ k ≤ m.

Then ϑin (t, x) ≥ 0 for all 1 ≤ i ≤ m.

5 Global Existence of the Solution

To show the global existence of the solution of the problem (6) for all t ≥ 0, it suffices to
find an estimate of the solution for all t ≥ 0, from the alternative. The following Lemma
shows the existence of an estimate of the solution of (6) in L1 (Ω).

Lemma 5.1 Consider (ϑ1n , . . . , ϑmn
) as the solution of the system (6), then there

exists M (t), depending only on t, such that for all 0 ≤ t ≤ TM , we have∥∥∥∥∥
m∑
i=1

ϑin

∥∥∥∥∥
L1(Ω)

≤ M (t) .

From this estimate, we conclude that the solution (ϑ1n , . . . , ϑmn) given by Theorem
3.1 is a global solution.

Proof. Adding the equations of system (6), we obtain

∂

∂t

m∑
i=1

ϑin −
m∑
i=1

di (−∆)
αi ϑin =

m∑
i=1

fi (t, x, ϑn,∇ϑn) .

Taking into account (2), we get

∂

∂t

m∑
i=1

ϑin −
m∑
i=1

di (−∆)
αi ϑin ≤ Cm

m∑
i=1

ϑin .

Let us integrate on Ω, so by using the formula (3) of integration by parts∫
Ω

(−∆)
αi ϑin (x) dx = 0,

we obtain
∂

∂t

∫
Ω

m∑
i=1

ϑindx ≤ Cm

∫
Ω

m∑
i=1

ϑindx,

so ∫
Ω

m∑
i=1

ϑindx ≤ exp {Cmt}
∫
Ω

m∑
i=1

ϑn
i0dx,

and for ϑn
i0

≤ ϑi0 , we have∫
Ω

m∑
i=1

ϑindx ≤ exp {Cmt}
∫
Ω

m∑
i=1

ϑi0dx.
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If we put

M (t) = exp {Cmt}

∥∥∥∥∥
m∑
i=1

ϑi0

∥∥∥∥∥
L1(Ω)

,

then ∥∥∥∥∥
m∑
i=1

ϑin

∥∥∥∥∥
L1(Ω)

≤ M (t) , 0 ≤ t ≤ TM .

The following Lemma ensures the existence of estimate of the solution (ϑ1n , . . . , ϑmn
) of

the system (6) in
(
L1 (QT )

)m
.

Lemma 5.2 For any solution (ϑ1n , . . . , ϑmn
) of (6), there exists a constant K (t)

depending only on t and such that∥∥∥∥∥
m∑
i=1

ϑin

∥∥∥∥∥
L1(Q)

≤ K (t)

∥∥∥∥∥
m∑
i=1

ϑi0

∥∥∥∥∥
L1(Ω)

.

Proof. We multiply the first equation of (7) by θ in C∞
0 (Q) with θ ≥ 0 and we

integrate on QT , by using (4) and (5), we obtain, for all 1 ≤ i ≤ m,∫
QT

ϑinθdxdt =

∫
Ω

ϑn
i0 (x) Φ (0, x) dx

+

∫
QT

fi (t, x, ϑn,∇ϑn) Φ (s, x) dxds,

therefore ∫
QT

m∑
i=1

ϑinθdxdt =

∫
Ω

m∑
i=1

ϑn
i0 (x) Φ (0, x) dx+

∫
QT

m∑
i=1

fi (t, x, ϑn,∇ϑn) Φ (s, x) dxds.

According to (3) and as ϑn
i0

≤ ϑi0 , we have∫
QT

m∑
i=1

ϑinθdxdt ≤
∫
Ω

m∑
i=1

ϑi0 (x) Φ (0, x) dx+ Cm

∫
QT

m∑
i=1

ϑinΦ (s, x) dxds.

Using the Hölder inequality, we deduce∫
QT

m∑
i=1

ϑinθdxdt ≤

∥∥∥∥∥
m∑
i=1

ϑi0

∥∥∥∥∥
L1(Ω)

∥Φ (0, .)∥L∞(Q)

+Cm

∥∥∥∥∥
m∑
i=1

ϑin

∥∥∥∥∥
L1(Q)

∥Φ∥L∞(Q) ,

≤

∥∥∥∥∥
m∑
i=1

ϑi0

∥∥∥∥∥
L1(Ω)

+ Cm

∥∥∥∥∥
m∑
i=1

ϑin

∥∥∥∥∥
L1(Q)

 . ∥Φ∥L∞(Q) .
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≤ max {1, Cm}

∥∥∥∥∥
m∑
i=1

ϑi0

∥∥∥∥∥
L1(Ω)

+

∥∥∥∥∥
m∑
i=1

ϑin

∥∥∥∥∥
L1(Q)

 . ∥Φ∥L∞(Q) ,

≤ k1 (t)

∥∥∥∥∥
m∑
i=1

ϑi0

∥∥∥∥∥
L1(Ω)

+

∥∥∥∥∥
m∑
i=1

ϑin

∥∥∥∥∥
L1(Q)

 . ∥θ∥L∞(Q) ,

where k1 (t) ≥ max {c, cCm} .
Since θ is arbitrary in C∞

0 (QT ) , we get∥∥∥∥∥
m∑
i=1

ϑin

∥∥∥∥∥
L1(Q)

≤ k1 (t)

∥∥∥∥∥
m∑
i=1

ϑi0

∥∥∥∥∥
L1(Ω)

+

∥∥∥∥∥
m∑
i=1

ϑin

∥∥∥∥∥
L1(Q)

 .

Taking k (t) = k1(t)
1−k1(t)

, we find∥∥∥∥∥
m∑
i=1

ϑin

∥∥∥∥∥
L1(Q)

≤ k (t)

∥∥∥∥∥
m∑
i=1

ϑi0

∥∥∥∥∥
L1(Ω)

.

6 Main Result

Now, we present the main result of this work, which states that the existence of global
solutions for the system (1) is equivalent to the existence of ϑi for all 1 ≤ i ≤ m, it is
formulated in the following theorem.

Theorem 6.1 Under the hypotheses (A1)-(A3), there exists (ϑ1, . . . , ϑm) being a
solution of the following system:

ϑi ∈ C
(
[0,+∞[ , L1 (Ω)

)
,

fi (t, x, ϑ,∇ϑ) ∈ L1 (QT ) ,

ϑi (t) = Si (t)ϑi0 +
∫ t

0
Si (t− s) fi (s, ., ϑ (s) ,∇ϑ (s)) ds, ∀t ≥ 0,

(8)

where Si (t) are the semigroups of contractions in L1 (Ω) generated by di (−∆)
αi , 1 ≤

i ≤ m.

Proof. We define the map L by

L : (ϑ0, h) → Sd (t)ϑ0 +

∫ t

0

Sd (t− s)h (s, ., ϑ (s) ,∇ϑ (s)) ds,

where Sd (t) is the contraction semigroup generated by the operator −d (−∆)
δ
. Ac-

cording to the compactness of the application L of
(
L1 (QT )

)m
in L1 (QT ) (see [1, 2]),

there is a subsequence
(
ϑj
1n
, . . . , ϑj

mn

)
of (ϑ1n , . . . , ϑmn

) and ϑi of
(
L1 (QT )

)m
such that(

ϑj
1n
, . . . , ϑj

mn

)
converges towards (ϑ1, . . . , ϑm) .

Let us now show that
(
ϑj
1n
, . . . , ϑj

mn

)
is a solution of (7), we have, for all 1 ≤ i ≤ m,

ϑj
in
(t, x) = Si (t)ϑ

j
i0
+

∫ t

0

Si (t− s) fi
(
s, ., ϑj

n,∇ϑj
n

)
ds. (9)
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It suffices to show that (ϑ1, . . . , ϑm) verifies (8). Obviously, if j → +∞, we obtain, for
all 1 ≤ i ≤ m, the limit as follows:

ϑj
i0

→ ϑi0 ,

and
fi
(
s, ., ϑj

n,∇ϑj
n

)
→ fi (s, ., ϑ,∇ϑ) . (10)

Thus, to show that (ϑ1, . . . , ϑm) verifies (8), it remains to show that, for all 1 ≤ i ≤ m,

fi
(
s, x, ϑj

n,∇ϑj
n

)
→ fi (s, x, ϑ,∇ϑ)

in L1 (Q) when j → +∞.
Make the integration by part of (6) on QT by taking (3) into consideration, we obtain

−di

∫
QT

(−∆)
αi ϑj

in
dxdt = 0.

We have ∫
Ω

ϑj
in
dx−

∫
Ω

ϑj
i0
dx =

∫
QT

fi
(
s, ., ϑj

n,∇ϑj
n

)
dxdt,

from where

−
∫
QT

fi
(
s, ., ϑj

n,∇ϑj
n

)
dxdt ≤

∫
Ω

ϑi0dx , 1 ≤ i ≤ m. (11)

We denote

Nin = C

(
m∑
i=1

ϑj
in

)
− fi

(
s, ., ϑj

n,∇ϑj
n

)
, 1 ≤ i ≤ m.

It is clear that Nin are positive according to (2), we obtain∫
QT

Nindxdt ≤ C

∫
QT

(
m∑
i=1

ϑj
in

)
dxdt+

∫
Ω

ϑi0dx.

Lemma 5.2 gives
∫
QT

Nindxdt < +∞, which implies∫
QT

∣∣fi (s, ., ϑj
n,∇ϑj

n

)∣∣ dxdt ≤ C

∫
QT

(
m∑
i=1

ϑj
in

)
dxdt+

∫
QT

Nindxdt < +∞.

Let

hin = Nin + C

(
m∑
i=1

ϑj
in

)
, 1 ≤ i ≤ m,

hin are in L1 (Q) and positive. Furthermore,∣∣fi (s, ., ϑj
n,∇ϑj

n

)∣∣ ≤ hin a.e. 1 ≤ i ≤ m.

Combining this result with (10) and by applying Lebesgue’s dominated convergence
theorem, we obtain

fi
(
s, ., ϑj

n,∇ϑj
n

)
→ fi (s, ., ϑ,∇ϑ) in L1 (Q) .

By passage to the limit when j → +∞ of (9) in L1 (QT ), we find, for all 1 ≤ i ≤ m,

ϑi (t) = Si (t)ϑi0 +

∫ t

0

Si (t− s) fi (s, ., ϑ1 (s) , . . . , ϑm (s) ,∇ϑ1 (s) , . . . ,∇ϑm (s)) ds.

Then (ϑ1, . . . , ϑm) verifies (8), consequently, (ϑ1, . . . , ϑm) is the solution of the system
(1).
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7 Application

The concept of fractional calculus is also found in the study of diffusion phenomena.
Numerous studies have shown the presence of abnormal diffusion processes such as the
Lévy processes, for instance, in physical models where diffusive phenomena are more
accurately represented by the Lévy processes rather than by other processes, reaction-
diffusion equations featuring the fractional Laplacian instead of the standard Laplacian
are used (see, for example, [16]).

The fractional reaction diffusion systems are systems involving constituents locally
transformed into each other by chemical reactions and transported in space by diffusion.
They arise in many applications, in chemistry, chemical engineering, physics, and various
biological processes including population dynamics and biology. They have been the
subject of countless studies in the past few decades. One of the most important aspects
of this broad field is proving the global existence of solutions under certain assumptions
and restrictions

8 Conclusion

This paper has explained the important factors needed to study the global existence of a
solution for fractional nonlinear reaction-diffusion system. We have carried out this study
by using the compact semigroup methods coupled with certain mathematical estimates
and techniques. By building upon previous works, we have confirmed a global existence
of a solution to the fractional system. For attaining our purpose, we have introduced
and derived several theoretical results related to the existence theory.

There will be future research and applications on fractional reaction-diffusion system.
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lous diffusion system. Publié dans Journal of Mathematical Analysis and Applications 421
(2015) 1519–1530.

[11] M. Ilic, F. Liu, I. Turner, and V. Anh. Numerical approximation of a fractional-in-space
diffusion equation (ii)- with nonhomogeneous boundary conditions. Fract. Calc. Appl. Anal.
9 (2006) 333–349.

[12] M.J. Khayar, A. Brouri, and M. Ouzahra. Exact Controllability of the Reaction-Diffusion
Equation under Bilinear Control. Nonlinear Dyn. Syst. Theory 22 (5) (2022) 538–549.

[13] O.A. Ladyzenskaya, V.A. Solonnikov and N.N. Uralceva. Linear and Quasilinear Equations
of Parabolic Type, Translations of mathematical monographs, vol. 23, AMS; Providence,
R. I, (1968).

[14] F. Mainardi. Fractional calculus and waves in linear viscoelasticity. Imperial College Press,
London, 2010.

[15] F. Mainardi, M. Roberto, R. Gorenflo and E. Scalas. Fractional calculus and continuous-
time finance ii: The waiting time distribution. Physica A 287 (2000) 468–481.

[16] R. Mancinelli, D. Vergni and A. Vulpiani. Front propagation in reactive systems with
anomalous diffusion. Phys. D 185 (2003) 175–195.

[17] A. Moumeni and M. Dehimi. Global existence’s solution of a system of reaction-diffusion.
IJMA 4 (1) (2013) 122–129.

[18] A. Moumeni and M. Mebarki. Global existence of solution for reaction-diffusion system
with full matrix via the compactness. GJPAM 12 (6) (2016) 4913–4928.

[19] A. Pazy. Semigroups of linear operators and applications to partial differential equations.
Springer-Verlag, New York, 1983.



Nonlinear Dynamics and Systems Theory, 25 (4) (2025) 457–470

Exploring Boundary Layer Flow Dynamics on a

Semi-Infinite Plate: A Numerical Study of

Transpiration Effects and Dual Solutions

Mahmmoud M. Syam 1, Rahmah Al-Qatbi 2, Mays Haddadi 2, Alreem
Alameri 2 and Muhammed I. Syam 2∗

1 Mechanical and Industrial Engineering Department,
Abu Dhabi University, P.O.Box 59911, Abu Dhabi, UAE.

2 Department of Mathematical Sciences, UAE University, Al-Ain, United Arab Emirates.

Received: September 24, 2024; Revised: Jully 22, 2025

Abstract: This paper explores the flow of a uniform stream with no pressure gra-
dient on a parallel semi-infinite plate. This study unveils a novel perspective on the
significant influence of the mass transfer parameter and the velocity parameter on
the behavior of self-similar boundary layer flows over moving surfaces, governed by
the Prandtl boundary layer equations. The analysis reveals that these parameters are
pivotal in determining the existence and multiplicity of solutions, which may include
no solution, a unique solution, or dual solutions, depending on their specific values.
The modified operational matrix method was employed to reduce the complex non-
linear system to a manageable linear third-order boundary value problem, facilitating
a more thorough investigation. The numerical validations conducted, including the
calculation of L2-truncation errors, comparison with exact boundary conditions, and
consistency checks against established results in the literature, not only affirm the
robustness and accuracy of the proposed method but also instill confidence in its
reliability. This work contributes to understanding boundary layer flows over moving
surfaces by elucidating the critical roles of mass transfer and velocity parameters. It
offers a reliable numerical method for solving these complex fluid dynamics problems
and provides valuable insights into the physical phenomena governing such flows.

Keywords: Prandtl boundary layer equations; heat and mass transfer, boundary
layer; dual solutions; semi-infinite plate.

Mathematics Subject Classification (2020): 93C20, 93A30, 93C95.

∗ Corresponding author: mailto:m.syam@uaeu.ac.ae

© 2025 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua457

mailto: m.syam@uaeu.ac.ae
http://e-ndst.kiev.ua


458 MAHMMOUD M. SYAM, RAHMAH AL-QATBI, et al.

1 Introduction

Different studies over the past few decades have demonstrated the presence of multiple
solutions in boundary layer flows driven by moving surfaces, both with and without ex-
ternal pressure gradients. This paper presents a novel examination of the uniform flow
over a belt moving towards or away from the origin at a constant speed. This topic
is closely related to the seminal works by Klemp and Acrivos [1] and Syam [2], who
explored the flow induced by finite and semi-infinite flat plates moving at a constant ve-
locity beneath a uniform mainstream. In the scenario where a similarity reduction to an
ordinary differential equation is applicable, dual solutions were identified when the plate
moved toward the oncoming stream. Mourad et al. [4] and others [5, 6] investigate the
multiple solutions to the Falkner–Skan equation in the flow over a stretching boundary.
The authors explore the conditions under which dual solutions emerge, specifically fo-
cusing on how variations in boundary stretching influence the flow characteristics. They
provide a detailed mathematical analysis, demonstrating that the Falkner–Skan equation
admits more than one solution under specific parameter regimes. This work contributes
to understanding boundary layer behavior in fluid dynamics, particularly in cases where
stretching boundaries are present. Hussaini et al. [3] and others [7, 8] later confirmed
the non-uniqueness of the similarity solutions for a boundary layer problem involving an
upstream-moving wall. The study analyzes the impact of the wall’s motion on the bound-
ary layer flow, identifying conditions that lead to multiple solutions. Through a rigorous
mathematical approach, the authors demonstrate the existence of non-unique similarity
solutions and give a deep understanding of the behavior of the boundary layer under these
conditions. Their findings highlight the complexities of upstream-moving walls in fluid
dynamics and contribute to a deeper understanding of boundary layer theory. As part of
a broader investigation of the Falkner–Skan flows with stretching boundaries, these novel
findings open up new avenues for research in the field of fluid dynamics and boundary
layer flows. A mathematically analogous problem on the uniform viscous flow over a
moving plate arises in the mixed convection boundary layer flow within a fluid-saturated
porous medium adjacent to a heated vertical semi-infinite rigid plate. The governing
similarity equations include a nondimensional parameter that quantifies the balance be-
tween natural and forced convection with two primary scenarios. In the first scenario,
where buoyancy and the uniform external flow are aligned, the solutions are singular,
as discussed by Cheng [5]. In the second scenario, where buoyancy opposes the uniform
external flow, in [9–12], the authors identified the exact dual solutions mentioned in [1–8],
where the investigation of the mixed convection boundary layer flow along a vertical sur-
face within saturated porous medium yields significant findings. The study examines the
combined effects of natural and forced convection on the boundary layer, offering a de-
tailed analysis of the governing equations. Merkin identifies the critical parameters that
influence the flow behavior and provides solutions that describe the boundary layer’s
response to varying conditions. This work enhances the understanding of convection
processes in porous media, particularly in vertical configurations, and underscores the
complex interactions between buoyancy-driven and externally imposed flows. Of particu-
lar relevance to this study are Merkin and some subsequent works [13–15], which explore
the phenomenon of dual solutions in mixed convection within a porous medium. The
studies delve into the conditions under which multiple solutions arise, mainly focusing on
the interplay between natural and forced convection. The authors present a comprehen-
sive analysis, showing that dual solutions can occur depending on the relative strength of
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buoyancy forces compared to the imposed flow. Finally, Weidman et al. [20] and other
authors [17–19] present a unified formulation for stagnation-point flow overstretching
surfaces, introducing new findings in this area of fluid dynamics. The authors develop
a comprehensive and exhaustive mathematical model that encapsulates various cases of
stagnation-point flow, incorporating both classical and stretching boundary conditions.
Through their analysis, they uncover novel results that extend the understanding of how
stretching surfaces influence flow behavior near stagnation points. This work contributes
significantly to the field, offering insights and generalizations that enhance the theoretical
framework for studying stagnation-point flows. This work, with its thorough and com-
prehensive nature, provides significant insights into the complexities of mixed convection
in porous media and contributes to a broader understanding of fluid behavior in such
environments. These implications are crucial for further research and applications in the
field of fluid dynamics and boundary layer flows.

2 Mathematical Model

When a uniform stream with velocity U flows parallel to a semi-infinite plate positioned
at y = 0 for x ≥ 0, the flow exhibits no pressure gradient. The velocity components in
the directions along and perpendicular to the plate are denoted as u and v, respectively.
The dimensional unsteady Prandtl boundary layer equations governing this scenario are

∂u

∂x
= −∂v

∂y
, (1)

∂u

∂t
+ u

∂u

∂x
= η

∂2u

∂y2
− v

∂u

∂y
(2)

with boundary conditions specified as

u(x, 0) = α2U, v(x, 0) = −α1

√
ηU

2x
, x > 0, (3)

u = U, x ∈ R, y → ∞. (4)

Figure 1 illustrates the physical setup of the model.

u(y)

UyU

a

Figure 1: Schematic representation of the physical model.

By introducing the similarity variables

u = Uf ′(ζ), v =

√
ηU

2x
(ζf ′(ζ)− f(ζ)), ζ = y

√
U

2ηx
, (5)
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the chain rule yields

∂u

∂x
=

∂u

∂ζ

∂ζ

∂x
= −yUf ′′(ζ)

2x

√
U

2ηx
, (6)

∂v

∂y
=

∂v

∂ζ

∂ζ

∂y
=

yUf ′′(ζ)

2x

√
U

2ηx
, (7)

∂u

∂y
=

∂u

∂ζ

∂ζ

∂y
= Uf ′′(ζ)

√
U

2ηx
, (8)

∂2u

∂y2
=

∂

∂ζ

(
∂u

∂y

)
∂ζ

∂y
=

U2

2ηx
f ′′′(ζ). (9)

Substituting these into equations (1) and (2) simplifies the latter to

f ′′′(ζ) + f(ζ)f ′′(ζ) = 0 (10)

with the boundary conditions

f(0) = α1, f ′(0) = α2, f ′(∞) = 1. (11)

It is crucial to note that the mass transfer parameter α1 and the velocity parameter
α2 are key factors in determining the nature of the solution. Depending on their values,
the system may have no solution, a unique solution, or multiple solutions (specifically,
two). This paper will examine these scenarios and identify the critical values of α1 and
α2. Additionally, when α1 > 0, suction is present, and when α2 > 0, the plate moves
downstream from the origin. Furthermore, the wall shear stress is expressed as

S =

√
ρ3U3η

2x
f ′′(0). (12)

3 Numerical Methodology

Given the nonlinear nature of the system described by equations (10) and (11), obtain-
ing an exact closed-form solution is challenging and impractical. Therefore, we employ
an innovative numerical approach developed by Syam et al. [7, 19], which utilizes the
operational matrix method. The following substitutions are made:

λ1 = f, λ2 = λ′
1, λ3 = λ′

2. (13)

This transforms the original system (10) and (11) into the following set of equations:

λ′
1 = λ2, λ′

2 = λ3, λ′
3 = −λ1λ3, (14)

λ1(0) = α1, λ2(0) = α2, λ3(0) = ξ. (15)

The parameter ξ is determined by solving the system of equations (14) and (15),
followed by the application of the shooting method to meet the boundary condition
λ2(∞) = 1.

Given the nonlinear nature of system (14)-(15), obtaining an exact closed-form solu-
tion is challenging. Thus, we employ a novel numerical approach based on the operational
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matrix technique, as proposed by Syam et al. [7,19]. We represent the system in matrix
form as

Λ′ = Ω(Λ(ζ)), Λ(0) = Λ0, (16)

where

Λ =

λ1

λ2

λ3

 , Λ0 =

α1

α2

ξ

 , Ω(Λ) =

 λ2

λ3

−λ1λ3

 . (17)

Following the methodology outlined in [7, 19], the solution is expressed as

Λ(ζ) =

M∑
k=0

Λkφk(ζ), (18)

where {φ0(ζ), φ1(ζ), . . . , φM (ζ)} represent block pulse functions defined by

φk(ζ) =

{
1, if ζk ≤ ζ < ζk+1,

0, otherwise,
(19)

and {ζ0, ζ1, . . . , ζM+1} denotes a uniform partition of the interval [0, ζ∞] with step size
∆, while {Λ0,Λ1, . . . ,ΛM} are constant vectors. Integrating both sides of equation (16)
yields

Λ(ζ) = Λ0 +

∫ ζ

0

Ω(Λ(s)) ds. (20)

At ζ = ζj , for j = 1, 2, . . . ,M + 1, we have

φk(ζj) =

{
1, if j = k,

0, otherwise,
(21)

which leads to

Λ(ζj) =

M∑
k=0

Λkφk(ζj) = Λj . (22)

Thus, we can write

Λ(ζj) = Λj

= Λ0 +

∫ ζj

0

Ω(Λ(s)) ds

= Λ0 +

j−1∑
k=0

∫ ζk+1

ζk

Ω(Λ(s)) ds

= Λ0 +

j−1∑
k=0

∫ ζk+1

ζk

Ω

(
M∑
i=0

Λiφi(s)

)
ds. (23)

Since

φk(s) =

{
1, if i = k,

0, otherwise,
s ∈ [ζk, ζk+1), (24)
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we obtain

Λj = Λ0 +

j−1∑
k=0

∫ ζk+1

ζk

Ω (Λk) ds = Λ0 +∆

j−1∑
k=0

Ω(Λk).

For further details on this approach, including its convergence and error analysis, refer
to [7,19]. As indicated in equation (25), this method is direct, iterative, and highly precise
for solving nonlinear systems, offering computational efficiency and reduced processing
times compared to other methods for similar problems.

4 Validation

To validate the solution, we define the L2-truncation error as follows:

ϵ(α1, α2) =

√∫ 1

0

∥ Λ′(ζ)− Ω(Λ(ζ)) ∥2E dζ, (25)

where ∥ . ∥E denotes the Euclidean norm. Table 1 presents the computed truncation
errors for various values of α1 and α2.

α1 α2 ϵ(α1, α2)
-0.5 0 1.91× 10−14

-0.25 0.25 1.94× 10−14

0 0.5 11.881× 10−14

0.25 0.75 1.80× 10−14

0.5 -0.25 1.77× 10−14

0.75 -0.5 1.71× 10−14

Table 1: The L2-truncation error for different values of α1 and α2.

In Table 2, we evaluate the boundary condition values to compare them with the
expected boundary condition f ′(∞) for various values of α1 and α2. These values should
ideally be 1, indicating that the shooting method used is accurate.

α1 α2 f ′(∞)
-0.5 0 1.000000000001
-0.25 0.25 1.000000000001
0 0.5 1

0.25 0.75 0.9999999999999
0.5 -0.25 1.000000000001
0.75 -0.5 0.9999999999999

Table 2: The value of f ′(∞).

To compare our results with those in [20], we determine the critical value of the
velocity parameter α2c, which dictates whether the system (10)-(11) has a solution for
different values of the mass transfer parameter α1. Our findings align with those reported
in Table 3.
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α1 α2c

-0.5 -0.103499999998
-0.25 -0.212499999999
0 -0.354100000001

0.25 -0.52240000001
0.5 -0.720000000000

Table 3: The critical value of the velocity parameter α2c.

α
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α2

ξ

Figure 2: The parametric relationship between the velocity parameter and ξ.

These results suggest that for α2 < α2c, no solution exists. When α2 ∈ [α2c, 0], there
are two solutions. Finally, for α2 > α2c, a unique solution is obtained. The parametric
relationship between α2 and ξ is shown in Figure 2.

In Figure 3, we investigate the impact of suction and blowing at positive values of
the velocity parameter. For α2 = 0.5, the plate moves away from the origin at half the
speed of the free stream, whereas for α2 = 1.5, the plate moves approximately 50% faster
than the free stream. In both cases, suction increases skin friction, indicated by f ′′(0),
and decreases the boundary layer thickness. Conversely, blowing results in the opposite
effect. This phenomenon is depicted in Figure 3.

The results shown in Figure 3 are consistent with the findings of [20]. Additionally,
in Figure 4, we explore the effect of the mass transfer parameter α1 on ξ for different
values of the velocity parameter. The outcomes are illustrated in Figure 4.

5 Results and Discussion

The influence of transpiration on self-similar boundary layer flow over moving surfaces
was analyzed using the modified operational matrix method. When a uniform stream
with velocity U flows parallel to a semi-infinite plate located at y = 0 for x ≥ 0, the flow
exhibits no pressure gradient. The velocity components along and perpendicular to the
plate are denoted as u and v, respectively. By employing similarity variables, the dimen-
sional unsteady Prandtl boundary layer equations are reduced to a linear boundary value
problem of third order. Our numerical method was validated through four approaches:
computing the L2-truncation error, comparing the boundary condition values between
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α2 = 0.5 α2 = 1.5

α1 = 0 α1 = 0

suction

blowing

blowing

0.6 0.8 1.0 1.2 1.4
0
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3

4

f'(ζ )

ζ

Figure 3: Influence of suction and blowing at positive values of the velocity parameter.
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Figure 4: The effect of the mass transfer parameter α1 on ξ.
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the exact condition and those produced by the OMM at ∞, comparing our critical ve-
locity parameter value with that obtained in [20], and graphically comparing our results
with those in [20]. These validations are detailed in Tables 1-3 and Figures 2-4.

To gain physical insight into the flow problem and numerical calculations, we graphi-
cally discuss the influence of the main parameters in system (10)-(11) in Figures 2 through
16. Figure 2 shows the influence of the velocity parameter on the wall shear stress via
f ′′(0) for different values of the mass transfer parameter α1. Figure 3 illustrates the effect
of suction and blowing at positive values of the velocity parameter. Figure 4 depicts the
impact of the mass transfer parameter α1 on f ′′(0). Figures 5-8 display the influence
of the mass transfer parameter α1 on the velocity profile when the velocity parameter
α2 = 0.5, 1.5, 0 and −0.1. Figures 9-11 examine the effect of the velocity parameter α2

on the velocity profile for several values of the mass transfer parameter α1 = −0.5, 0 and
0.5. Figures 12-14 analyze the impact of the velocity parameter α2 on the stream profile
for various values of the mass transfer parameter α1 = 0, 0.5, and 1.5. Finally, Figures
15-16 investigate the influence of the mass transfer parameter α1 on the stream profile
when the velocity parameter α2 = 0.25 and 1.25.

α1=-0.5

α1=-0.25

α1=0

α1=0.25

α1=0.5

α2 = 0.5

0 1 2 3 4 5 6 7
ζ0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2
f'(ζ )

Figure 5: Influence of the mass transfer parameter α1 on the velocity profile for the velocity
parameter α2 = 0.5.
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α2 = 1.5

0 1 2 3 4 5 6 7
ζ0.8

1.0

1.2

1.4

1.6
f'(ζ )

Figure 6: Influence of the mass transfer parameter α1 on the velocity profile for the velocity
parameter α2 = 1.5.

From Figures 2 through 16, we can draw the following conclusions:

1. Table 3 presents the critical values of the velocity parameter. These findings in-
dicate that for α2 < α2c, no solution exists. When α2 ∈ [α2c, 0], there are two
solutions, and for α2 > α2c, a unique solution is obtained. For instance, when
α1 = −0.5, no solution exists for α2 < −0.103499999998, and there are two so-
lutions for α2 ∈ [−0.103499999998, 0]. For α2 > 0, a unique solution is present.



466 MAHMMOUD M. SYAM, RAHMAH AL-QATBI, et al.
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Figure 7: Influence of the mass transfer parameter α1 on the velocity profile for the velocity
parameter α2 = 0.
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Figure 8: Influence of the mass transfer parameter α1 on the velocity profile for the velocity
parameter α2 = 1.
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Figure 9: Influence of the velocity parameter α2 on the velocity profile for the mass transfer
parameter α1 = −0.5.
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Figure 10: Influence of the velocity parameter α2 on the velocity profile for the mass transfer
parameter α1 = 0.5.
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Figure 11: Influence of the velocity parameter α2 on the velocity profile for the mass transfer
parameter α1 = 0.
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Figure 12: Influence of the velocity parameter α2 on the stream profile for the mass transfer
parameter α1 = 0.
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Figure 13: Influence of the velocity parameter α2 on the stream profile for the mass transfer
parameter α1 = 0.5.
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Figure 14: Influence of the velocity parameter α2 on the stream profile for the mass transfer
parameter α1 = 1.5.
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Figure 15: Influence of the mass transfer parameter α1 on the stream profile for the velocity
parameter α2 = 0.25.
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Figure 16: Influence of the mass transfer parameter α1 on the stream profile for the velocity
parameter α2 = 1.2.

The parametric relationship between α2 > 0 and ξ is illustrated in Figure 2. From
this figure, it is evident that as the velocity parameter increases for a fixed mass
transfer parameter, the wall shear stress decreases.

2. Figure 3 illustrates the impact of suction and blowing at positive values of the
velocity parameter. For α2 = 0.5, the plate moves away from the origin at half the
speed of the free stream, while for α2 = 1.5, the plate moves approximately 50%
faster than the free stream. In both scenarios, suction increases skin friction, as
indicated by f ′′(0), and reduces the boundary layer thickness. Conversely, blowing
produces the opposite effect. This phenomenon is depicted in Figure 3. It is also
noteworthy that the results shown in Figure 3 are consistent with the findings
of [20].

3. Figure 4 explores the effect of the mass transfer parameter α1 > 0 on ξ = f ′′(0)
for different values of the velocity parameter. Additionally, it is observed that
as the mass transfer parameter increases for a fixed velocity parameter, the wall
shear stress decreases. Furthermore, it is noted that when the velocity parameter
is negative, the wall shear stress is in the negative direction, while it is positive
when the velocity parameter is positive. It is zero when the velocity parameter is
zero.

4. Figures 5-8 demonstrate the effect of the mass transfer parameter α1 on the velocity
profile for different values of the velocity parameter α2. It is observed that the
velocity profiles increase as the mass transfer parameter increases when the velocity
parameter is -0.1, 0, and 0.5. The behavior changes when the velocity parameter is
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1. From our investigation, we notice that when the velocity parameter is less than
one, the velocity profile increases as the mass transfer parameter increases, while
the velocity profile decreases as the mass transfer parameter increases when the
velocity parameter is greater than one. Notably, when the velocity parameter is
one, all velocity profiles coincide for different values of the mass transfer parameter.

5. Figures 9-11 demonstrate the substantial effect of the velocity parameter α2 on the
velocity profile for fixed values of α1. It is observed that as the velocity parameter
increases, the velocity profile also increases. This behavior was examined for various
values of the mass transfer parameter such as -0.5, 0, and 0.5. It is noted that the
velocity profile stabilizes and approaches one as ξ approaches infinity.

6. Figures 12-14 illustrate the considerable influence of the velocity parameter α2

on the stream profile for fixed values of α1. It is observed that as the velocity
parameter increases, the stream profile also increases. This behavior was tested for
different values of the mass transfer parameter such as 0, 0.5, and 1.5.

7. Figures 15-16 depict the significant impact of the mass transfer parameter α1 on
the stream profile for fixed values of α2. It is noted that as the mass transfer
parameter increases, the stream profile also increases. This behavior was examined
for various values of the velocity parameter such as 0.25 and 1.25.

8. Table 1 shows that the L2-truncation error is of the order 10−14, indicating the
rapid convergence of the approximate solution to the exact solution of system (10)-
(11).

9. Table 2 reveals that the boundary condition is satisfied, confirming that the shoot-
ing method is operating correctly.
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