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Abstract: The paper deals with n-dimensional dynamical system of impulse
type whose dynamical characteristics are dependent on the step Markov pro-
cess with rapid switchings. The phase motion has small jumps at the moments
of switchings and satisfies the ordinary differential equation in the intervals of
constancy of the Markov process. The intensity of switchings, the quantities
of jumps and the vector field of the differential equation are dependent on the
phase coordinates and Markov process. Under some assumptions the limit av-
eraged ordinary differential equation, the limit differential equation switched
by the merged Markov process, the diffusion approximation and the limit
stochastic differential equation of Ornstein-Uhlenbeck type for normalized de-
viations are constructed. It is proved that one can use the limit equations for
stability analysis of an initial impulse dynamical system.
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1 Introduction

The problem of asymptotic analysis of dynamical systems under small random pertur-
bations has been discussed in many mathematical and engineering papers. Apparently,
R.Z. Khasminsky was the first mathematician to have proved that the probabilistic limit
theorems may be successfully used for differential equations with random right parts.
The approach proposed in [12] makes it possible to apply for asymptotic analysis of real
stochastic structural dynamical systems not only the Krylov-Bogolyubov averaging pro-
cedure but also diffusion approximation (see, for example, [6] and review there). It should
be mentioned that in spite of the fact that the above result has been developed in [12] for
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the analysis of differential equations on a finite time interval, the diffusion approximation
procedure has been applied in many engineering papers for Lyapunov stability analysis,
that is, for analysis of differential equations as t → ∞. To prove the validity of this
approach the authors of papers [3, 5, 14, 15] had to use not only a special type of limit
theorem in Skorokhod space [16] but also martingale techniques and a stochastic ver-
sion of the Second Lyapunov method developed for stochastic Ito differential equations
in [13]. These asymptotic methods of stochastic stability analysis have been applied in
the above-mentioned papers to differential equations with continuous trajectories. But
some dynamical systems of the recent Economics (see, for example, [1, 4, 9, 10] and review
there) require an extension of “smooth” models to allow the phase motion to have a jump
type discontinuity. A possible approach to this problem developed in [11, 17 – 19, 21] is
discussed in the present paper.

To formulate the problems one needs first of all to describe the switching step process
{y(t), t ≥ 0} with values in the set Y. We suppose for simplicity that Y is discrete
at most countable space but all our results easily can be reformulated for any metric
topological space. We will assume that the above switching process is a right continu-
ous homogeneous Markov process [8] with a weak infinitesimal operator defined by the
equality

Qv(y) := a(y)
∑

z∈Y

[v(z) − v(y)]p(y, z)

for any bounded mapping v : Y → R, where p(y, z) is the transition probability of
the embedded Markov chain and a(y) is the intensity of switchings which satisfies the
inequality 0 < â1 ≤ a(y) ≤ â2 < ∞ for any y ∈ Y. It is well known [8, 16] that the
above {y(t)} is a piecewise constant process with the switching moments {τj, j ∈ N}
which have the conditional exponential distributions defined by the equalities: τ0 = 0,

P {τj − τj−1 > t | y(τj−1) = y} = exp{−a(y)t}, j ∈ N.

Now one can describe the Impulse Dynamical System (IDS) in Rn with small param-
eter ε ∈ (0, 1) this paper deals with. The phase motion x(t) of this system satisfies:

– the initial condition

x(0) = x; (1)

– the differential equation
dx

dt
= ε f(x, y(t), ε) (2)

for all t ∈ (τj−1, τj), j ∈ N;
– the condition of jump

x(t) = x(t − 0) + εg(x(t − 0), y(t − 0), ε) (3)

for all t ∈ {τj , j ∈ N}, where

f(x, y, ε) = f1(x, y) + ε f2(x, y), g(x, y, ε) = g1(x, y) + ε g2(x, y) (4)

and fj(x, y), gj(x, y), j = 1, 2 are twice boundedly continuously differentiable on x
functions.
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Under the above assumptions it is easy to prove [21] that the pair {x(t), y(t)} is a
homogeneous Markov process with the weak infinitesimal operator

(L)v(x, y) := ε(f(x, y, ε), ▽) v(x, y) + Qv(x, y) + εGεv(x, y), (5)

where

Gεv(x, y) =
a(y)

ε

∑

z∈Y

[v(x + εg(x, y, ε), z) − v(x, z)]p(y, z), (6)

(., .) is scalar product and ▽ is an operator-gradient in Rn.
In this paper we will discuss the problem of asymptotic analysis of the IDS (2) – (3)

for sufficiently small positive ε. Under the condition of ergodicity of the Markov process
{y(t)} with limit distribution {µ(y), y ∈ Y} we shall do this starting with the limit
averaged ordinary differential equation for (2) – (3)

dx̄

dt
= F̄1 (x̄), (7)

where
F̄1(x) :=

∑

y∈Y

F1(x, y)µ(y), F1(x, y) := f1(x, y) + a(y)g1(x, y). (8)

It will be proven that this deterministic approximation may be successfully used not
only on a finite interval but also for asymptotic stability analysis of the initial system.
If F1(x) ≡ 0 one will then be able to do the next step in asymptotic analysis of (2) – (3)
using the limit theorem in Skorokhod space [16]. This approach leads us in the second
section to the limit Ito stochastic differential equation which also can be successfully
used for stability analysis of (2) – (3). The third section contains a derivation of a merger
procedure and stability theorem based on the merged differential equation.

A word should be said about tools. To prove the limit theorems for (2) – (3) the
methods and results of paper [2] can be successfully applied. But in the above paper the
author uses specially constructed recurrent equations in the moments of switchings and
does not use any infinitesimal characteristics of the Markov process {x(t), y(t)}. This
approach is poorly consistent with the Second Lyapunov method, which is mainly used
for stability analysis of stochastic dynamical systems [3, 5, 6, 13, 14] and is the main tool
of our paper. To prove the classical averaging or merger theorems, unlike the martingale
approach of [14], this paper applies the Lyapunov method with specially constructed
Lyapunov functions, reflecting the distance between corresponding solutions of the system
(2) – (3) and averaged or merged differential equations.

2 Averaging and Stability

Let us assume that the spectrum σ(Q) of the weak infinitesimal operator Q has the simple
spectrum point 0, σ(Q)�{0} ⊂ {z ∈ C : ℜz < −ρ < 0} and let the distribution {µ(y)}
be the solution of the equation Q∗µ = 0, where Q∗ is a conjugate operator. Under these
conditions one can extend [8] the potential of the above Markov process and define the
linear continuous operator Π: B (Y) → B (Y) by equality

(Πv)(y) :=

∞
∫

0

∑

z∈Y

v(z)[P (t, y, z) − µ(z)] dt, (9)
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where B(Y) is the space of bounded mappings {v(y), y ∈ Y} of Y to R and P (t, y, z)
is the transition probability.

It is easy to prove that any considerable variations of any solution of (2) – (3) can
happen only on a sufficiently large time interval of order ε−1. Therefore it is convenient
to pass to the slow time s = εt and to analyze the process with rapid switchings defined
by the equality xε(s) := x(s/ε).

Theorem 2.1 (Averaging principle) Under the above assumptions the processes
{xε(s)} for any r > 0, T > 0 uniformly on y ∈ Y, x ∈ Ur := {|x| ≤ r}, t ∈ [0, T ]
converge on probability as ε → 0 to the solution of (7) with initial condition x̄(0) = x,
that is, for any δ > 0

lim
ε→0

sup
y,|x|<r

Px,y

(

sup
0≤t≤T

|xε(t) − x̄(t, x)| > δ
)

= 0.

Proof Under the assumptions of twice continuously boundedly differentiability on x
of the functions f1(x, y) and g1(x, y), the function F̄1(x) from (8) also has the continuous
bounded derivative D F̄1(x) and therefore the Cauchy problem x̄(0) = x̄ for (7) has
a unique solution x̄(s, x̄) for any x̄ ∈ Rn. It is easy to prove that the joined process
{xε(s), y(s/ε), x̄(s)} one can consider as the Markov process with the weak infinitesimal
operator [8]

L(ε) := (f(x, y, ε), ▽(x)) + (F̄1(x̄), ▽(x̄)) +
1

ε
Q + Gε,

where the gradients are acting by indicated indices. Let us choose constant c so large
that for all ε ∈ (0, 1) and phase variables x, y, x̄ the function

vε(x, y, x̄) := |x − x̄|2 + ε[2(x − x̄, (ΠF1)(x, y)) + c (1 + |x|2 + |x̄|2)]

satisfies the inequalities

|x − x̄|2 + ε (1 + |x|2 + |x̄|2) ≤ vε(x, y, x̄) ≤ |x − x̄|2 + ε c1 (1 + |x|2 + |x̄|2)

with some positive constant c1. Applying the equality

Q (ΠF1)(x, y) = −F1(x, y) + F̄1(x) (10)

and well-known Dynkin’s formula [8]

Ex,y vε(x
ε(t), y(t/ε), x̄(t, x̄)) = vε(x, y, x̄)

+

t
∫

0

Ex,y L(ε) vε(x
ε(s), y(s/ε), x̄(s, x̄)) ds

one can obtain the inequality L(ε)vε(x, y, x̄) ≤ k vε(x, y, x̄) which guarantees the sto-
chastic process

ζ(t, x, y, x̄) := vε(x
ε(t), y(t/ε), x̄(t, x̄)) exp{−kt}
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be supermartingale [7, 13]. To complete the proof one can use the supermartingale prop-
erties and to write the inequalities

Px,y

(

sup
0≤t≤T

|xε(t) − x̄(t, x)| ≥ δ
)

≤ P
(

sup
0≤t≤T

ζ(t, x, y, x) ≥ δ2 e−kT
)

≤ δ−2 ekT vε(x, y, x) ≤ ε c1 δ−2 ekT (1 + 2|x|2)

for any δ > 0, T > 0.

Let now f(0, y, ε) ≡ g(0, y, ε) ≡ 0. Then also F̄1(0) = 0 and both systems (2) – (3) and
(7) have the trivial solution. We will say that the trivial solution of (7) is exponentially
stable if there exist positive constants M , γ such that |x̄(t, x̄)| ≤ M |x̄| exp{−γt} for
any t ≥ 0 and x̄ ∈ Rn. For the IDS (2) – (3) we will use the following two definitions of
stability [13]:

1) the trivial solution of (2) – (3) is called asymptotically stochastic stable if for any
η > 0 there exists a δ-neighborhood Bδ := {|x| < δ} such that any motion
starting within Bδ remains within an η-neighborhood with probability not less
than 1 − η and tends to zero as t → ∞;

2) the trivial solution of (2) – (3) is called exponentially p-stable, if there exist positive
numbers K and β such that the inequality E|x(t)|p ≤ K |x|p × exp{−βt} is
satisfied for all t ≥ 0 and initial conditions x ∈ Rn, y ∈ Y.

Theorem 2.2 Under the above assumptions if the trivial solution of (7) is exponen-
tially stable then for any p > 0 there exists εp > 0 such that the trivial solution of IDS
(2) – (3) is exponentially p-stable for any ε ∈ (0, εp).

Proof Owing to exponential decrease of the solutions of (7) and the boundedness of
the derivative of F̄1(x) one can define the Lyapunov function

v(p)(x) :=

T
∫

0

|x̄(t, x)|p dt,

where T = ln M+ln p
γ

and the constants M , γ are taken from the above definition of

exponential stability. It is easy to verify that this function satisfies the inequalities

m1 |x|p ≤ v(p)(x) ≤ m2 |x|p (11)

with some positive constants m1, m2. By definition of the gradient and due to exponential
stability of (7) one can write the inequalities

(F̄1(x), ▽) v(p)(x) = |x̄(T, x)|p − |x|p ≤ −1

2
|x|p ≤ − 1

2m2
v(p)(x) (12)

for any x ∈ Rn. To prove the theorem we will use the Lyapunov function

v(p)
ε (x, y) := v(p)(x) + ε((ΠF1)(x, y), ▽) v(p)(x).

By definition (9) and due to equality

Q((ΠF1)(x, y), ▽) v(p)(x) + (F1(x, y), ▽) v(p)(x) = (F̄1(x), ▽) v(p)(x)
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and inequalities (11) – (12) one can choose such a constant εp > 0 that the above Lya-
punov function satisfies the inequalities

m̂1 |x|p ≤ v(p)
ε (x, y) ≤ m̂2 |x|p, L(ε) v(p)

ε (x, y) ≤ − 1

4m2
v(p)

ε (x, y)

with some positive constants m̂1, m̂2 for any ε ∈ (0, εp). Using Dynkin’s formula for the
stochastic process

ξ(s) := v(p)
ε (xε(s), y(s/ε)) e

1

4m2
s

one can get the inequalities

m̂1e
1

4m2
s
Ex,y |xε(s)|p ≤ v(p)

ε (x, y) ≤ m̂2 |x|p,

for any s ≥ 0 and the proof is complete.

By using the supermartingale property of the above defined stochastic process ξ(s)
one can make sure that under the conditions of the Theorem 2.2 the trivial solution of
the IDS (2) – (3) is asymptotically stochastic stable for all sufficiently small positive ε.

3 Diffusion Approximation and Stability

In this Section we will assume that in addition to the condition of ergodicity of the
Markov process and twice bounded differentiability of the functions (4) on x the average
function satisfies the condition F̄1(x) ≡ 0. Thus, any solution of the averaged equation
(7) is constant and we have no information on the behavior of the solutions of the IDS
(2) – (3). Then we can go to the “very slow” time θ = εs = ε2t, where t is the initial
time of the IDS (2) – (3). Let us denote xε(θ) := x(θ/ε2). The infinitesimal operator of
the Markov process {xε(θ), y(θ/ε2)} has the form

Lε :=
1

ε
(f(x, y, ε), ▽) +

1

ε2
Q +

1

ε
Gε. (13)

In spite of the fact that the operator (13) has a singular type as ε → 0 under the above
condition one can prove the following assertions.

Lemma 3.1 [21] For any positive p there exist positive constants cp, γp, εp such
that

Ex,y |xε(θ)|p ≤ cp (1 + |x|)p eγpθ

for all x ∈ Rn, y ∈ Y, ε ∈ (0, εp), θ > 0.

Corollary 3.1 [21] For any T > 0, r > 0 there exists εT > 0 such that

lim
ρ→∞

sup
0≤ε≤εT

Px,y

(

sup
0≤θ≤T

|xε(θ)| ≥ ρ
)

= 0

uniformly on y ∈ Y and x ∈ Ur.

The family of the stochastic processes {{xε(θ), 0 ≤ θ ≤ T }, ε ∈ (0, ε0)} with initial
condition xε(0) = x we will consider as the family of random variables in Skorokhod
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space [16] D([0, T ], Rn). The probability measures corresponding to these random vari-
ables we will denote Pε. Owing to Corollary 3.1 we may confirm that for any natural
m and any moments of time θm > θm−1 > · · · > θ1 ≥ 0 the distribution family of
the random vectors {xε(θ1), xε(θ2), . . . , xε(θm)} is weak compact. That is, the family
{Pε} is relatively compact (as ε → 0) in the meaning of the weak convergence of finite-
dimensional distributions. We will prove that there exist the weak limit of the family
{Pε} as ε → 0. To describe the limit process let us introduce the vector

b(x) :=
∑

y∈Y

[f2(x, y) + a(y) g2(x, y)]µ(y) +
∑

y∈Y

[ΠDF1(x, y)] F1(x, y)µ(y)

−
∑

y∈Y

[DF1(x, y)] g1(x, y)µ(y)

and the positive symmetrical matrix σ(x) defined by the equality

(σ(x) z, z) = 2
∑

y∈Y

[

(F1(x, y), z) (ΠF1(x, y), z)

− (g1(x, y), z)
(

f1(x, y) +
1

2
a(y) g1(x, y), z

)]

µ(y)

with an arbitrary vector z ∈ Rn.

Theorem 3.1 (Diffusion approximation) Under the above assumptions the fam-
ily {Pε} weak converges as ε → 0 to the diffusion Markov process with weak infinitesimal
operator

L0 := (b(x), ▽) +
1

2
(σ(x)▽, ▽). (14)

Proof To prove this theorem it is sufficient to verify [16] that for any twice continu-
ously differentiable function v(x) with bounded support the equality

lim
ε→0

1

ε
sup

0<h<ε

∣

∣

∣

∣

∣

Ex,y

{

v(xε(s + h)) − v(xε(s)) −
s+h
∫

s

L0 v(xε(τ)) dτ

}∣

∣

∣

∣

∣

= 0

can be written for all 0 ≤ s < T , x ∈ Rn, y ∈ Y. This equality one can get using
Dynkin’s formula for Ex,y w(xε(s), y(s/ε2), ε), where

w(x, y, ε) = v(x) + ε (ΠF1(x, y), ▽) v(x) + ε2 u(x, y),

and u(x, y) is a solution of the equation

Q u(x, y) = −
{

(f2(x, y) + a(y) g2(x, y) + [ΠD F1(x, y)] F1(x, y)

−[D F1(x, y)] g1(x, y) − b(x), ▽) v(x) + ([D ▽ v(x)] F1(x, y), ΠF1(x, y))

−
(

[D ▽ v(x)] g1(x, y), f1(x, y) +
1

2
a(y) g1(x, y)

)

− 1

2
(σ(x)▽, ▽) v(x)

}

.
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Owing to the Fredholm alternative [11] and by construction the vector b(x) and the
matrix σ(x) the above equation has solution and the proof is complete.

There exists [8] a Markov process X(t) with infinitesimal operator (14) which satisfies
the stochastic Ito differential equation

dX = b(X) dt +

n
∑

k=1

σk(X) dwk(t), (15)

where wk(t), k = 1, 2, . . . , n are the coordinates of the standard Wiener process in Rn

and the matrices σk(X), k = 1, 2, . . . , n are defined such that the process X(t) has the
infinitesimal operator (14). Equation (15) is called [2] the diffusion approximation of the
process {xε(t)}.

If F̄1(x) is not identically equal to zero one can use the diffusion approximation for
the normalized deviations ξε(t) := [x(t/ε) − x̄(t)]/

√
ε as ε → 0 applying Theorem 3.1

to the 2n dimensional process {ξε(t), x̄(t)} with small parameter
√

ε.

Theorem 3.2 [19, 21] Under the assumptions of this Section the probability measures

{P̂ε} corresponding to the normalized deviations {ξε(t), 0 ≤ t ≤ T } weak converge as

ε → 0 to the measure P̂ corresponding to the solution {X̂(t), 0 ≤ t ≤ T } of the
stochastic Ito equation

dX̂ = DF̄1(x̄(t))X̂ dt +
n

∑

k=1

σk(x̄(t)) dwk(t) (16)

with initial condition X̂(0) = 0, where x̄(t) is the solution of (7) with the initial condition
x̄(0) = x.

The diffusion approximation (15) in just the same way as for the Markov dynamical
systems without jumps [3, 5] can be successfully used for stability analysis of the IDS (2) –
(3).

Theorem 3.3 Under the assumptions of this Section if the trivial solution of (15) is
exponentially p-stable then the trivial solution of the IDS (2) – (3) is also exponentially
p-stable for all sufficiently small ε.

Proof It is shown in [13] that trivial solution of equation (12) is exponentially p-stable
if and only if there exists such a sufficiently smooth Lyapunov function V (x) that

h1|x|p ≤ V (x) ≤ h2|x|p, L0V (x) ≤ −h3|x|p, ‖Dl ▽ V (x)‖ ≤ h4|x|p−l−1

for any x ∈ Rn, l = 1, 2, 3 and some positive constants hj, j = 1, 2, 3, 4. To prove the
theorem we will use the Lyapunov function

Vε(x, y) = V (x) + ε(ΠF1(x, y), ▽)V (x) + ε2 U2(x, y)

where U2(x, y) satisfies the equation

Q U2(x, y) = −
{

(F1(x, y), ▽) (ΠF1(x, y), ▽)V (x) + (f2(x, y)

+ a(y)g2(x, y), ▽)V (x) +
1

2
(g1(x, y), ▽)V (x) + L0 V (x)

}

.
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One can apply the infinitesimal operator Lε to the function Vε(x, y) and to obtain the
equality LεVε(x, y) = L0V (x) + r(x, y, ε), where the last term satisfies the inequality
|r(x, y, ε)| ≤ α(ε)|x|p with some infinitesimal α(ε) as ε → 0. It is easy to verify that
there exist the positive constants ε0, r1, r2, r3 such that the function Vε(x, y) satisfies
the inequalities

r1 |x|p ≤ Vε(x, y) ≤ r2 |x|p, LεVε(x, y) ≤ −r3 |x|p ≤ −r3

r2
Vε(x, y)

for all x ∈ Rn, y ∈ Y, ε ∈ (0, ε0). To complete the proof one can use the same
calculations as in the end of the proof of Theorem 2.2.

4 Merger and Stability

To illustrate the asymptotic merger method of stability analysis proposed in [14] we
will suppose that the infinitesimal operator of the step Markov process has the form
Qε = Q0 + εQ1, where

Qj v(y) :=
∑

y∈Y

[v(z) − v(y)] pj(y, z), j = 0, 1

and pj(y, z) as functions of z ∈ Y are positive uniformly bounded on y ∈ Y discrete
measures. Let {yε(t), t ≥ 0} be the Markov process corresponding to this infinitesimal
operator. It is easy to see that this process is a step Markov process [8]. We will
assume that the operator Q0 has 0 as an isolated simple eigenvalue of multiplicity h, the
eigenfunctions of this operator are defined by equalities

qj (y) =

{

1, for y ∈ Yj

0, for y ∈ Yk, k 6= j

with nonintersecting supports Yj , j = 1, h and the remaining part of the spectrum
is situated in the half-plane {λ ∈ C : ℜλ < −ρ} for some positive ρ. The conjugate
operator Q∗

0 also [8, 11] has 0 as an isolated eigenvalue of multiplicity h and h invariant

probabilistic measures µk(y) with the same supports Yk, k = 1, h.

In this section we will deal with stochastic process {xε(t), t ≥ 0} which satisfies the
differential equation

dxε

dt
= εf(xε, yε(t), ε), (17)

for all t ∈ (τε
j−1, τε

j ), j ∈ N, and the conditions of jump

xε(t) = xε(t−) + εg(xε(t−), yε(t−), ε), (18)

for all t ∈ {τε
j , j ∈ N}, where {τε

j , j ∈ N} are switching time moments of the process

{yε(t), t ≥ 0} and functions f(x, y, ε), g(x, y, ε) were defined in Section 2. The system
(17) – (18) we will consider in slow time s = εt denoting x̃ε(s) = xε(s/ε).
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To define the limit merged Markov process for the family {x̃ε(s)} as ε → 0 [14]

one needs the merged state space Ŷ := {Y1, Y2, . . . , Yh} which for simplicity we will

denote Ŷ := {1, 2, . . . , h} and the infinitesimal matrix Γ = {γk
j }, where

γk
j :=



















∑

y∈Yk

p1(y,Yj)µk(y), if j 6= k,

−
h
∑

l=1
l 6=k

γl
k, if j = k,

(19)

k, j = 1, h. Corresponding to this infinitesimal matrix process {ŷ(t), t ≥ 0} is called a
merged Markov process. To use the merger method of [14] first of all one has to define
the function

F̃1(x, y) ≡
∑

z∈Yk

(f1(x, z) + g1(x, z)p0(z,Y))µk(z), y ∈ Yk

for each k = 1, h and differential equation

dx̃ε

ds
= F̃1(x̃ε(s), yε(s/ε)). (20)

Substituting the above defined merged step Markov process {ŷ(s), s ≥ 0} instead of
the initial Markov process {yε(s/ε), s ≥ 0} in (20) we will obtain the limit merged
differential equation for the system (17) – (18)

dx̂

ds
= F̂1(x̂(s), ŷ(s)), (21)

where F̂1(x, k) := F̃1(x, y) for any k = 1, h and y ∈ Yk.
Owing to assumption on spectrum structure of the operator Q0 one can define [11]

the projective operator P by the equalities

∀ y ∈ Yk, v ∈ B(Y) : (Pv)(y) ≡
∑

z∈Yk

v(z)µk(z)

for each k = 1, h and the linear continuous operator Π̂ : B (Y) → B (Y) by equality

(Π̂v)(y) :=

∞
∫

0

∑

z∈Y

P0(t, y, z)(v − Pv)(z) dt, (22)

where P0(t, y, z) is the transition probability corresponding to infinitesimal operator Q0.
The operator (22) we will use in the same way as the potential Π in Section 2.

Theorem 4.1 (Merger principle) Under the above assumptions the family of pro-
cesses {xε(s)} weak converges as ε → 0 to the solution of (21) with corresponding initial
condition.

Proof It is easy to prove that the processes {xε(s), yε(s/ε), x̃ε(s)} one can consider
jointly as the Markov process with the weak infinitesimal operator [8]

L̃(ε) := (f(x, y, ε), ▽(x)) + (F̃1(x̃, y), ▽(x̃)) +
1

ε
(Q0 + εQ1) + G̃ε,
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where the operator G̃ε is defined by the equality

G̃εv(x, y) =
1

ε

∑

y∈Y

[v(x + εg(x, y, ε), z) − v(x, z)](p0(y, z) + εp1(y, z))

and the gradients are acting by indicated indices. As in Section 2 we will use the function

vε(x, y, x̃) := |x − x̃|2 + ε[2(x − x̃, (Π̃F1)(x, y)) + c (1 + |x|2 + |x̃|2)],

which for sufficiently large c satisfies the inequalities

|x − x̃|2 + ε (1 + |x|2 + |x̃|2) ≤ vε(x, y, x̃) ≤ |x − x̃|2 + εc1 (1 + |x|2 + |x̃|2)

with some positive constant c1 for all ε ∈ (0, 1) and x ∈ Rn, y ∈ Y, x̃ ∈ Rn. Applying
the equality

Q0 (Π̃F1)(x, y) = −F1(x, y) + F̃1(x, y)

one can obtain the inequality L̃(ε)vε(x, y, x̃) ≤ kvε(x, y, x̃) with some positive constant k.
Hence, for any x ∈ Rn, y ∈ Y, x̃ ∈ Rn the stochastic process vε(xε(t), yε(t/ε), x̃ε(t))
× exp{−kt} is a positive supermartingale [7]. Therefore under the initial conditions
xε(0) = x, x̃ε(0) = x one can write the inequality

Px,y

(

sup
0≤t≤T

|xε(t) − x̃ε(t)| ≥ δ
)

≤ εc1 δ−2 ek2T (1 + 2|x|2) (23)

for any δ > 0, T > 0.
Under the assumptions of twice continuously boundedly differentiability on x of the

functions f1(x, y) and g1(x, y), the function F̃1(x, y) also has two continuous bounded
derivatives and therefore one can use the merger method and results of paper [14]. Ac-
cording to the above paper for any T > 0 and x̃ ∈ Rn the solution {x̃ε(t), t ∈ [0, T ]}
of Cauchy problem x̃ε(0) = x for (20) defines on Skorokhod space D([0, T ], Rn) the
family of probability measures {Pε, ε ∈ (0, 1)} which weak converges as ε → 0 to the
probability measure corresponding to the solution of the Cauchy problem x̂(0) = x for
(21). This assertion and inequality (23) complete the proof.

Let now f(0, y, ε) ≡ g(0, y, ε) ≡ 0. Then also F̃1(0, y) ≡ 0 and both systems (17) –
(18) and (21) have the trivial solution.

Theorem 4.2 Under the above assumptions if the trivial solution of (21) is exponen-
tially p-stable for all sufficiently small ε and some p > 0 then there exists εp > 0 such
that the trivial solution of IDS (17) – (18) is exponentially p-stable for any ε ∈ (0, εp).

Proof Owing to exponential decrease of the p-moments of the solutions of (21) and

a boundedness of the x-derivative of F̃1(x, y) one can define function

y ∈ Yk : v(p)(x, y) ≡ v̂(p)(x, k) :=

T
∫

0

Ex,k|x̂(t)|p dt, k = 1, h,

with so large a constant T that the above function satisfies the inequalities m1|x|p ≤
v(p)(x, y) ≤ m2|x|p with some positive constants m1, m2. Owing to exponential p-

stability of (21), the inequality (F̂1(x, k), ▽)v̂(p)(x, k) + Γv̂(p)(x, k) ≤ −m3v̂
(p)(x, k) is
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held with some positive constant m3 for any k = 1, h and x ∈ Rn. To prove the theorem
we will use the Lyapunov function

v(p)
ε (x, y) := v(p)(x, y) + εΠ̃{(F1(x, y), ▽) v(p)(x, y) + Q1v

(p)(x, y)},

which satisfies the inequalities m̂1|x|p ≤ v
(p)
ε (x, y) ≤ m̂2|x|p with some positive constants

m̂1, m̂2 for any ε ∈ (0, 1). By definition of the operator Π̃ one can write the equality

(F1(x, y), ▽) v(p)(x, y) + Q1v
(p)(x, y) + Q0v

(p)
1 (x, y)

= (F̃1(x, y), ▽) v(p)(x, y) + PQ1v
(p)(x, y) + εr(x, y, ε)

= (F̂1(x, k), ▽) v̂(p)(x, k) + Γv̂(p)(x, k) + εr(x, y, ε)

≤ −m3v̂
(p)(x, k) + εα(ε)|x|p

and therefore

(F1(x, y), ▽) v(p)(x, y) + Q1v
(p)(x, y) + Q0v

(p)
1 (x, y)

≤ −m3v̂
(p)(x, k) + εα(ε)|x|p

for any y ∈ Yk and k = 1, h, where α(ε) is infinitesimal as ε → 0. Owing to the above
inequalities there exist such positive constants εp that for any ε ∈ (0, εp)

L(ε)v(p)
ε (x, y) ≤ −m3

2
v(p)

ε (x, y).

Now we can use Dynkin’s formula for Ex,y

{

v
(p)
ε (xε(s), yε(s/ε)) exp(sm3/2)

}

and complete

the proof as it has been done in the proof of Theorem 2.2.
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[15] Šadurskii, K. and Tsarkov, Ye. On diffusion approximation and stochastic stability. The-

ory Stoch. Proc. 18(2) (1996) 81–95.
[16] Skorokhod, A.V. Asymptotic Methods of Theory of Stochastic Differential Equations.

AMS, Providence, 1994.
[17] Sverdan, M.L. and Tsarkov, Ye.F. On stability of linear stochastic impulse systems. Teoria

Imovirnostej ta Matematychna Statistika 53 (1996) 121–130. [Russian].
[18] Sverdan, M.L., Tsarkov, Ye.F. and Yasinsky, V.K. Asymptotic behavior of solution of

impulse systems with small parameter and Markov switchings. 1. Ukr. Mat. Zh. 48(11)
(1996) 1375–1385. [Russian].

[19] Sverdan, M.L., Tsarkov, Ye.F. and Yasinsky, V.K. Asymptotic behavior of solution of
impulse systems with small parameter and Markov switchings. 2. Ukr. Mat. Zh. 48(12)
(1996) 1691–1704. [Russian].

[20] Tsarkov, Ye. Averaging and stability of cocycle under dynamical systems with rapid
Markov switchings. Exploring Stochastic Laws, VSP Utrecht, The Netherlands, 1995,
pp. 469–479.

[21] Tsarkov, Ye. Averaging in Dynamical Systems with Markov Jumps. Preprint no. 282,
April, Institute of Dynamical Systems, Bremen University, Germany, 1993.


