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Abstract: This paper studies the problem of impulsive stabilization of a sys-
tem of autonomous ordinary differential equations. Necessary and sufficient
conditions are established for a given state, which need not be an equilibrium
point of the system, to be impulsively stabilizable. These results are applied
to a three-species population growth model. In the population growth model,
it is shown that by impulsively regulating one species, the population of all
three species can be maintained at a positive level, which otherwise would
drop to a level of extinction for one of the species.
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1 Introduction

In this paper we shall investigate the problem of impulsively controlling a system of
autonomous ordinary differential equations so as to keep solutions close to a given state, p,
which need not be an equilibrium point of the system. Consider the following autonomous
system

x′ = f(x), (1)

where f ∈ C1[D, IRn], D ⊂ IRn is open. Let the space X = IRn be decomposed into
the direct sum X = Y ⊕ Z, where Y is an m-dimensional subspace of X , 1 ≤ m < n,
and Z = Y ⊥. We call Y and Z the impulsive and non-impulsive subspaces respectively.
Any vector x ∈ X , or vector function f(x), may be expressed uniquely as x = y + z,
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or f(x) = fy(x) + fz(x), where y, fy(x) ∈ Y and z, fz(x) ∈ Z. We shall utilize this
decomposition throughout this chapter and remark that the subscripts y and z on any
vector in x shall denote its unique portion in Y and Z respectively, while the vectors y

and z shall represent the unique portions of x.
Let U be the set of admissible controls u, where u = {(tk, ∆yk)}∞k=1 and

(i) 0 ≤ t1 < t2 < . . . < tk < . . . , and tk → ∞ as k → ∞,
(ii) ∆yk ∈ Y , k = 1, 2, . . . , |∆yk| ≤ A for some positive constant A.

Consider the impulsive control system associated with system (1)






















y′ = fy(x),

z′ = fz(x), t 6= tk, k = 1, 2, . . . ,

y(t+k ) = y(tk) + ∆yk, k = 1, 2, . . . ,

x(0) = x0.

(2)

For a comprehensive treatment of impulsive differential equations see Lakshmikantham,
Bainov and Simeonov (1989). Let φ(t, x) be a solution of (1). Then for each u ∈ U ,
x(t) = x(t, x0, u) is a solution of (2) given by

x(t) = φ(t − tk−1, x
+
k−1), t ∈ (tk−1, tk], k = 1, 2, . . . , (3)

where t0 = 0, x+
0 = x0, and

x+
k = φ(tk − tk−1, x

+
k−1) + ∆yk, k = 1, 2, . . . . (4)

Note from (3) and (4) that since f is C1, φ is a continuous function of t, and since
∆yk ∈ Y , it follows that z(t) is continuous for all t ≥ 0, while y(t) is continuous on each
interval (tk−1, tk], where y(t) + z(t) is the decomposition of x(t).

2 Criteria for Stabilizability

We begin by stating the concept of impulsive stabilization of a point p. For α > 0, let
Bα(p) = {x ∈ IRn : |p − x| < α}.

Definition 2.1 A point p ∈ D is said to be

(S1) impulsively stabilizable if for any given ǫ > 0, there exists a δ = δ(ǫ) > 0 such
that for each x0 ∈ Bδ(p) there exists a u ∈ U such that x(t) ∈ Bǫ(p), for all
t ≥ 0, where x(t) = x(t, x0, u) is any solution of (2);

(S2) asymptotically impulsively stabilizable if for any given ǫ > 0, there exists a σ =
σ(ǫ) > 0 such that for each x0 ∈ Bσ(p) there exists a u ∈ U such that x(t) ∈
Bǫ(p), for all t ≥ 0, and lim

t→∞
x(t) = p;

(S3) impulsively unstabilizable if (S1) fails to hold.

It should be noted that the point p in the above definition is, in general, not an equi-
librium point of the system, in contrast to those found in the standard control theory (see
for example Sontag, 1990). The type of stability defined above may be considered a spe-
cial case of stability in terms of two measures, a concept expounded by Lakshmikantham
and Liu (1989), and Liu (1990).

2.1 Necessary conditions

It follows from the above definition that the vector field f must be tangent to the im-
pulsive subspace at p for p to be impulsively stabilizable as indicated in the theorem
below.
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Theorem 2.1 If f(p) 6∈ Y , then p is impulsively unstabilizable.

Proof If f(p) 6∈ Y , then fz(p) = v 6= 0. By continuity of f , there exists an ǫ > 0
such that

|Projvfz(x)| > 0, ∀x ∈ Bǫ(p), (5)

where Projv denotes the orthogonal projection onto the one-dimensional subspace defined

by span {v}. By continuity of the projection function and by the compactness of Bǫ(p),
inequality (5) implies that there exists m > 0 such that

|Projvfz(x)| ≥ m > 0, ∀x ∈ Bǫ(p); (6)

physically, m is the minimum speed in the positive v direction for all points in Bǫ(p).
For any δ, 0 < δ < ǫ, choose x0 = y0 + z0 in Bδ(p). Since z(t) = z(t, x0, u) is continuous
in t, (6) implies

|Projv(z(t) − z0)| ≥ mt, ∀ t ≥ 0, provided x(t) ∈ Bǫ(p). (7)

Since the projection is orthogonal, (7) implies

|z(t) − z0| ≥ mt, ∀ t ≥ 0, provided x(t) ∈ Bǫ(p), (8)

but |z(t) − z0| ≤ |x(t) − x0| ≤ |x(t) − p| + |p − x0|, hence from (8) we have

|x(t) − p| ≥ mt − |p − x0| ≥ mt − δ, ∀ t ≥ 0,

so that |x(t) − p| > ǫ for t sufficiently large; consequently p is impulsively unstabilizable.

2.2 Impulsively invariant sets

To motivate and help illustrate our subsequent theorem we shall embark on a short
discussion of the problem of finding a control u that will create an invariant set of
system (2).

Consider a system in IR3 and a point p for which f(p) is aligned with the x-axis.
Let Y = span{(1, 0, 0)T} and Z = span{(0, 1, 0)T , (0, 0, 1)T}. Such a system meets
the necessary condition of Theorem 2.1. Consider a closed curve C, lying in the plane
through p parallel to Z such that p is in the interior of C. Generate a “cylinder”, S, by
constructing, through each point of C, a line segment of length 2ℓ parallel to Y such that
its midpoint lies on C, (see Figure 2.1). The boundary of the cylinder is composed of
the cylinder’s wall (the line segments) and its two ends which are surfaces parallel to Z.

Our aim is to make the cylinder, S, invariant with the application of impulses in the x1-
direction. Consider a point x0, starting within the cylinder. The trajectory φ(t, x0) will
either stay within S or will reach the cylinder wall or the ends. Suppose φ(t∗, x0) = A

for some time t∗, where A is a point on one of the cylinder ends. It is then easy to see that
an impulse of strength less than 2ℓ in the positive or negative x1-direction as appropriate,
will send the trajectory back into the interior of S. If however φ(t∗, x0) = B, where B is
a point on the cylinder wall, then an impulse in Y can only carry the trajectory to some
other point on the cylinder wall along the line through B parallel to Y . If along this line
segment there is a point Q where the vector field f is moving into the cylinder then an
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Figure 2.1. An invariant cylinder.

impulse to Q will keep x(t) within S for at least a short time longer. If there is a point R

along the line segment at which the velocity field is tangent to the cylinder wall and for
which φ(t, R) lies either on or inside S for some positive time interval then an impulse to
R would also keep x(t) within S. If such points Q or R exist for each B on the cylinder
wall then the cylinder S can be made invariant provided the sum of the time intervals
between successive impulses is unbounded. We now formalize the preceding discussion
on invariant sets.

Theorem 2.2 Let Ωz ⊂ Z be an open bounded region whose boundary is C1, and

let Ωy be an open bounded region in Y . Define the “cylinder”, Ω, and its wall, W , by

Ω = Ωy ⊕ Ωz, and W = Ωy ⊕ ∂Ωz. We assume Ω ⊂ D. Let n be the unit outward

normal to Ω defined on W , and define the set N as

N = {w ∈ W : f · n
∣

∣

w
≤ 0}O(W ),

where the superscript O(W ) denotes the interior of the set N with respect to W .

If Projz(N) = ∂Ωz, then for any x0 ∈ Ω, there exists a u ∈ U such that x(t, x0, u) ∈

Ω, for all t ≥ 0.

Proof See Liu and Willms (1994).

2.3 Sufficient conditions

Sufficient conditions for impulsive stabilizability are given in the following theorem. Es-
sentially, the conditions imposed assure that for any positive ǫ, there exists an impulsively
invariant set contained within Bǫ(p). The proof itself, although somewhat intuitive, is
quite long and technical, for which reason the reader is referred to Liu and Willms (1994).

Theorem 2.3 Let p = py + pz be a point in D and let v ∈ C1[Z, IR] be a positive
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definite function with respect to pz. Define the sets

I = {x ∈ D | ∇v(z) · fz(x) ≤ 0}O
,

Iα = Projz (I ∩ (By
α(py) ⊕ Z)) ∪ {pz},

J = {x ∈ D | ∇v(z) · fz(x) < 0} ,

Jα = Projz (J ∩ (By
α(py) ⊕ Z)) ∪ {pz},

where the superscript O denotes the interior of the set, Projz denotes the orthogonal

projection onto the Z subspace, and By
α(py) is the m-dimensional α-ball around py in the

Y subspace.

(a) If Iα is a neighbourhood of pz, for all α > 0, then p is impulsively stabilizable.

(b) If Jα is a neighbourhood of pz, for all α > 0, then p is asymptotically impulsively

stabilizable.

We remark that the openness of the set I in the above theorem is an essential require-
ment without which the theorem does not hold.

3 Application

In this section, we shall consider a fish population growth model. Suppose the owner of a
resort on a small northern lake wishes to attract fishermen by increasing the population of
two particular species of game fish in his lake. Upon looking into the matter he discovers
that the cost of stocking his lake with these species is excessive while the cost of stocking
his lake with the main prey species of these game fish is comparatively economical. The
owner therefore wishes to determine how high he can keep the game species population
by stocking the lake with the feeder fish. A model for this situation may be presented as
below,

Ṅ1 = N1(b1 − a11N1 − a12N2 − a13N3),

Ṅ2 = N2(b2 − e2 + a21N1 − a22N2 − a23N3),

Ṅ3 = N3(b3 − e3 + a31N1 − a32N2 − a33N3),

(9)

where N1 is the feeder fish population, N2 and N3 are the game fish populations, all of
the bi, ei, aij are constants, bi − aiiNi is the per capita birth rate of the population
Ni, −a12N2 − a13N3 represents the effect of the predation, a21N1, a31N1 represent the
prey’s contribution to the predator’s growth rate, −a23N3, −a32N2 represent the effect
of the competition between the predators, and e2, e3 are the fishing efforts applied by
the anglers. From Theorem 2.1, the candidate positive points, p, that could be stabilized
are those satisfying

[

a22 a23

a32 a33

] (

p2

p3

)

=

(

b2 − e2 + a21p1

b3 − e3 + a31p1

)

. (10)

In what follows, we shall assume that all constants are positive, and furthermore,
equation (10) tells us that b2 − e2 > 0 and b3 − e3 > 0, that is to say that the fishing
efforts of the game fish e2 and e3 cannot exceed their birth rates b2 and b3.
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Selecting p such that (10) is satisfied, we choose the Lyapunov function

v = N2 − p2 − p2 ln
N2

p2
+ N3 − p3 − p3 ln

N3

p3
.

Differentiating with respect to t, substituting for b2 − e2 and b3 − e3 from (10) and
rearranging gives

v̇ = (N2 − p2)[a21(N1 − p1) − a22(N2 − p2) − a23(N3 − p3)]

+ (N3 − p3)[a31(N1 − p1) − a32(N2 − p2) − a33(N3 − p3)]

= −(N2 − p2, N3 − p3)

[

a22 a23

a32 a33

] (

N2 − p2

N3 − p3

)

+ (N1 − p1)[a21(N2 − p2) + a31(N3 − p3)].

(11)

Let

A =

[

a22 a23

a32 a33

]

.

We note that if det A > 0 then v̇ < 0 if the second term of (11) is negative. Likewise,
if det A = 0 then v̇ < 0 if the second term is strictly negative.

Based on this, we can determine the regions in the positive orthant that belong to the
set J = {v̇ < 0} and hence give impulses in the other regions to bring them to points
in J .

Case 1: Consider the case det A > 0. Here the set J is given by points in the positive
orthant which make the second term of (11) negative, that is,

J = {N1 ≥ p1, a21(N2 − p2) + a31(N3 − p3) < 0}

∪ {N1 ≤ p1, a21(N2 − p2) + a31(N3 − p3) > 0}

∪ {a21(N2 − p2) + a31(N3 − p3) = 0, N2 6= p2, N3 6= p3} .

(12)

Note that we must exclude the case N2 = p2 and N3 = p3 from J , as other-
wise, v̇ = 0.

Divide the positive orthant into the following regions:

Ω1 = {N1 ≥ p1, a21(N2 − p2) + a31(N3 − p3) < 0} ,

Ω2 = {N1 > p1, a21(N2 − p2) + a31(N3 − p3) > 0} ,

Ω3 = {N1 ≤ p1, a21(N2 − p2) + a31(N3 − p3) > 0} ,

Ω4 = {N1 < p1, a21(N2 − p2) + a31(N3 − p3) < 0} ,

Ω5 = {a21(N2 − p2) + a31(N3 − p3) = 0, N2 6= p2, N3 6= p3} ,

Ω6 = {N2 = p2, N3 = p3} .

(13)

Clearly, J is made up of Ω1, Ω3 and Ω5, so, at most, we need to specify impulses in
the other three regions.
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Impulses in Ω2 and Ω4 are as follows:

∆N1 =

{

c − N1, N ∈ Ω2, 0 < c ≤ p1,

d − N1, N ∈ Ω4, d ≥ p1.
(14)

This ensures that points in Ω2 are moved to points in Ω3 ⊂ J and points in Ω4 are
moved to points in Ω1 ⊂ J .

We will now show that impulses are not required in region Ω6. Our system of ODE’s
in Ω6 reduces to

Ṅ1 = N1(b1 − a11N1 − a12p2 − a13p3),

Ṅ2 = p2(b2 − e2 + a21N1 − a22p2 − a23p3)

= p2a21(N1 − p1) (using (10)),

Ṅ3 = p3(b3 − e3 + a31N1 − a32p2 − a33p3)

= p3a31(N1 − p1) (using (10)).

(15)

It is clear that points where Ṅ2 6= 0 and/or Ṅ3 6= 0 will cause N2 and/or N3 to
increase or to decrease and points will therefore leave Ω6. We are therefore concerned

with points where both Ṅ2 = 0 and Ṅ3 = 0. We see from (15) that this occurs only

if N1 = p1. Now because both Ṅ2 and Ṅ3 are equal to zero, we must have Ṅ1 6= 0,
or else we have a positive equilibrium point, which we have assumed does not exist. It
follows that N1 must then either increase or decrease, in which case we move to regions

in Ω6 where either N1 > p1, or N1 < p1. At this new point, we no longer have Ṅ2 = 0

and Ṅ3 = 0, so that we, again, leave Ω6, by the same reasoning as before. It follows
that solutions passing through Ω6 naturally leave there and move to one of the other five
regions, where impulses have already been specified.

It follows that the required set of impulses in the case of det A > 0 is as specified by
equation (14).

Case 2: Now consider the case det A = 0. In this case we must ensure that the second
term of (11) is strictly negative, in which case we obtain the set J given by

J = {N1 < p1, a21(N2 − p2) + a31(N3 − p3) > 0}

∪ {N1 > p1, a21(N2 − p2) + a31(N3 − p3)} .
(16)

Unless one further analyzes what happens on the plane a21(N2−p2)+a31(N3−p3) = 0,
one cannot specify impulses in N1 that guarantee survival of all three fish. The reason
for this is that one does not know the behaviour of solutions on this plane, and since this
plane is parallel to the N1 axis, an impulse in N1 does not move points off of the plane.
A problem will certainly occur if solutions move along this plane towards extinction in
N2, or N3, which is quite possible.

With this in mind, we try to find regions on this plane where solutions leave the plane,
and thus we can specify impulses in the remaining regions to move to these “good” regions
of the plane. It turns out that the entire plane without the line {N2 = p2, N3 = p3}
may be added to the set J , provided certain conditions on the aij hold, which guarantee
that both terms of (11) are not equal to zero at the same time. Call this set S, that is,
let

S = {a21(N2 − p2) + a31(N3 − p3) = 0, N2 6= p2, N3 6= p3} .
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We now derive these conditions on the aij , so that we may add the set S to J .
The first term of (11) equal to zero gives

a22(N2 − p2)
2 + (a23 + a32)(N2 − p2)(N3 − p3) + a33(N3 − p3)

2 = 0.

Using the quadratic formula, and that a22 > 0 as given, we have

N2 − p2 =
−(a23 + a32) ±

√

(a23 + a32)2 − 4a22a33

2a22
(N3 − p3)

=
−(a23 + a32) ±

√

(a23 − a32)2

2a22
(N3 − p3) (using det A = 0 and factoring)

=











−
a32

a22
(N3 − p3),

−
a23

a22
(N3 − p3).

The second term of (11) equals zero for points inside the set S and they satisfy

N2 − p2 = −
a31

a21
(N3 − p3).

It follows that if we have

a31

a21
6=

a32

a22
, and

a31

a21
6=

a23

a22
(17)

both terms are cannot equal zero at the same time, or equivalently, the first term is
non-zero in the set S. This means that v̇ < 0 in this set, and we may, as a result, add
it to J .

As in the case det A > 0, we split the positive orthant into the regions as shown, in
which the regions Ω1, Ω3, and Ω5 belong to J .

Ω1 = {N1 > p1, a21(N2 − p2) + a31(N3 − p3) < 0} ,

Ω2 = {N1 ≤ p1, a21(N2 − p2) + a31(N3 − p3) > 0} ,

Ω3 = {N1 < p1, a21(N2 − p2) + a31(N3 − p3) > 0} ,

Ω4 = {N1 ≥ p1, a21(N2 − p2) + a31(N3 − p3) < 0} ,

Ω5 = {a21(N2 − p2) + a31(N3 − p3) = 0, N2 6= p2, N3 6= p3} ,

Ω6 = {N2 = p2, N3 = p3} .

(18)

The only thing different here from (13) are the inequalities in the N1, p1 terms.
One can show in exactly the same manner as in the Case 1, that solutions in Ω6

naturally tend to one of the other regions.
Further, our set of impulses is the same as in (14), with the inequalities in the constants

c and d changed, that is, the required set of impulses in the case detA = 0 is given by

∆N1 =

{

c − N1, N ∈ Ω2, 0 < c < p1,

d − N1, N ∈ Ω4, d > p1.
(19)
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Provided the conditions (17) are satisfied.
We now show that, even if (17) does not hold, one may still specify impulses in exactly

the same manner as above.

Consider first the case
a31

a21
=

a23

a22
. Again, we try to add the set

S = {a21(N2 − p2) + a31(N3 − p3) = 0, N2 6= p2, N3 6= p3}

to J . Again, we may do this provided points in S don’t remain there, possibly leading
to extinction in one of the species. Consider what happens in S by looking at the system
(9). We have

Ṅ1 = N1(b1 − a11N1 − a12N2 − a13N3),

Ṅ2 = N2(b2 − e2 + a21N1 − a22N2 − a23N3)

= N2[a21(N1 − p1) − {a22(N2 − p2) + a23(N3 − p3)}] (using (10))

= N2a21(N1 − p1)

(20)

Aside:

a22(N2 − p2) + a23(N3 − p3) =
a21a23

a31
(N2 − p2) + a23 (N3 − p3)

(

using
a31

a21
=

a23

a22

)

=
a23

a31
[a21(N2 − p2) + a31(N3 − p3)]

= 0 (as we are in S)

and

Ṅ3 = N3(b3 − e3 + a31N1 − a32N2 − a33N3)

= N3[a31(N1 − p1) − {a32(N2 − p2) + a33(N3 − p3)}] (using (q0))

= N3a31(N1 − p1)

Aside:

a32(N2 − p2) + a33(N3 − p3) =
a22a33

a23
(N2 − p2) + a33(N3 − p3)

(using det A = 0)

=
a33

a23
[a22(N2 − p2) + a23(N3 − p3)]

= 0. (from above)

It follows that if N1 = p1, then Ṅ2 = 0 and Ṅ3 = 0. Further Ṅ1 6= 0 or else we have

a positive equilibrium point. If Ṅ1 > 0, then N1 increases, so that at the next point,

we have N1 > p1. This in turn implies Ṅ2 > 0 and Ṅ3 > 0. Similarly, if Ṅ1 < 0,

then N1 decreases, so at the next point we have Ṅ2 < 0 and Ṅ3 < 0. Note, that no

matter what happens, Ṅ2 and Ṅ3 have the same sign, so that a21Ṅ2 + a31Ṅ3 6= 0, that
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is, solutions will leave S. It follows that all solutions in S will leave S and hence we will
not encounter the problem of extinction.

In the same manner, one analyzes what happens in the second case
a31

a21
=

a32

a22
. Here,

the system (9) reduces to

Ṅ1 = N1(b1 − a11N1 − a12N2 − a13N3),

Ṅ2 = N2(b2 − e2 + a21N1 − a22N2 − a23N3)

= N2[a21(N1 − p1) − {a22(N2 − p2) + a23(N3 − p3)}] (21)

(using (10)),

Ṅ3 = N3(b3 − e3 + a31N1 − a32N2 − a33N3)

= N3[a31(N1 − p1) − {a32(N2 − p2) + a33(N3 − p3)}]

(using (10))

= N3

[

a31(N1 − p1) −

{

a22a33

a23
(N2 − p2) + a33(N3 − p3)

}]

(using detA = 0 to substitute for a32)

= N3

[

a31(N1 − p1) −
a33

a23
{a22(N2 − p2) + a33(N3 − p3)}

]

. (22)

Solving for a22(N2 − p2) + a23(N3 − p3) in (21) and substituting into (22) gives

Ṅ3 = N3

[

a31(N1 − p1) −
a33

a23

{

a21(N1 − p1) −
Ṅ2

N2

}]

= N3

[{

a31 −
a33a21

a23

}

(N1 − p1) +
a33

a23

Ṅ2

N2

]

= N3

[

a31a23 − a33a21

a23
(N1 − p1) +

a33

a23

Ṅ2

N2

]

= N3
a33

a23

Ṅ2

N2
,

since

a31

a21
=

a32

a22
⇒ a21a32 − a22a31 = 0

⇒ a21
a22a33

a23
− a22a31 = 0

(using detA = 0)

⇒ a21a33 − a23a31 = 0

⇒ a31a23 − a33a21 = 0.

It follows that in the set S the system of ODE’s satisfies

Ṅ3 =
a33

a23

N3

N2
Ṅ2.
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Since we are concerned with points satisfying a21Ṅ2 + a31Ṅ3 = 0, we may encounter
problems if

a33

a23

N3

N2
= −

a21

a31
⇔ N3 = −

a21a23

a31a33
N2.

But we are given that all constants are positive, so that the above equation implies N2

and N3 are of opposite sign. This however, will never occur, since we are dealing with
the positive orthant.

It follows that all points in S will leave S in this case, and we have no possibility of
extinction.

In conclusion, we have shown that the points satisfying (10) of the system (9) can be
globally asymptotically stabilized by giving the set of impulses as specified by (14) in the
case of detA > 0, and as specified by (19) in the case of detA = 0.

4 Conclusion

In this paper, we have established, respectively, necessary and sufficient conditions for a
point p to be impulsively stabilizable, i.e. Theorem 2.1 and Theorem 2.3. These results
are applied to a three-species population growth model and an impulsive control program
is obtained to stabilize the point p. A constructive approach for actually determining
an appropriate feedback control law may be generated from the notion of impulsively
invariant sets described in Section 2.2 as follows. A Lyapunov function, v, is constructed
so that it satisfies the conditions of Theorem 2.3. Then for any positive ǫ, we can choose
a constant c such that the level set v = c is contained within an ǫ-neighbourhood of pz.
The set {z : ‖z‖ ≤ ǫ, v(z) < c} defines Ωz, the non-impulsive portion of our invariant
cylinder. We then choose an α such that Ω ⊂ Bǫ(p), where Ω = By

α(py) ⊕ Ωz . Since Ω
is an invariant cylinder, for all points q ∈ ∂Ω from which the trajectory induced by f

leaves Ω there is at least one impulse ∆y(q) such that q + ∆y(q) is either in the interior
of Ω or at a point on ∂Ω from which the vector field f will keep the trajectory within
Ω for some positive time interval. For each such q we choose one of these ∆y(q) and
define our feedback control law as q 7→ q +∆y(q). This law is implemented by observing
the trajectory of an initial point within Ω and firing the appropriate impulse ∆y(q)
each time the trajectory reaches a point q. In this manner the system is kept within
a ǫ-neighbourhood of the desired point p. In the population growth model, a control
design procedure for asymptotic impulsive stabilization is derived. It is shown that by
impulsively regulating one species, the population of all three species can be maintained
at a positive level, which otherwise would drop to a level of extinction for one of the
species. This control program enables an resort owner to lower his cost of maintaining
the game fish in his lake by stocking the lake with the feeder fish. Consequently, the
resort owner’s profit will be maximized. The results developed in this paper may be
applied to other real world problems.
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