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1 Introduction

In the present paper we consider an uncertain discrete-time system

x(τ + 1) = Ax(τ) + f(x(τ), α), (1.1)

where x ∈ Rn, τ ∈ N = {t0 + k, k = 0, 1, 2, . . .}, t0 ∈ R, A is a constant n × n matrix,
f : Rn × S → Rn, α ∈ S ⊆ Rd, d > 1 is a compact set. Under specific conditions
(we don’t cite them here) dynamics of the system (1.1) are topologically equivalent with
dynamics of the system

x(τ + 1) = (A + E)x(τ), (1.2)

where A is the same matrix, as in system (1.1), and E is an uncertain n × n matrix,
about which it is known that it lies in some compact set S1 ⊂ Rn×n. Further we will
investigate the system (1.2).

Our purpose is to compare the results of estimating the robust bounds of discrete
system obtained in terms of three approaches involving scalar, vector and hierarchical
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Lyapunov function. In the paper it is shown that the hierarchical Lyapunov function
provides more wide bounds for estimation of the uncertain matrix.

2 Scalar Approach

We assume that for the matrix A the condition |σi(A)| < 1 is realized for all i =
1, 2, . . . , n. In this case the Lyapunov equation

ATPA − P = −G (2.1)

has a unique solution P ∈ Rn×n for arbitrary symmetric and positive definite matrix
G ∈ Rn×n. Moreover the matrix P is symmetric and positive definite. According to the
results of paper [6], we apply the function

v(x) = (xTPx)
1
2 . (2.2)

in robustness analysis of the system (1.2). Let us denote by σm(P ), σM (P ) the maximum
and minimum eigenvalues of the matrix P .

Following the paper [6] we get the assertion.

Theorem 2.1 Let the nominal system

x(τ + 1) = Ax(τ)

be asymptotically stable. If
‖E‖ < µ(G), (2.3)

where

µ(G) =
σm(G)

σ
1
2

M (P − G)σ
1
2

M (P ) + σM (P )
,

then the uncertain system (1.2) is asymptotically stable.

Here ‖E‖ = sup
‖x‖61

‖Ex‖, ‖x‖ = (xTx)
1
2 is the Euclidean norm of vector x.

It is known [6], that µ(G) takes the largest value, if G = I in (2.1). The expression
(2.3) is a robust bound for the system (1.2), obtained in the framework of scalar approach
with the function (2.2).

3 Vector Approach

We decompose system (1.2) into two interconnected subsystems

Ŝi : xi(τ + 1) = (Ai + Ei)xi(τ) + (Bj + Uj)xj(τ), i, j = 1, 2 and i 6= j. (3.1)

Here xi ∈ Rni , Ai and Bi are submatrices of the known matrix

A =

(
A1 B1

B2 A2

)
, (3.2)

Ei and Ui are submatrices of the uncertain matrix

E =

(
E1 U1

U2 E2

)
, (3.3)

where B1, U1 ∈ Rn1×n2 , B2, U2 ∈ Rn2×n1 , and Ai, Ei ∈ Rni×ni , i = 1, 2.
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Assumption 3.1 We assume that:

(1) the nominal subsystems

xi(τ + 1) = Aixi(τ) (3.4)

are asymptotically stable, i.e. there exist unique symmetric and positive definite
matrices Pi ∈ Rni×ni , which satisfy the Lyapunov matrix equations

AT
i PiAi − Pi = −Gi, i = 1, 2, (3.5)

where Gi are arbitrary symmetric and positive definite matrices;
(2) there exists a constant γ ∈ (0, 1) such that

‖B1‖ ‖B2‖ < γ2µ1µ2

where µi = (σ
1
2

M (Pi − Ii)σ
1
2

M (Pi) + σM (Pi))
−1, Pi are solutions of the Lyapunov

matrix equations (3.5) for the matrices Gi = Ini
, Ini

are ni × ni identity ma-
trices, i = 1, 2.

We define the constants

a = σ
1
2

M (P1)σ
1
2

M (P2), b = σ
1
2

M (P1)σ
1
2

M (P2)(‖B1‖ + ‖B2‖),

µi = (σ
1
2

M (Pi − Ii)σ
1
2

M (Pi) + σM (Pi))
−1, i = 1, 2,

αi = σ
1
2

M (Pi)µi = (σ
1
2

M (Pi − Ii) + σ
1
2

M (Pi))
−1, i = 1, 2,

c = γ2α1α2 − σ
1
2

M (P1)σ
1
2

M (P2)‖B1‖ ‖B2‖,

ǫ =
1

2a
((b2 + 4ac)

1
2 − b),

where Pi are solutions of the Lyapunov matrix equations (3.5) for the matrices Gi =
Ini

, i = 1, 2.

Theorem 3.1 Assume that for the uncertain system (1.2) the decomposition (3.1) –
(3.3) takes place and all conditions of Assumption 3.1 are satisfied. If the submatrices
Ei and Ui satisfy the inequalities

‖Ei‖ 6 (1 − γ)µi, ‖Ui‖ < ǫ, i = 1, 2, (3.6)

then the equilibrium x = 0 of (1.2) is asymptotically stable.

Proof For the nominal subsystems (3.4) by (3.5) we construct the normlike functions

vi(xi) = (xT
i Pixi)

1
2 , i = 1, 2, (3.7)

and the scalar function
v(x) = d1v1(x1) + d2v2(x2), (3.8)

where d1, d2 are some positive constants.
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For the first forward differences ∆vi(xi) of the functions (3.7) with respect to τ along
the solutions of (3.1) we have the estimates:

∆vi(xi)
∣∣
Ŝi

= vi(Aixi) − vi(xi) + vi((Ai + Ei)xi) − vi(Aixi) + vi((Ai + Ei)xi

+ (Bi + Ui)xj) − vi((Ai + Ei)xi) 6 (xT
i AT

i PiAixi)
1
2 − (xT

i Pixi)
1
2 + σ

1
2

M (Pi)‖Eixi‖

+ σ
1
2

M (Pi)‖(Bi + Ui)xj‖ 6
xT

i AT
i PiAixi − xT

i Pixi

(xT
i AT

i PiAixi)
1
2 + (xT

i Pixi)
1
2

+ σ
1
2

M (Pi)‖Ei‖ ‖xi‖

+ σ
1
2

M (Pi)(‖Bi‖ + ‖Ui‖)‖xj‖ 6 −(αi − σ
1
2

M (Pi)‖Ei‖)‖xi‖ + σ
1
2

M (Pi)(‖Bi‖ + ‖Ui‖)‖xj‖,

i, j = 1, 2, i 6= j. Here we use the known inequality [6]

(pTPp)
1
2 − (qTPq)

1
2 6 σ

1
2

M (P )‖p − q‖

for all p, q ∈ Rn, P ∈ Rn×n is a symmetric and positive definite matrix. From here we
arrive to the following inequality

∆v(x)
∣∣
(Ŝ1,Ŝ2)

6 d1∆v1(x1)
∣∣
Ŝ1

+d2∆v2(x2)
∣∣
Ŝ2

6 −d̃TWz, (3.9)

where d̃ = (d1, d2)
T, z = (‖x1‖, ‖x2‖)T, W = (wij) is a 2× 2 matrix with the elements

wij =

{
αi − σ

1
2

M (Pi) ‖Ei‖ if i = j,

−σ
1
2

M (Pi)(‖Bi‖ + ‖Ui‖) if i 6= j.

As all conditions of Theorem 3.1 are satisfied, it is not difficult to verify that the
matrix W is the M -matrix [8]. Really

w11w22 − w12w21 = [α1 − σ
1
2

M (P1)‖E1‖][α2 − σ
1
2

M (P2)‖E2‖] − σ
1
2

M (P1)σ
1
2

M (P2)

× (‖B1‖ + ‖U1‖)(‖B2‖ + ‖U2‖) > [α1 − σ
1
2

M (P1)(1 − γ)µ1][α2 − σ
1
2

M (P2)(1 − γ)µ2]

− σ
1
2

M (P1)σ
1
2

M (P2)(‖B1‖ + ǫ)(‖B2‖ + ǫ)

= γ2α1α2 − σ
1
2

M (P1)σ
1
2

M (P2)(‖B1‖ + ǫ)(‖B2‖ + ǫ)

= −σ
1
2

M (P1)σ
1
2

M (P2)ǫ
2 − σ

1
2

M (P1)σ
1
2

M (P2)(‖B1‖ + ‖B2‖)ǫ + γ2α1α2 − σ
1
2

M (P1)σ
1
2

M

× (P2)‖B1‖ ‖B2‖ = −aǫ2 − bǫ + c.

By condition (2) of Assumption 2.1

c = γ2α1α2 − σ
1
2

M (P1)σ
1
2

M (P2)‖B1‖ ‖B2‖ = σ
1
2

M (P1)σ
1
2

M (P2)
[
γ2µ1µ2 − ‖B1‖ ‖B2‖

]
> 0

and therefore −aǫ2 − bǫ + c = 0, and w11w22 − w12w21 > 0.
It is clear that the function (3.8) is positive definite and it’s first forward difference

(3.9) is negative definite. These conditions are sufficient [9] for the asymptotic stability
of the equilibrium x = 0 of (1.2).
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The proof of Theorem 3.1 is complete.

Thus the inequalities (3.6) are the robust bounds for the system (1.2), obtained in
terms of the vector approach.

4 Hierarchical Approach

As is known [7], the essence of this method is as follows: beginning from the constructing
an auxiliary Lyapunov function, we take into account a hierarchical structure of the
system (1.2) or realize a multilevel decomposition of the initial system. Further the
second approach is applied precisely.

We decompose each subsystems (3.1) into two interconnected components

C̃ij : xij(τ +1) = (Aij +Eij)xij(τ)+(Bij +Uij)xik(τ), i, j, k = 1, 2, j 6= k, (4.1)

where xij ∈ Rnij , Rni = Rni1 × Rni2 , Aij , Eij ∈ Rnij×nij , Bi1, Ui1 ∈ Rni1×ni2 ,
and Bi2, Ui2 ∈ Rni2×ni1 ,

Ai =

(
Ai1 Bi1

Bi2 Ai2

)
, Ei =

(
Ei1 Ui1

Ui2 Ei2

)
.

Assume that the matrices Bi and Ui have a block structure:

Bi =

(
M

(i)
11 M

(i)
12

M
(i)
12 M

(i)
22

)
, Ui =

(
F

(i)
11 F

(i)
12

F
(i)
12 F

(i)
22

)
,

where M
(i)
jk , F

(i)
jk ∈ Rnij×nlk , i, j, k, l = 1, 2, i 6= l.

We extract from (4.1) the independent components

Cij : xij(τ + 1) = (Aij + Eij)xij(τ), i, j = 1, 2,

with the same designations of variables as in system (4.1).
In order to state the robust bounds we require the following assumptions.

Assumption 4.1 The nominal components

xij(τ + 1) = Aijxij(τ), i, j = 1, 2,

are asymptotically stable, i.e. there exist unique symmetric and positive definite matrices
Pij , which satisfy the Lyapunov matrix equations

AT
ijPijAij − Pij = −Gij , i, j = 1, 2, (4.2)

where Gij are arbitrary symmetric and positive definite matrices.

Let Pij be solutions of the Lyapunov matrix equations (4.2) for the identity matrices
Gij = Iij . We define the constants

αij = σ
1
2

M (Pij)µij = (σ
1
2

M (Pij − Iij) + σ
1
2

M (Pij))
−1,

µij = (σ
1
2

M (Pij − Iij)σ
1
2

M (Pij) + σM (Pij))
−1,

ǫi =
1

2ai

((b2
i + 4aici)

1
2 − bi),

ai = σ
1
2

M (Pi1)σ
1
2

M (Pi2),

bi = σ
1
2

M (Pi1)σ
1
2

M (Pi2)(‖Bi1‖ + ‖Bi2‖),

ci = γ2
i αi1αi2 − σ

1
2

M (Pi1)σ
1
2

M (Pi2)‖Bi1‖ ‖Bi2‖, i, j = 1, 2.
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Assumption 4.2 There exist constants γi ∈ (0, 1) such that

‖Bi1‖ ‖Bi2‖ < γ2
i µi1µi2, i = 1, 2.

Let us construct an auxiliary function on the base of the functions

vij(xij) = (xT
ijPijxij)

1
2 ,

by formular
vi(xi) = di1vi1(xi1) + di2vi2(xi2), i = 1, 2,

where dij are some positive constants. We introduce 2 × 2 matrices Wi = (w
(i)
jk ) with

the elements

w
(i)
jk =

{
γiαij if j = k,

−σ
1
2

M (Pij)(‖Bij‖ + ǫi) if j 6= k.

Here 0 < ǫi < ǫi.
Further we need the following proposition.

Lemma 4.1 We assume that

(1) discrete system (1.2) is decomposed on the first level to the system (3.1) and on
the second level to the systems (4.1);

(2) all conditions of Assumptions 4.1 and 4.2 are satisfied;
(3) for the submatrices Eij , Uij of the matrices Ei, i = 1, 2, the estimates

‖Eij‖ 6 (1 − γi)µij , ‖Uij‖ 6 ǫi, i, j = 1, 2.

are realized.

Then there exist vectors d̂1, d̂2 ∈ R2 with positive components such that the first forward
differences ∆vi(xi)

∣∣
Cij

for the functions vi(xi) satisfy the estimates

∆vi(xi)
∣∣
Cij

6 −d̂T
i Wizi, i = 1, 2 (4.3)

and the matrices Wi are the M -matrices.

Here d̂i = (di1, di2)
T and zi = (‖xi1‖, ‖xi2‖)T.

The proof of Lemma 4.1 is analogous to that of Theorem 3.1.
Under the hypotheses of Lemma 4.1 the matrices Wi are the M -matrices and, ac-

cording to [8], the vectors d̂T
i Wi = (di1w

(i)
11 + di2w

(i)
21 , di1w

(i)
12 + di2w

(i)
22 ) have positive

components.
Let us denote

πi = min{di1w
(i)
11 + di2w

(i)
21 ; di1w

(i)
12 + di2w

(i)
22 }, i = 1, 2,

m =
1

2

(
π1π2

(d11σ
1
2

M (P11) + d12σ
1
2

M (P12)) (d21σ
1
2

M (P21) + d22σ
1
2

M (P22))

) 1
2 (4.4)

and give a method of optimal choice of the constants di1, di2, i = 1, 2.
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Lemma 4.2 Let the matrices W1 and W2 be the M -matrices and w
(i)
12 , w

(i)
21 < 0,

then

sup
d∈D

m(d) = m(d∗1, 1, d∗2, 1) =
1

2

(
w

(1)
11 w

(1)
22 − w

(1)
12 w

(1)
21

σ
1
2

M (P11)(w
(1)
22 − w

(1)
21 ) + σ

1
2

M (P12)(w
(1)
11 − w

(1)
12 )

×

×
w

(2)
11 w

(2)
22 − w

(2)
12 w

(2)
21

σ
1
2

M (P21)(w
(2)
22 − w

(2)
21 ) + σ

1
2

M (P22)(w
(2)
11 − w

(2)
12 )

) 1
2

,

(4.5)
where

D =

{
d = (d11, d12, d21, d22)

T ∈ R4 : −
w

(1)
21

w
(1)
11

<
d11

d12
< −

w
(1)
22

w
(1)
12

, −
w

(2)
21

w
(2)
11

<
d21

d22
< −

w
(2)
22

w
(2)
12

}
,

d∗1 =
w

(1)
22 − w

(1)
21

w
(1)
11 − w

(1)
12

, d∗2 =
w

(2)
22 − w

(2)
21

w
(2)
11 − w

(2)
12

.

Proof As the matrices W1 and W2 are the M -matrices, then w
(i)
11 , w

(i)
22 > 0, w

(i)
12 , w

(i)
21

< 0 and consequently, −
w

(i)
22

w
(i)
12

> −
w

(i)
21

w
(i)
11

> 0. On computing of the constant πi and m we

can set d12 = d22 = 1, d11 = d1, d21 = d2 and di ∈ Di =
{
di ∈ R : −

w
(i)
21

w
(i)
11

< di <

−
w

(i)
22

w
(i)
12

}
, i = 1, 2. Let us denote

mi(di) =
πi

diσ
1
2

M (Pi1) + σ
1
2

M (Pi2)
i = 1, 2,

and note that

sup
d∈D

m(d) =
1

2

(
sup

d1∈D1

m1(d1) sup
d2∈D2

m2(d2)
)
. (4.6)

By (4.4) for the function mi(di) we get the expressions

mi(di) =






diw
(i)
11 +w

(i)
21

diσ
1
2
M

(Pi1)+σ
1
2
M

(Pi2)
, if −

w
(i)
21

w
(i)
11

< di 6 d∗i ,

diw
(i)
12 +w

(i)
22

diσ
1
2
M

(Pi1)+σ
1
2
M

(Pi2)
, if d∗i 6 di < −

w
(i)
22

w
(i)
21

.

For the first derivatives m′
i(di) we have

m′
i(di) =






w
(i)
11 σ

1
2
M

(Pi2)−w
(i)
21 σ

1
2
M

(Pi1)(
diσ

1
2
M

(Pi1)+σ
1
2
M

(Pi2)
)2 , if −

w
(i)
21

w
(i)
11

< di < d∗i ,

w
(i)
12 σ

1
2
M

(Pi2)−w
(i)
22 σ

1
2
M

(Pi1)(
diσ

1
2
M

(Pi1)+σ
1
2
M

(Pi2)
)2 , if d∗i < di < −

w
(i)
22

w
(i)
21

,
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therefore m′
i(di) > 0 for −

w
(i)
21

w
(i)
11

< di < d∗i and m′
i(di) < 0 for d∗i < di < −

w
(i)
22

w
(i)
21

. From

here it follows that

sup
di∈Di

mi(di) = mi(d
∗
i ) =

w
(i)
11 w

(i)
22 − w

(i)
12 w

(i)
21

σ
1
2

M (Pi1)(w
(i)
22 − w

(i)
21 ) + σ

1
2

M (Pi2)(w
(i)
11 − w

(i)
12 )

.

Substituting by the values of mi(d
∗
i ) into (4.6), we get the identity (4.5). Lemma 4.2 is

proved.

Assumption 4.3 Let for the submatrices M
(i)
jk of the matrices Bi the inequalities

m = max ‖M
(i)
jk ‖ < m

be realized for all i, j, k = 1, 2.

The following proposition is basic in the method of hierarchical Lyapunov functions
in the robust stability problem of the system (1.2).

Theorem 4.1 We assume that for the uncertain system (1.2) the two-level decom-
position (3.1), (4.1) is realized and all conditions of Assumptions 4.1 – 4.3 are satisfied.
If the inequalities

‖Eij‖ 6 (1 − γi)µij , ‖Uij‖ 6 ǫi, ‖F
(i)
jk ‖ < m − m

are fulfilled for all i, j, k = 1, 2, then the equilibrium x = 0 of the system (1.2) is
asymptotically stable.

Proof Under the hypotheses of Lemma 4.1 there exist constants dij > 0 for which

d̂T
i Wizi > 0. In view of designations (4.4), we get from estimate (4.3)

∆vi(xi)
∣∣
Si

6 −πi

(
‖xi1‖

2 + ‖xi2‖
2
) 1

2 = −πi‖xi‖, i = 1, 2.

Since for i 6= k the estimates

∆vi1(xi1)
∣∣
Ŝi

6 ∆vi1(xi1)
∣∣
Si

+σ
1
2

M (Pi1)(2m + ‖F
(i)
11 ‖ + ‖F

(i)
12 ‖)‖xk‖,

∆vi2(xi2)
∣∣
Ŝi

6 ∆vi2(xi2)
∣∣
Si

+σ
1
2

M (Pi2)(2m + ‖F
(i)
21 ‖ + ‖F

(i)
22 ‖)‖xk‖,

are true, then

∆vi(xi)
∣∣
Ŝi

= di1∆vi1(xi1)
∣∣
Si

+di2∆vi2(xi2)
∣∣
Ŝi

6 −πi‖xi‖+
[
di1σ

1
2

M (Pi1)
(
2m+

+ ‖F
(i)
11 ‖ + ‖F

(i)
12 ‖

)
+ di2σ

1
2

M (Pi2)
(
2m + ‖F

(i)
21 ‖ + ‖F

(i)
22 ‖

)]
‖xk‖.

(4.7)

For the function
v(x) = d1v1(x1) + d2v2(x2)

in view of estimates (4.7) we get

∆v(x)
∣∣
S
= d1∆v1(x1)

∣∣
Ŝ1

+d2∆v2(x2)
∣∣
Ŝ2

6 −d̂TW z, (4.8)
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where d̂ = (d1, d2)
T, z = (‖x1‖, ‖x2‖)T and W is a 2 × 2-matrix with the elements

wjk =





πj for j = k,

−dj1σ
1
2

M (Pj1)(2m + ‖F
(j)
11 ‖) + ‖F

(j)
12 ‖)−

−dj2σ
1
2

M (Pj2)(2m + ‖F
(j)
21 ‖) + ‖F

(j)
22 ‖) for j 6= k.

Under the hypotheses of Theorem 4.1 the matrix W in the estimate (4.8) is the M -
matrix. Thus the matrices W1, W2, W are the M -matrices and it is sufficient [3] for
asymptotic stability of the system (1.2).

5 Discussion and Some Applications

The hierarchical approach in robust stability problem permits a more complete allowance
for the dynamic characteristics of the nominal system on each hierarchical level and thus
a more exact definition of robust bounds for the system (1.2). We illustrate efficiency of
the approach proposed in the paper by a simple example.

Let us assume that in the system (1.2) the matrix A has the form

A =




0.5 0.01 0.03 0
0.01 0.125 0 0.03
0.03 0 0.25 0.005
0 0.03 0.005 0.125


 . (5.1)

5.1 Scalar approach

Let us compute the matrices and constants occurring in the framework of the scalar
approach (see Theorem 2.1):

P =




1.336149 0.008512 0.032104 0.000737
0.008512 1.017019 0.000708 0.007761
0.032104 0.000708 1.068495 0.002057
0.000737 0.007761 0.002057 1.016891


 ;

σ(P ) ≈ 1.340176; σM (P − I) ≈ 0.340176; µ ≈ 0.496185.

Here I is a 4 × 4 - unit matrix. From here the robust bound for the system (1.2) with
the matrix (5.1) is determined by the inequality

‖E‖ < 0.496185 (5.2)

for all matrices E ∈ S1.

5.2 Vector approach

According to this approach we decomposed the matrix (5.1) and denote

A1 =

(
0.5 0.01
0.01 0.125

)
, A2 =

(
0.25 0.005
0.005 0.125

)
, B1 = B2 =

(
0.03 0
0 0.03

)
.
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The uncertain matrix E is represented in the form (3.3). The matrices and constants
occurring in the framework of vector the approach are:

P1 ≈

(
1.333581 0.008469
0.008469 1.016029

)
, P2 ≈

(
1.066699 0.002031,

0.002031 1.015902

)
,

σM (P1) ≈ 1.333807, σM (P2) ≈ 1.066780, µ1 ≈ 0.449733, µ2 ≈ 0.749800.

Hence we have the estimates of submatrices norms in the form

‖E1‖ 6 0.499733(1− γ), ‖E2‖ 6 0.749800(1− γ), γ ∈ (0, 1). (5.3)

Let γ = 0.25. Besides ǫ ≈ 0.012303.
Finally, for the matrix E represented in the form (3.3), we get the estimates:

‖E1‖ 6 0.374800, ‖E2‖ 6 0.562350, ‖Ui‖ < 0.012303, i = 1, 2. (5.4)

For example the matrix

Ẽ = diag {0.37, 0.37, 0.56, 0.56}

satisfies the inequalities (5.4). But ‖Ẽ‖ = 0.56, and consequently, the norm of uncertain

matrix Ẽ does not satisfy the inequality (5.2).

5.3 Hierarchical approach

According to the proposed algorithm we accomplish the two-level decomposition of sys-
tem (1.2) with the matrix (5.1) and as a result we get:

A11 = 0.5, A12 = 0.125, A21 = 0.25, A22 = 0.125.

Let
γ1 = 0.5, γ2 = 0.125.

Numerical values of corresponding constants are:

σM (P11) ≈ 1.333333, σM (P12) ≈ 1.015873, µ11 = 0.5, µ12 = 0.875,

σM (P21) ≈ 1.066666, σM (P22) ≈ 1.015873, µ21 = 0.75, µ22 = 0.875,

ǫ1 ≈ 0.320718, ǫ2 ≈ 0.096261.

We shall set ǫ1 = 0.05, and ǫ2 = 0.006. In this case for the matrices W1 and W2 we get
the expressions

W1 ≈

(
0.288675 −0.069282
−0.060474 0.440958

)
, W2 ≈

(
0.096824 −0.011360

−0.011086 0.110239

)
.

The matrices W1 and W2 are the M -matrices as their non-diagonal elements are negative
and their principal minors are positive.
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The constant m is computed by the formular (4.5): m ≈ 0.038392. Thus, the following
restrictions are imposed on submatrices of E:

‖E11‖ 6 0.25, ‖E12‖ 6 0.4375, ‖E21‖ 6 0.65625, ‖E22‖ 6 0.765625,

‖U1j‖ 6 0.05, ‖U2j‖ 6 0.006, ‖F
(i)
jk ‖ < 0.008392.

(5.5)

For example the matrix

E = diag {0.25, 0.43, 0.65, 0.76}

satisfies the inequalities (5.5). Since ‖E‖ = 0.76, the matrix E does not satisfy condition

(5.2). Moreover ‖ diag {0.65, 0.76}‖ = 0.76 > 0.75 and it means that for the matrix E

conditions (5.3) are not satisfied for any γ ∈ (0, 1).
Thus, the general conclusion from this example is: the hierarchical Lyapunov function

allows a more complete use of the potential possibilities of direct Lyapunov method in
robustness analysis of discrete system (1.2).
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