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Abstract: In this paper we study a gauge-invariant Ginzburg-Landau model
which describes the phenomenon of the superconductivity, characterizing the
state of the material by means of observable variables. We give a definition
of weak solutions for the steady and the time-dependent Ginzburg-Landau
equations and prove theorems of existence and uniqueness.
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1 Introduction

The Ginzburg-Landau theory gives a macroscopic model which explains the main ex-
perimental phenomena related to the superconductivity, i.e. the absence of electrical
resistance and the Meissner effect ([5,13]). In their model, Ginzburg and Landau de-
scribe the behaviour of a superconducting material in steady conditions, through the
introduction of a free energy functional and assume that the state of the system min-
imizes such a functional. They identify the state of the superconductor with the pair
(1, A), where v is a complex order parameter, whose squared modulus coincides with the
number density of the superconducting electrons and A is the vector magnetic potential.

Later, the model was extended to the non stationary case by Gor’kov and Eliash-
berg [8], who deduce the time-dependent Ginzburg-Landau equations from the micro-
scopic theory BCS. Such equations constitute a non linear differential system for which
theorems of existence and uniqueness are proved ([4,12,15]).

Recently, Fabrizio [6,7] has proposed a macroscopic model which characterizes the
state of the material by means of real and observable variables. Therefore, while in the
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classical formulation the unknown quantities are defined up to a gauge transformation,
the variables involved in this model have a well determined physical meaning, so that
they are gauge-invariant.

In this paper, the real Ginzburg-Landau equations are studied both in the steady and
in the time-dependent case. The two models are presented in Section 2. In Section 3, we
introduce a new definition of weak solutions which allows to prove existence and unique-
ness theorems. In the steady case, the uniqueness of the weak solution is shown, provided
that the coefficients of the equations and the domain occupied by the superconducting
material are sufficiently small. In the time-dependent case, the uniqueness is proved in
two-dimensional domains, with L? initial data.

Both in the stationary and in the time-dependent problem the results are obtained
with the same method used in [1] and [2], namely by introducing a suitable decomposition
of the unknown variables and reducing the original system to an equivalent one.

2 Ginzburg-Landau Model of Superconductivity

The electromagnetic behaviour of a superconducting material is described by Maxwell
equations

5%—?:V><H—J, V-E =p, (2.1)
H
u%—t:—VxE, V-H=0, (2.2)

where €, i, p are respectively the dielectric constant, the magnetic permeability and the
charge density. For simplicity ¢ and p are assumed constant.

According to London theory, the electrons in a superconductor behave like a fluid
which may appear either in the normal or in the superconducting phase. Therefore, the
current density J inside the material can be expressed through the sum

J=J3,+7, (2.3)

of the normal and the superconducting current. The conduction current J,, is required
to obey Ohm'’s law
J, =0E, (2.4)

while the superconducting current satisfies London constitutive equation

m

VX(AJS):—‘LLH, L:e2—f27

(2.5)

where m, e, f2 denote respectively the mass, the charge and the number density of the
superconducting electrons.

By means of the equation (2.5), London theory describes the superconducting features
of a material in the hypothesis that the parameter A is constant, so that the density of
superconducting electrons is uniform. However, near the transition temperature there
occurs a mixed state consisting of alternating domains of normal and superconducting
phase. Therefore the material cannot be considered spatially homogeneous.
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The Ginzburg-Landau model extends London theory since it allows spatial variations
of the density of superconducting electrons. In the stationary case and without free
charge, Maxwell equations (2.1)s, (2.2); together with the boundary condition

E- 1’1|39 = 0, (2.6)
imply E = 0, so that the system (2.1) - (2.2) reduces to
VxH=J, V- H=0. (2.7)

Since the electric field can be neglected, the state of the material is identified with the
pair (f,Js).

According to the Ginzburg-Landau theory, the material is in a state which minimizes
the free energy. If we denote by €2 the domain occupied by the superconductor and by
09 its boundary, the free energy can be written as a functional of the variables (f,Js)
in the form ([6,7])

p

2 4 1 2 h2 2
30 = [ | = o+ § 1 S 9 X ADTIP + 5 V1P o

’ (2.8)
| :
+ [ =A(f)T?de -2 [ A(f)I, x H, -ndo,
fz/ 2 Oé

where «, 8 are positive constants depending on the temperature, & is the Planck constant
and H7_ is the tangential component of the external magnetic field.
Henceforth, we consider external magnetic fields H., which satisfy the relation

/Vgo X Hep -ndo =0, (2.9)
a0
where ¢ is the trace on 02 of an arbitrary function ¢.
By introducing the quantity
mvsg

Ps = A(f)']s = ) (210)

e

identified with the linear momentum of the superconducting electrons per unit charge,
the free energy (2.8) can be expressed in terms of the variables (f, ps) in the form

(= [ [~ar e 25 1V xpl 4 (95 o e
e 2 21 ® 2m 2m T°
“ (2.11)

—2/p5-Hzx><nda.
a0

The stationariety of the functional (2.11) with respect to (f, ps) leads to the system
[ e 2 3
5 V=g fpitaf=pf =0, (2.12)
m 2m
pe’
vaXszer?ps:o, (2.13)
Vf- n|aQ =0, (V X ps) X n|39 = pH,, x n|aQ. (2.14)
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In order to reduce our notations, we introduce the following non-dimensional quantities

1/2 1/2
() e () a1

I6] e
1/2 2\ 1/2
mf3 ’ 20 /
= H,=|— H 2.1
i (52 (5.) m 2.16)

maod 1/2 2m26 1/2

With such positions, dropping the primes, the free energy (2.11) assumes the form

E(f.ps) = / [l(f2 —1)2+ |V x ps|* + %Wflz’ + fng]d:v

2

“ (2.18)

—2/pS~H£$ x ndo

a0
and the ensuing Ginzburg-Landau system is
1

EVQf—fprﬁﬂLf—fg:O, (2.19)
V x V X ps+ f°ps =0, (2.20)
Vf-nlag =0, (V xps)xn|sg=HT, xn|sgq. (2.21)

Moreover, we assume the boundary condition
Ps - nlag = 0.

The generalization of the Ginzburg-Landau model to the time-dependent case is ob-
tained by introducing a further variable ¢ which is related to the charge density p. In
non-dimensional variables the time-dependent Ginzburg-Landau equations are ([6,7])

of

a5 VAf+E(f? = 1)f + fpl =0, (2.22)
ops 2.
U +V XV Xps+nVos + f°ps = 0, (2.23)
with boundary conditions
Vf-nlpga=0, ps-njoga=0, (Vxps—H])xn|pgg=0 (2.24)
and initial data
f(xa O) = fO('r)v ps('rv O) = psO(I)' (225)

As in the steady model, the equation (2.23) can be obtained from Maxwell equation
(2.1);. However, (2.23) coincides with (2.1); only if the time derivative of the electric
field is negligible. In such a case, the equation (2.1); assumes the form

V x H=0E+1J, (2.26)
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and, by using London equation (2.5), we get
pe’
V XV x ps + poE+ — f?p, = 0. (2.27)
m
On the other hand, the equation (2.2); yields

%(prs)—VxE:O,

hence there exists a function ¢s such that

B
E = = p. + V. (2.28)

Substitution in (2.23) leads to the equation

0 pe? 2
u0§p5+VxV><ps+;wV¢s+Wf ps =0,

which coincides (in non-dimensional form) with (2.23).
We assume the following constitutive equation for ¢,

h2
2, (2
2o =5 — V- (£'p.), (2:29)
or in non-dimensional form
f2os ==V - (f*ps). (2.30)

The choice of the equation (2.29) corresponds to a particular choice of the charge density
p. Indeed, the relation (2.26) implies

V-JS:—V-Jn:—UV-Ez—%p,

so that, by substituting in (2.29), we obtain

K2 oh?
2 v

s — . Js

¢ 2e2T

3 Existence and Uniqueness of Solutions

3.1 The stationary case

In this section we prove that the functional (2.18) admits at least a minimizer and, under
suitable hypotheses on the coefficients of the equations, such a minimizer is unique.

Let D(Q2) be the domain of the functional (2.18), constituted by the pairs (f, ps) such
that the free energy is finite, namely

D(Q) = {(fups): e Hl(Q)v V X ps € LQ(Q)v /ps € L2(Q)}'
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We introduce a new variable p; which satisfies
Vxpr=Vxps, V-p1=0, pi-njpg=0. (3.1)

Therefore ps can be decomposed as

p.=pi+ V0, (32)
with p1 € Ro(Q) = {v: VxveL?(Q), V-v=0, v-n|g =0}

Observe that for each ps such that V x p, € L?(2), there exist unique p; and V6
which satisfy (3.1), (3.2) and V6 - n|q = 0. Moreover, the condition p; € Ro(Q2)
implies p; € H'(Q).

With such positions, the functional (2.11) can be expressed in terms of the variables
(fv 97 pl) as

1 1 1_|°
.00 = [ |35 PV 5w+ 9+ P+ V0] as

¢ (3.3)

—2/p1-sz X ndo

oN
and the Ginzburg-Landau system (2.19) —(2.21) assumes the form

1, 1_ 7 .

BVt VO - =0, (3.4)
1

Vxpr1+f2<p1+EV9)_0, (3.5)
Vi-nlaa =0, (Vxp1)xnlsa=H], xn|s. (3.6)

Lemma 3.1 A pair (f,ps) € D() is a minimizer of the functional (2.18) if and
only if the triplet (f,0,p1) € D1(Q), with

Di(Q) = {(f,0,p1): f € H(Q), p1 € Ro(Q), fVO € L2(Q)}

and 0, p1 satisfying (3.2), is a minimizer of the functional (3.3).

Proof It suffices to prove that (f,ps) € D() if and only if (f,0,p1) € D1(9).
Let (f,ps) € D(R). In view of the embedding H' () — L*(Q), we have f € L*(Q)
and p; € L4(Q), thus fp; € L?(Q). In this way, fV0 = k(fps — fp1) € L3(Q), so
that (f,0,p1) € D1(Q).

Conversely, if (f,0,p1) € D1(Q), it results fp1 € L*(Q). Therefore, by (3.2), we
obtain fp, € L*(Q).

As shown in [1], the functional (3.3) admits at least a minimizer, so that, in view of
Lemma 3.1, the existence theorem can be proved.

Theorem 3.1 For each HZ, € H™'/2(0Q), satisfying the relation (2.9), there exists
at least a pair (f,ps) € D(Y) which minimizes the free energy (2.18).
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Definition 3.1 A triplet (f,0,p1) € D1(Q) is a weak solution of the Ginzburg-
Landau problem if it satisfies
1 1 1 X
cos(f — ) ﬁVf-Vh—l—fh p1+EV9 . p1+EV<p +h(f°—f)| dx
Q

(3.7)
+%/sin(9—gp)[th- (p1 +%Vg0) — fVh- (pl + %V@)}dwzo,
Q

k
Q o0

1
/{prnyql—i-fz(pl—i-—Vﬁ) -ql]da:+/q1><Hzm-nda_O, (3.8)

for each (h,¢,q1) € D1(Q).
Remark 1t is possible to give a different definition of weak solution for the problem

(3.4) - (3.6), by replacing the equations (3.7)—(3.8) with the following

1 1_ |7
/[ﬁVf-Vg—ngPl—i-EV&

Q

1
/{prl-qul—l-fQ(pl—l-EVG)-ql]da:+/q1><H£z~ndJ_O. (3.10)
oQ

+(f* - f)g} dz = 0, (3.9)

Though the equations (3.9)—(3.10) can be obtained by (3.7)—(3.8), choosing suitably
the functions (g, q1), the definitions are not equivalent, since the spaces of test functions
are different.

Proposition 3.1 If (f,0,p1) is a regular solution of the Ginzburg-Landau problem
(8.4)—(8.6), then it is a weak solution in the sense of Definition 3.1.

Proof By taking the divergence of (3.5), we obtain
9 1
V. f P1 + E Vo =0.

f[QVf' (p1+%V€>+fV~ (pl—l-%VG)] -0,

Hence

which leads to
1 1 .
/ {2Vf- <p1 + Z V@) + fVv. <p1 + % V@)}hsm(@ —@)dz =0
Q
for each (h, @) such that h € H*(Q), hVp € L*(Q). An integration by parts yields

1

z /[(th — [Vh)sin(@ — ¢) — fA(VO — V) cos(0 — ¢)] - (pl + % V9> dx =0. (3.11)
Q
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Moreover, multiplying (3.4) by hcos(f — ¢) and integrating on €, it results

/%Vf (Vo = V) sin(0 — ) dzx
Q
, (3.12)

1
p1+-—-Véo

+/[$Vf~wz+fh 5
Q

— fh(1 - fQ)} cos(f — @) dx = 0.

By adding (3.11) and (3.12), we obtain (3.7). Finally, the relation (3.8) can be proved
by multiplying (3.5) by an arbitrary function q; € Ro(2) and integrating by parts.

Denoting by f. = fcosf, fs = fsinf, h. = hcosp, hs = hsinp, the equations (3.7)
and (3.8) can be written in the form

/ {%(Vfc - Vhe + Vs - Vh) + %(hCVfS — fVhe + f.Vhy) -pl]d:r

(3.13)

— / E hoVfe-p1— (PT+ f2 + f2 = 1)(fehe + fshs)] dr =0,
Q

/ |:v X pl'v X qi1 + (f¢;2+f52)P1 il + %(fcvfs _fsvfc)'ql]dx

¢ (3.14)

+/q1xH§z-nda:0.
Gi9)

It is easy to verify that (f,6,p1) € D(Q) if and only if (fe, fs,p1) € H* () x H () x
Ro(Q). Moreover the equations (3.13) - (3.14) can be obtained by writing the free energy
(3.3) as a functional of the variables (fe, fs, p1)

e feumr) = [ |52+ 2P = 2= 24 JUVEP + V1P + [V x| o
Q

+/ [pf(ff + fs2) + % p1 - (feVfs — fsfo)]dI + 2/p1 -H{, xndo
Q o0
and then by computing the first variation with respect to such variables.
To reduce our notations, we put II = (fe, f5,P1), = = (ge,9s,71), © = (he, hs,q1)
and define

1
a(Il,®) = / [ﬁ(Vfc -Vhe+Vfs-Vhs) +V xp1-V x ql} dx, (3.15)
Q

z.0) = |

Q

(heVgs — gsVhe + g:Vhs — hsVg.) - 1 dx

ol e

- /[(rf + 02 4 g2 = 1)(gehe + gshs) + (62 + ¢2)r1 - qu]dz
Q (3.16)

1
—/E(chgs —9sVge) - qidr — /ql x H, -ndo = 0.
) 89
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Hence (3.13) and (3.14) can be written as
a(11,0) = [(II, ©). (3.17)

Consider now the equation
a(I1,0) =1(X, 9), (3.18)

for each © € V(Q), where V() C H'(Q) x H'(Q) x Ro(Q) is a closed subspace which
does not contain triplets (h¢, hs,q1) with constant h. and hs. It can be proved ([10])
that V(Q) is a Hilbert space with respect to the norm

1
(e, hos @)1 = 25 (IVAel3 + 1VAS[12) + |, (3.19)

where || - ||, denotes the norm in LP(Q2) and ||q1]lr, = ||V X Q12

We will prove that the equation (3.18) admits a unique solution II = T'(X) € V(Q).
Moreover, with suitable hypotheses, T' is a contraction, whose fixed point satisfies the
relation (3.17).

Lemma 3.2 For each ¥ € V() there exists a unique T'(X) € V() such that
a(T(X),0)=1(2,0) (3.20)

for all ©® € V().
Proof 1In view of the definition (3.16), for each ¥ € V(Q), the map

1(3,):V(Q) = R

is linear. Moreover, the following inequalities can be easily proved
‘ /rl : (hcvgs - gthc + chhs - hsv.gc) dI
Q

< AleallaCliellallVasllz + NgsllallVhella + llgellallVhs]l2 + [1s]l4l[Vgell2)
< (1 + Dlrallal(1Vgsllz + lgslll el @) + ([Vaella + lgella) s l[ar )],

< callralli(lgellallhellen @) + llgsllallhsllae o)),

’/@m+%wﬁw
Q

< (lgell2 + llgellg

‘ / (gehe + gehe)(1 — g2 — ¢2) da
Q

+ cillgellallgsIDNRella @) + (lgsllz + cillgelZllgsla + Ngsl[E)hslla @),

a2 g da] < exlanl + LDl sl o
Q

‘ /(gcv.gs - QSVQC) “qudx

< e2(llgellallVgsllz + llgsllallVaell2)llar o)
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} [ an % HE, ndo] < B0 il

[219]

< el He, la-12000) 191 lro )
where c¢1, co, c3 satisfy respectively the inequalities
[flla < el fllmy,  IPillEi @) < clPillres Pt X nllgi2@) < csllpillr,- (3.21)
Therefore, keeping the definition (3.19) into account, we get
1(%,0) <C(X)|Ollv,

where C'(X) denotes a positive constant depending on 3.
Since I(X, -) is continuous, the Riesz theorem ensures the existence of a unique ©(X) €
V() such that
a(T(¥),0)=1(2,0), VO ecV). (3.22)

Lemma 3.3 For each M >0 and 21, X3 € V(Q) satisfying || Zi]ly < M, i =1,2,
there exists a constant dp; > 0 such that

[T(31) = T(Z2)[lv < 0nmr| B2 — X2y

Proof From the equation (3.22) we obtain the identity

IT(31) = T(Z2)llv = sup [a(T(X1),0) —a(T(X2),0)] = sup [I(X1,0) —1(%9,0)]

lellv=1 lelv=1
= ” Sll‘lp [Il (@) + IQ(@) + 13(6) + 14(@) + 15(@) + Iﬁ(@)],
O|ly=1
where
1
L(©) = T /[(Vgcl ‘111 — Vgea - t12)hs — (Vgs1 - 111 — Vgsa - r12)hc]dz,
Q
1
5L(©) = A /[(gslru — gsaT12) - Vhe — (gear11 — geari2) - Vhglde,
Q
I3(0) = — / (r19e1 + 921 + 9195 — o1 — Tiage2 — Goo — Geagaa + ge2)heda
Q
14(©) = — /(rflgsl + 93+ 951971 — o1 — Y0052 — G2 — 95292 + gs2)hsda
Q
I5(©) = — /(9311‘11 + g21T11 — gZr12 — gooria) - dida
Q
1
I;(©) = % /(gclvgsl — gs1VGe1 — ge2Vgs2 + gs2Ve2) - a1 dz.

Q
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Since ||XZ;|ly < M, i = 1,2, we have the inequalities
IVgeilla < kM, [[Vgsilla < kM, |ruillr, < M
Therefore, by the definition of V(Q2), g.; and g,; satisfy the estimates
geillmr ) < cakM,  ||gsillm (o) < cakM.
Let 09c = ge1 — ge2, 09s = gs1 — gs2, 0r1 = r11 — ri2. We deduce the estimates

[11(©)] < Merea[([|hellur (@) + 1hsllar @) 101l =,

1
+ 2 (el @) IV (8gs)ll2 + [1hsllar @) 1V (0ge)12)],

[12(©)] < Merea[ea([|hellur ) + 1hsllar @) 0r1 IR,

2 el o 165 sy + sl o )

113(0)] < M20%62[02”590HH1(Q) + 2cac4k| 611 ||y + 2010421/42“5%”}11(9)
+der1 ek [ 0gellu @)l 1ellm @) + 19gell2]Pel2

[14(0)] < M?cGeaeal|dgsllm o) + 2c2c4k|dr1||R, + 2016362 (|0l (0
+ 4e1 etk [16gs a1 Psllir @) + [10gsll2]1hs 2

15(0)| < 2M*cicieak((10gellur ) + 199511 @) + cakllor1l=o) [l =,

[16(©)] < Meyeak(1 + 04)(”595”1{1(9) + ||59c||H1(Q))||Q1||Ro-

Thus
|T(21) = T(32)[lv < Allor1llr, + B(6gellm ) + 1995l )

where
A= 2M616204]€(1 —+cq4 + 3M016264]€)
B = Mcica(Mcacgk + 6Mcicik® + 2Mcicacak + 14 3¢q) + cak.

By using the inequality 2zy < ez* + 142, we obtain

IT(21) = T(S2)I5 < [Allorillrg + B(ll0gellu ) + 19gs 11 ()]

o 1+e

< A*(1+¢)||ér:[|%, + B .

([10gellar (o) + ||5gs||H1(Q))2
2 2 9 01+¢ 2 2
< A+ e)llori|lz, + 287" —— (IV(0ge) 2 + 1V (595)112)-

Hence, the choice

1
82, = max {A2(1 +¢),2B%c%k? ;}

yields
1T(21) = T(E2)|lv < 0nm|B1 — X2y
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Lemma 3.4 If the following inequalities
2Megk[2Meyco + M2clesk(ch + 263k + cak] < M, (3.23)
AM?cicocak(Mercok + 1) + 2¢3||Hew|lu-1/2(90) < M, (3.24)

hold, T defined through (3.20), maps By = {X € V(Q): [|Z]ly < M} in itself.
Proof By the definition (3.22) we have

1T = U=, T(2)).

Therefore, proceeding as in the proof of Lemma 3.4, it results

D
T2} < % IV fellz + IV fsll2) + Ellprllwo,
where

D = Mcgk[2Mcyco + M2 cEegk(ci + 263c2k?) + cakl],
FE = 2M26102C4I€(M01621€ + 1) + CSHHex”H71/2(8Q)-

The hypotheses (3.23) and (3.24) imply
1T < MIT )y,

so that T'(X) € Bas.
By applying the previous lemmas, we get the uniqueness result.

Theorem 3.2 Let (f., fs,p1) € By and (ge,9s,91) € By, satisfying the Defini-
tion 3.1. If the inequalities (3.23) and (3.24) hold and there exists € > 0 such that

5M < 17 then (.f67 .fsa pl) = (gCagsa ql)

The Theorem 3.2 ensures the uniqueness of weak solutions, provided that the parame-
ter k, the external field and the domain 2 are sufficiently small. A non-uniqueness result
can be obtained with the same method used in [9,11], if the domain  is sufficiently
large.

3.2 The time-dependent case

The weak formulation of the evolution problem (2.22)—(2.25) is obtained by introducing
the functional space

H(Q) = {(£,ps,0,): £ € L2(0,T5 H(@)) N H(0,T; (H*(@)),
V x ps € L?(0,T;L%(Q)), ps + Vo, € L?(0,T; (HL())),

JPs € L0, T:LA(Q), fo, € L2(0,T; (H'(®))'), P - nlag = 0},

where Q@ = Q x (0,7), HL(Q) = {v € H(Q): v - n|so = 0} and X’ denotes the dual
space of X.
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Proceeding as in the stationary case, in order to prove existence and uniqueness the-
orems, we decompose ps and ¢ in the following form

ps =p1— V0, (3.25)

bs =+, (3.26)
with p; € L*(0,7; HL(Q)) and

¢:—%v-p1. (3.27)

By means of the positions (3.25)—(3.26), the system (2.22)—(2.25) can be written in
the form

f=V2F+ R = 1)f + f(pr = VO)> =0, (3.28)
np1 +V x V x p1 +nVe+ f2(p1 — VO) =0, (3.29)
Vf-nlsa =0, (Vxp1+H])xn|sg=0, (3.30)

VO -nlpg =0, p1-nlgg =0, (3.31)

f(,0) = fo(z), Ppi(z,0) = VO(z,0) = pso(z). (3.32)

Let
K(Q) = {(£.0.p1): € L2(0,T5 HY(Q)) 0 H' (0, T3 (H'(2))'),

fV0 € L2(0,T;L7(Q), f0 € L*(0,T; (H'(Q))),

p1 € L2(0, Ty HL(2)) N H(0,T: (HA(®))) }.
From the definition of H(Q), it follows that if p; satisfies (3.25)—(3.27), then the
following equation holds
. 1
p1 — 5V2p1 =F, (3.33)
where F = p, + Vo, + 1 V x V x p, € L?(0,T; (Hy())'). The equation (3.33), with
the boundary and initial conditions (3.30)2, (3.31)2, (3.32)2 admits a unique solution
p1 € L2(0, T3 HA()) N H'(0,T; (HA(R))') (see [14]). Hence, by putting ¢ = —1 V- py.

we have that for each (f,ps,¢s) € H(Q), there exists a unique triplet (f,0,p1) € K£(Q)
which satisfies (3.25)—(3.27).

Definition 3.2 A triplet (f,0,p1) € K(Q) is a weak solution of the problem (3.28) -
(3.32), with HZ, € H~/2(9Q) if

/[fg +E(fP =1 fg+Vf Vg+ fg(p1 — V0) - (p1 — V)] cos(d — p) dz (3.34)
Q

- /[f99 - %ng p1+9gVf-(p1— V) = fVg-(p1— VO)]sin(f — p)dx =0,
Q

/{VXpl~V><q1+V-p1V~ql+[m')1+f2(p1—W)]~q1}d:c
Q

(3.35)
—/H;ﬁqu-nda:(),
o0
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for each (g,¢,q1) € K(Q), a.e. t € (0,T) and

f(2,0) = fo(z),  Pp1(z,0) = VO(z,0) = pso().
By means of the decomposition (3.25)—(3.26), the constitutive equation (2.30) yields
. 1
20+ (1 - E)fQV p1+2fVf-(p1— Vb)) — 2V = 0. (3.36)

Proposition 3.2 FEwvery regular solution (f,0,p1) of the Ginzburg-Landau equations
(3.28) — (3.32) is a weak solution in the sense of Defintion 3.2.

Proof By multiplying (3.28) by gcos(f — ¢) and integrating on €, it results

/[fg +Vf-Vg+k fg(f>—1)+ fglp1 — VO|*| cos( — ¢) dz

Q
(3.37)
- /gi (VO — V) sin(d — ¢) dz = 0.
Q
On the other hand, from (3.36), we obtain
. 1 .
/[f9 + (1 - 5>ng P1+29Vf - (p1— VO)]sin(0 — ) da
(3.38)

+ /[(ng +gVf)-VOsin(0 — @) + fg(VO — V) - VO cos(0 — ¢)] dz = 0.
Q
By subtracting (3.37) and (3.38), we get (3.34).
Finally, inner multiplication of (3.29) by q; and an integration by parts, lead to (3.35).

Let (f,0,p1) be a weak solution of the problem (3.28)—(3.32). The choice g = f,
¢ = 6 in the Definition 3.2 yields

1 0f?
/ {5 a_ft + V2 + £2lp1 — VO|* + szﬂ dr = /k2f2 de. (3.39)
Q Q
Therefore, by applying Gronwall’s inequality, we obtain
IF@®ll2 < [l follzexp (2k%) 0 <t <T. (3.40)

By integrating (3.39) in the interval (0,¢), with 0 <t < T, it follows!

t
/ / (VA2 + f2lpy — V6P + K2 fY dedr < by foll2 (3.41)
0 Q

! Henceforth k; denotes a function of the variable ¢, belonging to Lt (0, T).



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 3(1) (2003) 23-41 37

so that Hf||Hl(Q and | f(p1 — V)||3 are L'(0, T)-functions.

Analogously, by choosing q; = p; in (3.35) and integrating on (0,t), we obtain the
identity

t
LIr@I3+ [ [17 % paf + 19 pi ) dr
0 Q

:gl\pmlli //f p1 - (p1 — V0) dzdr—//H | -ndodr,

0 09

so that

t
n
LIes@I3+ [ [17 % paf? + 19 pi ) dr
0 Q
n T
< 2ol + [ WHZ  nlls-sra 1 % il d

t
1
+ [ [0+ o el + 1501 - 9018 ar
0

The inequality (3.41), implies

SIpr(0)3+ ks [ 1V xpif? + V- paf?]dedr
0 Q
t

n k
< Dol + [ |20+ kiloalf + 1o - VO ar @)
0
t

t
+ [ Bl 0l b < ot ks [ il
0 0

Thus Gronwall’s inequality yields
[P1(t)]l2 < ko(1 + katexp(kat)), 0<t<T. (3.43)
Therefore HP1H12{1(Q) cL'(0,7).

Theorem 3.3 If Q C R?, H, € H Y2(0Q), fo € L*(Q) and p«o = p1o — Vo
with p1o € L2(Q), there exists a unique triplet (f,0,p1) satisfying the Definition 3.2.

Proof Let (f1,01,p11) and (f2,02,p12) be weak solutions of the problem (3.28)—
(3.32).
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Denote by df. = fe1 — fea = ficos01 — facosOs, 6fs = fs1— fs2 = f1sinf0; — fasin by
and 0p; = p11 — pP12. Write the equation (3.34), first with (f,0,p1) = (f1,61,p11), then
with (f,0,p1) = (f2,02,p12) and subtract the ensuing relations. By choosing (g, ¢) such
that gcosp =df., gsinp = dfs, we obtain

1d 1d
[ [5 5 600+ 3 5 6102+ VG + 967 s
* (3.44)
— [RUGL + (6P dot o+ ot T
Q

where

1 . :
Jy = _;/(V -p11fisint; — V- piafasindy)of. dx
Q

1
+ ; /(V . p11f1 COS 91 -V p12f2 COSs 92)5f5 dzr
Q

= —% /[f1 sin61V - (6p1)0R — f1co861V - (0p1)d fs] dx,
Q

Jo = —k? /[(fl3 cos 0y — f3cos02)0f. + (fPsinb — f3sinba)dfs) dx
Q

=k /{ff[(5fc)2 +(0f:)°] + (ff = £2)(f2 cos 020 fc + fasindfs)} do
Q

Jz = — / [(PT,f1 o801 — PIyfacosba)dfe+ (PIy f1sin 6 — plyfosinbo)dfs] da
Q

+ /[V(fl Sin 91) P11 — V(fz sin 92) . p12]5fc dCC
Q

— /[V(fl cosfy) - p11 — V(f2cosbs) - p12]dfs da
Q

= - /(fl cos 010 fc + f1sinb10fs)(p11 + p12) - 0p1 dx
Q
+ /{p§2[(5R)2 + (612 + [V(f1sin60,)df. — V(f1 cos )] - opy } da
Q

+ / pi2 - [V(3£)5fe — V(5£.)5f) dr,

Q

Jy=— /(p11f1 sinfh — pi2fa2sinfz) - V(6R) dx
Q
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+ /(p11f1 cosfy — piafacosfs) - V(1) dx
Q

- /(5fsP11 + fasinBy0p1) - V(4 fe)

Q

- /(5fcp11 + facosba0py) - V(3 fs) dx

Q

Keeping the estimates (3.40) and (3.43) into account, we deduce the following inequal-
ity

A

1
|J1] < " I f1llallV - o1 ll2(l0fella + (10 fsll4)

A

€ C
<5 Iv- pul3 + % LIS fell2ll 0 fellr ) + 10 Fs 2116 fallrrr o))

CEIIV - (@p)lI3 + 1V (S £)I3 + V(6 £)13] + C@ONS Ll + 6£:13],

where € > 0, C(e) is a positive constant and C(t) is a L!-function.

Analogously, we can prove the estimates

T2 < C(e)(IV(Bf)I3 + IV (E£Z) + CEY(I0fell3 + 19 :l13),
73] < C@OI0 ]z + 16£:l5 + llopall3)
CE)(IVEOfZ + IV LIS + IV - (6p1)l3 + IV x (3p1)lI3),
()(
(e)(

[ Jal < CE (I8 Fell3 + 165515 + lopall3)

CE) (VO + IV @ LIS + 1V - (P13 + IV x (9p1)I3)-

Therefore, from (3.44) we get

1d 1 d
/ {5 7 01 + 5 2 (61 + V(O )[* + [V(3£,)[ | da

Q

5 5 9 9 (3.45)
< CEIVEfE+ V@ + V- (@p)ll3 + IV x (6p1)]3]
COIofel3 + 1613 + l1opall3].
With the same technique, from (3.35), we have
d
/ [g = (0p1)7 + [V x (9p1)|* + |V - (0p1)[* | d = —J5 + T, (3.46)
Q



40 V. BERTI

with
Js = /(f12P11 — f3p12) - dp1 da
Q
- / 1261 + prafi — fo)(f + f2)] - pu do,
Q
Js :/(ff’w1 — f3V0,) - 6py dx
Q
= / [[1(f1V01 — f2V02) + f2VOa(f1 — f2)] - Op1 da.
Q
Therefore

d
/ [g dt (0p1)* + |V x (6p1)|* + |V - (6p1)|?| da
Q

<CEIVELIE+IVELE+ IV - @)z + IV x (dp1)]3]
+CWO[10fell3 + 1013 + llopall3].

(3.47)

From the relations (3.45) and (3.47) we have

|5 5010 + 61 + nGop1 ) do

+ /Q (V@2 + [V + [V x (0p1)[2 + |V - (6p1) ] da

<CEIVELINE+IVELEZ+ IV - (o)l
IV x @py)lI3] + COISLelIZ + 105113 + 6P 13]

so that, by a suitable choice of the constant C(g), we conclude

1d
| 5 55 (657 + G124 niop1 Pl do < COUBSLI + 16515 + 15013
Gronwall’s inequality yields df. = 0, dfs = 0, dp; = 0. Hence f1 = f2, VO, = Vo,
P11 = Pi12.
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