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Abstract: We discuss the design and behaviour of families of neural networks
which grow out of a small set of “mother” neurons in response to external
stimuli and to the activities present in various parts of the net at a given
time. The growth process is subject to a few fundamental rules, like

• the ability of neurons to grow new neurons or connections is gradually
exhausted with the number of generations

• neurons are either of excitatory or inhibitive type
• inhibitive neurons have a tendency to form long-range connections,

whereas excitatory neurons “prefer” short-range connections.

In addition, there are a number of free parameters in the equations driving
the time evolution of the neural activities. Our design is implemented using
Matlab, such that the growth process of the network and its activity can be
observed and controlled interactively on the computer screen.

Once the networks are grown both periodic attractors and fixed points are
observed generically in response to external input. The inputs used in the
network’s formation are typically distinguished by characteristic responses,
but the resulting networks are capable of other behaviour in response to other
inputs.
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1 Introduction

Standard artificial neural networks are either feed-forward nets of perceptron type, or
they allow feedback between the various layers of neurons. The latter type is usually
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described as a dynamical system, and the equations for the membrane potential (or
firing rate, or activity) of the individual neurons form a coupled system of nonlinear
differential equations. For surveys on the theory of these nets, we refer the reader to the
books by Arbib [2], Hertz, et al. [11], Amit [1], or the (older) papers by Grossberg [8] or
Lippmann [12].

What all these nets have in common is that their graph structure is fixed once and for
all. Connections exist or not, and training or learning of the net is done by adjusting the
connection weights. This imitates the biological process of changing synaptic efficacies;
various learning rules are used, the most common being variants of the Hebb Rule ([9]).
In essence, a neural net consists of the following three elements:

1. A set of neurons at certain locations; each neuron can send output or receive input
via connections. A connection is a one-way street; from the point of view of the
sending neuron, we will call it an axonal (output) connection; from the point of
view of the receiving neuron, we will call it a synaptic (input) connection. In
simple additive networks, the rate of change of a neuron’s membrane potential is
determined by a sum of synaptic inputs, each of which is a nonlinear function of
a presynaptic neuron’s membrane potential (which may be interpreted as a firing
rate), modulated by a “synaptic efficacy” (connection strength).

2. A set of existing connections between the various neurons, which gives the whole
object the structure of a directed graph.

3. A matrix of connectivity (synaptic) strengths, which can change in the learning
process.

In these standard nets, the first two of these elements are fixed; only the third is subject
to change. Because of this, the traditional method of developing an artificial network is
to connect every neuron to every other neuron with some initial connection weight (if
the network is layered then typically only neighbouring layers are fully connected) and
then to evolve the connection weights according to some training process. For nets that
consist of a large number of neurons, this training process can become quite awkward.

In any case, biological evidence points in a different direction. Complicated biological
neural networks, i.e., brains and nervous systems, evolved from simpler ones in an evo-
lutionary process, a process which is repeated following a genetic blueprint with some
accuracy in each individual as the brain develops. The end results are large brains, with
as many as billions of neurons but a relatively sparse connection matrix. Even small sub-
systems of the brain are far from fully connected. These natural neural networks display
a wide variety of principles of organization ([14]) including “layered” structures (e.g.,
separation between “processing” neurons and data gathering neurons, with relatively
few intermediate layers, cortical layers and columns, or different ‘nuclei’ or structures in
the brain), interplay between excitation and inhibition (sometimes “short-range excita-
tion, long-range inhibition” to produce “cell assemblies”, sometimes pairs with negative
feedback, such as motor neurons and Renshaw cells), and dynamic responses (e.g., oscil-
lations) to inputs.

Neurons differ from other body cells in the sense that they do not split. As a con-
sequence, a mature brain is a more stable biological structure than, say, a muscle or
any other organ, where the individual cells are not so important. Neurons, once they
die, can possibly be replaced, but the functionality of the brain is mostly maintained by
the sharing of tasks by many neurons. This redundancy is indeed a central feature of
biological neural nets.
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It is easy to think of reasons why neurons in the mature brain might not have been
designed to split. Brain functions are more complex than the functions of other organs,
and the way that neurons interact is crucial for this function. Neural cell division on a
large scale would presumably alter brain function in ways incompatible with maintaining
the multiple specific tasks assigned to the brain by nature.

In the process of evolution, however, such splitting must have occurred in one way or
the other, because otherwise there would be no sophisticated brains at all (when we use
the word “brain” here, we mean any biological neural structure with at least a few dozen
interconnected neurons). Splitting of some kind must also occur in the growing brain,
albeit controlled by the genetic code.

The objective of the project described in this article is to attempt a simulation of
an evolutionary growth processes for neural networks. Although not truly evolution, the
process used has been inspired by the biological idea. Our purpose is to develop a network
displaying characteristic responses to inputs used to guide the growth. We start with a
network of very simple type, namely a few neurons which are present from the outset and
whose activity is interpreted as the information processing done by the emerging network
(we call these neurons the “mother neurons”). The mother neurons have the ability
to split, or, more accurately in our implementation, “sprout” new neurons, which can
themselves sprout again, or alternatively, form connections to already existing neurons.
The resulting “child” neurons, “grandchild” neurons etc. are connected to their parent by
a synaptic connection, and they can, with some randomness in the process, grow axonal
connections to other neurons and “share” their activity, as measured by their membrane
potentials. The whole process is driven by external inputs and by the activity levels of
the existing neurons at any given time. The decision as to when and where to connect or
sprout is deterministic. However, when the “best” receiving location is not unique, one is
chosen randomly. Synaptic connection strengths change over time and can be excitatory
or inhibitive, but a given neuron can grow either excitatory or inhibitive connections, not
both. We shall therefore classify neurons as either excitatory or inhibitive, depending
on what type of connections they grow. Inhibitive neurons are never allowed to sprout,
because the activity of a “child” of such a neuron would be immediately suppressed and
therefore would contribute little to the information processing ability of the net. Instead,
when an inhibitive neuron grows a connection, this connection must lead to an already
existing neuron.

We implemented limits on the size of the net by setting low upper limits on how many
axonal connections to new or existing neurons a given neuron can form and how many
synaptic connections it can receive. For all the details of the process, see Sections 2
and 3.

The growth process of the neural networks presented here is dependent on the current
spatial configuration. As a courtesy to the human visual system, the system evolves on a
two-dimensional grid, and the direction in which a new neuron sprouts from an existing
one depends on a “potential” created by the neurons already in place. Neurons sprout
downward from a top layer (occupied by the mother neurons), and the generation number
of a neuron is identical to the number of its layer. In this sense, all of the mother neurons
are first generation neurons. The potential has the effect of allowing neurons to “feel”
each others presence even without being connected. As well as depending on the location
and type of the neurons in the network, the potential is also dependent upon both the
number of available synaptic connections left in other neurons and the generation number
of each neuron. This latter dependence was introduced after a number of numerical ex-
periments indicated that a sufficient number of inhibitive back-connections are required
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for the network to exhibit interesting behaviour. Depending upon the neuron-type (ex-
citatory vs. inhibitive) the neuron can either sprout or connect. Recall that inhibitive
neurons can only connect. Rather than searching the complete two-dimensional grid for
viable locations, the sprouting/connecting is only allowed inside a certain window whose
size depends on the generation (level) and on the neuron-type. Connections are allowed
anywhere inside this window but sprouting is further restricted by allowing each neuron
to only sprout down one level. Inhibitive neurons differ from excitatory neurons in the
sense that they connect preferably over longer distances, and preferably to neurons of
earlier generations.

We dwell further on the problem of why the mathematical analysis of complex neural
networks seems so hard if attempted directly. A network of, say, 100 neurons, in which
each neuron is connected to 10 others, will be described by 100 coupled nonlinear ordinary
differential equations, with 10 coupling terms on the right hand side of each equation.
If equations for the connectivities (on a slower time scale) are added, the number of
equations will grow by another thousand. Even if we disregard these latter equations for
the modeling of the neural dynamics, the state space of the system has 100 dimensions,
and it seems nearly hopeless to predict the dynamical behaviour of such a system in the
general case without some structural principle, or its response to external inputs (modeled
as force terms on the right-hand sides of the equations). Even for much simpler systems
of differential equations, with only 3 or 4 dependent variables, prediction of the dynamic
response to inputs is a real challenge (for a case study on the Lorenz system of equations,
see Evans, et al. [7]). Attempts to simplify the description of such systems by nonlinear
diffusion equations were made by Cottet [4] and, in greater generality, by Edwards [5],
but the analysis done in these papers shows that such mean field approximations are
only feasible under very special assumptions on the connection matrix (in Edwards [5]),
connections are local, predominantly excitatory, and nearby connections cannot have
very different strengths). Other structural principles, such as symmetry of connections
(Hopfield [10]), tend to be overly restrictive and un-biological.

Yet nature has found ways to design much larger networks, described by systems of
equations of unimaginable complexity, which display highly complex yet highly organized
behaviour. Our paper is an attempt to repeat such an organic design process in a
computer.

2 The Model

We now describe, in a series of steps, how our network starts from the mother neurons
and grows in response to external stimuli and, eventually, internal activity. The activity
of a given neuron is identified with the membrane potential of that neuron. External
inputs are identified with force terms on the right-hand sides of the equations. For a
given size of the net (say n neurons), the evolution of the membrane potentials with
respect to time is given by network equations of the form

u̇i = −ui +

n
∑

j=1

j 6=i

Tij sgm(µ(uj − wj)) + Ii, i = 1, 2, . . . , n, (2.1)

where ui is the membrane potential of the i-th neuron. The three terms on the right hand
side are respectively: a leakage term, the contribution from all the neurons connected
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to the i-th neuron and an external force term. The connection strength between the
neurons with label j and i is denoted as Tij , where j is the label of the sender and i is
the label of the receiver. The external force term is denoted as Ii and is interpreted as
a temporary input upon neuron i. This can be switched on or off, and can take any real
value inside an interval [−Imax, Imax], thereby enhancing or inhibiting the activity of the
i-th neuron. The symbol sgm denotes a sigmoid function and for this paper, we take

sgm(x) =
1

2
(1 + tanhx) =

1

1 + e−2x
, (2.2)

which assumes values in (0,1). Other sigmoids are certainly possible. The constants
wj are inserted as firing thresholds which further differentiate the activity of inhibitive
from that of excitatory neurons. In our experiments, we chose wj = 0 for all excitatory
neurons, wj = 0.5 for all inhibitive neurons. The rationale for this, in a discrete time
context, is explained in [6] and [13]. In essence, by first choosing the constant µ sufficiently
large and then combining inhibitive neurons with a positive threshold with excitatory
neurons with threshold at zero creates conditions that are likely to lead to oscillatory
and perhaps even chaotic behaviour of the net in the absence of external input. The
experiments discussed in Section 4 confirm this. The constant µ is known as the gain,
and

vi = sgm(µ(ui − wi)) (2.3)

is the firing rate of the ith neuron. By construction, the membrane potential takes values
in R, whereas the firing rate takes only values in (0,1).

We will also need a rule to initialize the connection strengths Tij . Once a connection
strength is determined, we could apply a learning rule to adjust it dynamically, but we
chose to leave it fixed for the lifetime of the network so that effects of the growth process
would not be confounded by subsequent learning effects.

The basic plan behind the development of the network can be encapsulated with a
few simple rules.

1) Neurons are grown in layers.
2) Excitatory neurons form in locations of low activity.
3) Inhibitive neurons form in locations of high activity.
4) Input that changes in time modulates the activity.
5) Input is distributed on the x-axis, while layers are formed in the y direction.

Because of this design plan, the network is grown on an M ×M grid in response to a
series of inputs which are visualized as being applied from the bottom. The position of
a neuron is therefore given by a pair of numbers (a, b), a ∈ 1, . . . , M , b ∈ 1, . . . , M . The
horizontal coordinate a is cyclic in that the position (a + kM, b) is identified with (a, b)
for all k ∈ Z. The vertical coordinate is grouped into a set of equally spaced disjoint
intervals the size and number of which depends on the size of the grid, M , and the
maximum number of neurons that could be placed. These vertical intervals are referred
to as layers, levels or even generations. If we denote the width of a level as ∆l and the
width of the gap between levels as ∆g then level k +1 is defined as the points (a, b) with

M − k(∆g + ∆l) ≤ b < M − k(∆g + ∆l) + ∆l.

In the special case of level one, k = 0, we take b = M . One additional (arbitrary)
constraint is that the bottom of the last layer must lie at b = 2. This implies that the
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number of layers is 1 + (M − 2)/(∆g + ∆l). For the numerical experiments we chose
M = 30 and because of the maximum number of expected neurons, the vertical position
is partitioned into five disjoint subsets each with a width of ∆l = 3 grid points and
separated by a gap of ∆g = 4 grid points. This is illustrated in Figure 2.1. To start
the net, we place N mother neurons equidistant from each other on level one. In the
case of N = 3 these are placed at (5,30), (15,30), (25,30). The growth process is then
driven by inputs located in the lowest layer. When the system is first defined, no neurons
exist at this input layer. Therefore during the training process each neuron experiences
a weighted average of the signal applied at the input layer according to the expression

Ii =
1

ni

ni
∑

j=1

f(xj), xj = xi −
ni − 1

2
, . . . , xi +

ni − 1

2
.

Figure 2.1. Shown here is the location of the various layers of the network used

in the numerical experiments. It depicts the location of the mother neurons, the

various levels and the location of the input layer. Also included is the vertical cone

extending from an external input located at (a, b) = (15, 1).

Here Ii is the external force that appears in equation (2.1) and is applied to neuron i by
the input vector f . The number of points over which to average, ni, is governed by the
layer of the i-th neuron and in the case of our 30 × 30 array we chose {ni}

5

i=1
= 11, 7,

5, 3, 1 for layers 1 thru 5 respectively. Consequently, the inputs applied at the bottom
layer are felt by all of the neurons that lie inside a vertical cone that emanates from the
location where the input is applied. Once again, refer to Figure 2.1. After the training
process, the input level for all of the layers is divided by a factor 5− l + 1, where l is the
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layer of the neuron under consideration. Ultimately, this means that the external input
I to the mother neurons is suppressed by a factor of one over the maximum number of
layers while the neurons at the bottom of the network, l = 5, feel the external input
directly.

3 The Growth Process

3.1 The mother neurons

The mother neurons are really just ordinary neurons, but they have the ability to sprout
new neurons, to which they will be connected via axonal connections, in response to
their own activity. Specifically, the mother neurons can initially receive an input, i.e., be
stimulated externally from the bottom, and if their activities rise above a predetermined
threshold τ , they will sprout an axon with a child neuron. The mother neurons are by
definition excitatory neurons, meaning that the axonal connection which connects them
with children is excitatory. The child neurons can be either inhibitive or excitatory; the
choice is made randomly, and the probability that a sprouted neuron is inhibitive is a
free parameter in the program, denoted by ρ. We varied ρ from layer to layer, starting
with ρ = 0.2 for the second layer and rising to ρ = 0.6 for the bottom layer.

If a child neuron is excitatory, it has again the ability to sprout new neurons in response
to sufficient activity. Recall that the sprouting takes place when the activity is above the
threshold; for a sufficiently large network, this can happen even when the neuron receives
no external input. If the child is inhibitive, we do not allow it to sprout “grandchildren”;
its only way to build connections is to connect back to the mother neuron or, later, to
other neurons already in existence.

We require that the mother neurons can sprout child neurons, or connect via axonal
connections to other neurons (e.g., grandchildren), only a finite number of times; the
mechanism which we use to enforce this is to define an integer G which is the maximal
possible number of generations that can sprout from the mother neurons. So that we
generate a nontrivial network, we require that G > 1. The total number of axonal
connections for any neuron is G+1 so that even if a mother neuron has sprouted G times,
there is still one axonal connection available to connect to an already existing neuron.
For the next generation, only G− 1 of the total G + 1 potential axonal connections are
allowed to sprout, etc. This rule implies that every subsequent generation can have one
fewer sprouted connection than the previous generation and is a convenient (and natural)
way to limit the size of the net. Indeed for our 30× 30 array we have five layers so that
G = 4 and therefore using the above conditions, the network can have a maximum of 195
neurons. Since ρ 6= 0, we usually have inhibitive neurons and as a result the expected
number of total neurons is less.

If gi is the generation label of the i-th neuron, then gi is an integer between 1 and
G + 1. By ai(t) we denote the number of remaining potential axonal connections of the
i-th neuron at time t. If t∗ is the moment of creation of this neuron, then ai(t∗) = G+1
and the number of these potential connections that can sprout is G − gi + 1.

The third characteristic number associated with each mother neuron is again an in-
teger, which we denote by S, the maximal number of synaptic connections which the
mother neuron (or any other neuron) can potentially accommodate. We choose S = G.

We summarize: In the beginning, we create N mother neurons which are characterized
by three parameters, τ (threshold for sprouting or connecting), G, the number of admis-
sible axons that can sprout from the mother, and S, the number of possible synaptic
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Figure 3.1. Illustrated above is a sample network showing a few mother neurons

along with their children. When a new neuron is created in the i-th layer (generation

gi = i) it is assigned ai = G + 1 potential axonal connections (G + 1 − gi can

sprout) and S potential synaptic connections. As the network evolves both of these

values can decrease. The horizontal dashed lines divide the net into the five levels

while the vertical dashed line indicates, where the net wraps around so that the

neuron at (35,30) is another image of the neuron at (5,30). Solid connections are

excitatory; dashed connections are inhibitive.

connections. Both S and τ are the same for all neurons while the number of admissible
axonal connections that can sprout depends on the layer in which a particular neuron
finds itself. Figure 3.1 gives a simple network that has begun to evolve under these
assumptions.

3.2 The next generations

The neurons of the next generation (the children of the mother neurons) are set to
have essentially the same properties as the mother neurons: They have again room for S
synaptic connections, and their threshold for sprouting or connecting is again τ . However,
we allow them to sprout only G − 1 times, and the next generation will be allowed to
sprout only G − 2 times, etc. This is a built-in mechanism to limit the size of the net,
and it follows that the net can never grow to more than

NG = N

G
∑

k=0

G!

(G − k)!
= N

G
∑

k=0

(

G

k

)

k!

neurons, where N is the number of mother neurons (which are also thought of as the
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information processing neurons). For the situation N = 3 mother neurons and G = 4,

there is a total of NG = 195 possible neurons.

Once a few neurons are in place, neurons which receive an input above the chosen

threshold do not necessarily have to sprout a new neuron. We also give them the option

to build a connection to an already existing neuron, e.g., to a mother neuron, a sister

neuron, or any other neuron with room for synaptic connections. In fact, as already

mentioned above for the first child of the mother neuron, inhibitive neurons have only

this option.

We have so far only briefly discussed the geometric structure of the emerging net. In

fact, it is conceivable to ignore this aspect completely and simply not assign the new

neurons a spatial location at all; in such a model, every neuron will consider every other

one as a candidate for a possible connection, and may make a random choice among

these candidates. Numerical and graphical experiments with such a setup proved messy

and showed that it was all but impossible to explore interesting correlations between the

given input, the structure of the net and the output.

Therefore, we postulated that our neurons actually had to have a spatial location as

described above. As a simple mechanism to record which sites in the array are occupied

and by which type of neuron, we introduce two matrices. The first is an occupation

matrix Oij whose entries are 0 at vacant sites and are the labels of the neurons at

occupied sites (neurons are labeled in the order in which they are created). The second

matrix Zij encodes the neuron type and has entries 1, −1, or 0, depending on whether

the site is occupied by an excitatory or inhibitive neuron, or vacant. These two matrices

could be easily combined into a single matrix.

We further postulate that by their mere presence, the neurons create a potential field

which determines the direction of new axonal connections. Such connections may termi-

nate in new neurons (sprouting) or at neurons already present (connecting). Inhibitive

neurons have only the second choice. The potential is a function of the state of the

system at a given time. We define this state by the neurons which exist at this time

and their properties. The neuron with label k at a location (site) (xk, yk) ∈ Z
2 in level

gk of type Zxk,yk
has activity (membrane potential) uk(t), sk(t) ≤ S free synapses and

ak(t) ≤ G + 1 free axons. We sometimes use the shorthand Zk = Zxk,yk
.

The state of the system at time t, when K neurons have been created, is then given by

the set of coordinates {(xi, yi, gi, si(t), ai(t), Zi); i = 1, . . . , K}. Notice that neither the

membrane potential, nor the number of existing connections play a part in the definition

of current state.

Modifications of our model could certainly include these other characteristics into the

definition of state. However, the current potential depends only on the variables defined

above. We tried various candidates for potentials; the one which seemed to lead to

satisfactory patterns is the following:

V (x, y) =

N
∑

i=1

S/2 − si + γ|G − gi|

1 + |x − xi| + |y − yi|
, (3.1)
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where γ is a free parameter. We found γ = 1/2 to work quite well for our numerical
experiments. There are two effects that are modelled in the potential. The S/2 − si

term has the effect that a neuron at site (xi, yi) will make a negative contribution to the
potential while it has many free synapses; as its number of free synapses, si, decreases,
this potential will gradually increase and eventually become positive. The |G− gi| term
makes neurons which are vertically far away more attractive. We will see below that this
tends to create longer back connections.

If our potential were a potential in the usual physical sense, forces between various
neurons would act in the direction of the gradient of the potential. We loosely follow this
idea in using the potential to give directions for sprouting or connecting. To do this, we
need one more ingredient, namely the idea that neurons will look for sites to sprout to, or
connection partners, in a neighborhood rather than far away. We implicitly work under
the assumption that there is a natural scale of length for the typical connection, i.e., that
the axonal connection cannot exceed a certain length. This length defines a “window”
around each neuron already in place. The size and shape of the window depends on both
the generation number and the neuron-type. Inhibitive neurons are permitted to connect
further, so their windows are larger than those associated with excitatory neurons. For a
given neuron at position (i0, j0) the excitatory and inhibitive windows about this point
are given by

WE(i0, j0) = {(i, j) | |i − i0| ≤ wE
g , −hE

g ≤ j − j0 ≤ hE
g − |i − i0|},

W I(i0, j0) = {(i, j) | |i − i0| ≤ wI
g , −hI

g + |i − i0| ≤ j − j0 ≤ hI
g},

where the width and height of the excitatory/inhibitive window, wE,I
g and hE,I

g depend
on the generation g and are listed in the following table.

Generation g wE
g hE

g wI
g hI

g

1 10 7 10 2

2 8 9 8 7

3 8 9 6 14

4 8 9 6 21

5 8 3 6 28

Typical windows for each of the levels are depicted in Figure 3.2. Notice that the
excitatory window is diamond shaped at the top and rectangular at the bottom while
the inhibitive window is inverted. The excitatory window is chosen so that a neuron
can connect no further than adjacent levels (and only sprout into the next level down)
while the inhibitive window allows connections back to the mother neurons from any
generation.

If the neuron at site (xj , yj) is inhibitive, it can connect to another neuron inside its
window. If it is excitatory, it can connect to another neuron in its (smaller) window, or
it can sprout a new neuron at an empty site inside this window. The details of these
sprouting and connecting routines are described in what follows.
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Figure 3.2. Depicted above are examples of the various excitatory and inhibitive

windows or target sets. Specifically shown are excitatory target sets for levels three,

four and five and an inhibitive window for level three. The characteristics of the

window depend on the type and level of the neuron on which it is based.

3.3 The sprouting and connecting routines

These procedures are outlined here in detail, but they are also the content of the flow
chart in Figure 3.3. For the purposes of this section, assume that we have arrived at a
certain net after a number of steps, and that the activity of some of the existing neurons,
either by external or internal stimulation, is above the threshold. We then loop through
all the neurons and make the following tests and choices.

A. For the i-th neuron, check whether the activity is above the threshold. If no, go
to the next neuron, if yes, check whether the neuron is excitatory or inhibitive.
In the first case, go to B. In the second case, go to C.

B. At this point we know that the i-th neuron can either connect or sprout. Therefore
define the size of the window, WE(xi, yi), in which to search for a suitable site.
The size and shape of the window is based on the neuron type and location as
described in Section 3.2. There are now three subcases.

i) If this neuron has no axons left, ai(t) = 0 then go to the next neuron.
ii) If this neuron only has one axon left, ai(t) = 1 then this neuron can only

connect. A neuron cannot sprout if it only has one axon left. Go to step C.
iii) If ai(t) > 1 and the neuron is excitatory then the neuron can either sprout

a new neuron or connect. Go to step D.
C. We get to this step if we are only allowed to connect which always happens for

inhibitive neurons. If the i-th neuron is inhibitive, it looks at those neurons with
at least one free synapse inside its target set, W I(xi, yi), and chooses the location
that has the maximal potential. Alternatively, if the i-th neuron is excitatory,
the target set becomes WE(xi, yi) and instead of maximizing the potential, it
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Figure 3.3. Shown here is the algorithm for the decision to sprout or connect.

This is also outlined in Section 3.3.

looks for the location where the potential is minimal. In this search, a number
of neurons are disregarded according to the following criteria:

i) We cannot already be connected to this neuron.
ii) The location to which we want to connect must have synapses left.
iii) We cannot connect to ourselves.
iv) If we are on the bottom layer we cannot connect to the bottom layer.

From the way that our potential was defined, the inhibitive neurons will typically be
targeted towards neurons that already have many synaptic connections and are there-
fore likely to be highly active. If there are several sites which have the same maximal
potential and are occupied by connection candidates, the neuron chooses one randomly
for connection. Denote the suitable candidate as the j-th neuron. If no suitable neuron
is found then return to step A otherwise continue to step E.

D. We get here if we can either connect or sprout. In addition, we know that the i-th
neuron is excitatory. In this case we are looking for a minimum of the potential
inside the target set WE(xi, yi). If the site under consideration is vacant we can
sprout a new neuron. In this case there are two extra criteria:

i) The i-th neuron must be allowed to sprout. Recall that a neuron on level l
can only sprout G − l + 1 times.
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ii) If the position under consideration is above the current neuron’s position,
yj > yi, then the position is not eligible since we cannot sprout upwards.

If the site is occupied then the i-th neuron must connect. In this case we have the
four criteria already listed in item C.

If there are several sites which have the same minimal potential, the neuron chooses
one randomly for connection. Denote the suitable candidate as the j-th neuron. If the
i-th neuron sprouts go to step F. If it connects, go to step E and if no viable site is found
go back to step A.

E. Connect the i-th neuron to the j-th neuron. Section 3.4 will detail how the
connection strength is determined. In the process, the number of available axonal
connections for the i-th (sending) neuron is reduced by one, ai → ai − 1, and
the number of available synapses of the j-th (receiving) neuron is reduced by
one, sj → sj − 1.

F. Sprout a new neuron to position (xj , yj). Section 3.4 will describe how the con-
nection weight is determined. As well, the number of free axonal connections of
the i-th neuron is reduced by one, ai → ai − 1. For the new neuron, we assign
a generation number that is one less than its parent. The choice whether it be
excitatory or inhibitive is made randomly, with a probability determined by the
parameter ρ described in Section 3.1.

Notice that the sprouting process will automatically come to an end with the last
generation, and the structure of the net will have been created by its own activity, and
hence, to some degree, by the inputs which were active during the process.

3.4 The connection weights

We used a connectivity function which creates a connection weight between the i-th
(sending) and j-th (receiving) neuron as

C(i, j) = λZi sgm(µui) sgm(µuj), (3.2)

where Zi is the neuron type of the sending neuron (−1 for inhibitive and +1 for excitatory
neurons). In terms of the firing rates vi (2.3),

C(i, j) = λZivivj

and we set the connection matrix entry

Tij = C(i, j). (3.3)

3.5 The dynamics of the system

The dynamics of the system happen on two different time scales: A fast one for the
evolution of the individual neurons’ membrane potentials, given by equations (2.1), and
a slow one for alterations of the net, involving the growth process, the creation of new
connections and the setting of new connection strengths in accordance with (3.2) – (3.3).
Once defined, connection strengths are not allowed to update. In practice, we solved
equations (2.1) by the Matlab routine for two time units, and then stopped to update
the system according to the algorithm described in Section 3.3. Any connections created
at this time get the connection strength defined by (3.3). We emphasize that the already



56 C.S. BOHUN, S.J. CARRUTHERS, R. EDWARDS AND R. ILLNER

existing connectivities are not updated. Rather, they remain fixed throughout the exis-
tence of the network. It would be possible to allow synaptic plasticity via a generalized
Hebb rule where already existing connectivities are updated according to

T new

ij = (1 − ǫ)T old

ij + ǫC(i, j)

with ǫ is a free parameter which determines how rapidly the connection strengths change.
We did not do this as we wished to separate the effects of network growth in response
to inputs from those of subsequent synaptic change. However, experiments with the
learning rule included led to very similar results.

3.6 Input application

Input signals are applied directly to the lowest level of the net and felt at the upper
layers through the averaging process described in Section 2. The following describes
the implementation that we used. We emphasize that this is only one of many possible
choices. Our first input is zero everywhere except at the grid position (5,1) (under the
first mother neuron) where it has a nonzero value u0. In our case we chose the value
u0 = 11. The input remains at this position for eight time units which is four of the
long time cycles. This gives the network a chance to grow and alter itself in response
to this input. After four long cycles the input is moved to the position (15,1) under the
second mother neuron. It remains here for four cycles then moves to (25,1) completing
one pass of the training cycle. This process is continued until no further growth in the
net is observed. The goal of this process is to train the network to classify clearly these
three input locations; in addition, the emerging networks display characteristic responses
to many other inputs.

3.7 Input-output representation, graphical depiction of the net and of the

potential

This is done in three windows brought up by Matlab. In one of these windows, the
network window, the neurons are visible at grid-points, and their connections are dis-
played as piecewise straight lines (solid green for excitatory connections, dashed red for
inhibitive connections). The second window, the potential window, shows the potential
as a colour map. The only purpose of this map is to indicate in which direction the net
will grow at a given time. The third window, the activity window, displays the activities
of the mother neurons (in our case three) as a function of time; what we are looking for
in this window is characteristic responses of the top layer neurons to classes of inputs.

Almost all the relevant information is contained in the network window, where the
whole net and its activity is shown. In this window neurons are represented as triangles
and we found it most convenient to display the connections as piecewise straight lines
with one “kink” that has a rational and irrational component. This serves two purposes.
The direction of the connection is from the side of the shorter segment to the longer
segment. In addition, because the location of the kink has both a rational and irrational
component, it is unlikely that the graphical representations of two connections will fall
on top of each other.
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4 Results and Discussion

We conducted extensive tests with the program and made the following observations.

4.1 The effect of ρ

In most cases, the net will grow rapidly if there is sufficient initial stimulation. The input
leads to high activity of the mother neurons, to sprouting, to high activity of the next
generation, which sprouts or reconnects, and so on. The process can end prematurely if
too many inhibitive neurons are created early in the game. These must connect to other
neurons, whose activity then gets inhibited to the point where they may not sprout new
neurons anymore. High stimulation of such neurons can lead to new growth.

Typically, however, when the number of inhibitors is kept low, once a few neurons are
in place, growth continues even when input is turned off. The chosen growth rule, which
directs new excitatory (inhibitive) neurons to locations of lowest (highest) potential,
appears to lead naturally to the formation of subnets (clusters). These clusters will
usually form inhibitive connections to other clusters and back to the upper layers. The
reason is the longer range of inhibitive connections. It follows that the inhibitive neurons
in the lower layers are the most sensitive neurons to inputs.

We found that interesting nets, in the sense of having characteristics oscillations, were
more likely to emerge if the fraction of inhibitive neurons increases from layer to layer. To
this end, the parameter ρ, which is the probability that a sprouted neuron be inhibitive,
was set at 0.2 for the second layer, at 0.3 and 0.4 for the next two layers, and 0.6 for the
last layer which is not allowed to sprout at all, merely connect.

This description indicates that ρ is one of the most important parameters. If there
is too little inhibition, such mostly excitatory nets tend to freeze in high activity states,
whereas too much inhibition leads to a freeze in low activity states. Such nets still
respond to input, but in a fairly trivial way-neurons directly affected by input, or directly
connected to a neuron receiving input, show a response, but the rest of the net seems
rather unaffected. It follows that an appropriate ratio between inhibitive and excitatory
neurons is important.

4.2 The effect of the gain

The other crucial parameter appears to be the gain µ. This is not very surprising, as
the gain is well-known to influence the behaviour of a neural network in sensitive ways.
For low values of µ, the net tends to grow towards one with nonoscillatory stable rest
states; inputs can force the net from one such steady state to another one, but it is
questionable whether this is really an optimal way of information processing. First, it is
not consistent with biological observations, where chaotic activity is seen in rest states
([15]) and periodic attractors seem the typical responses to inputs ([3]). Second, it may
well be that chaotic rest state activity increases the information capacity of a network in
ways which we do not (yet) understand.

Be that as it may, for larger values of µ, (2 ≤ µ ≤ 10) and for the choices of ρ described
earlier we observed that many of our emerging nets showed characteristic oscillatory

responses towards specific inputs; i.e., if for a grown net an input is applied at one of the
30 locations at the bottom, one, two or even all three of the mother neurons will display
oscillations with characteristic amplitudes and frequencies. For most inputs, only one
or two of the mother neurons will oscillate, while the others will show steady activity.
This observation is satisfying inasmuch as it is consistent with biological observations;
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considering oscillations as acceptable output also increases the differentiating capacity of
the net dramatically, the main advantage being a vastly larger set of possible attractors,
with the ability to respond characteristically to many different types of input.

4.3 What is cognitive behaviour anyway?

We have so far dodged this question, in spite of the fact that it is of central importance
for our project. We admit from the outset that we have no clear definition of cognitive
behaviour; we let ourselves be guided by what is seen in nature.

There are at least two different types of information-processing ability which are ob-
served in natural neural networks. The first kind is a rather straightforward method of
image-projection, in which signals are received by receptors (e.g., the retina cells in the
back of the eye) and forwarded via neural connections towards a subunit of the brain,
where the observed pattern is then reproduced with some accuracy. For example, this is
how the visual cortex operates.

We refer to this type of information processing as trivial cognitive behaviour, for two
reasons: a) it is immediate how to connect input and output neurons for the objective,
namely, by high-fidelity bundles of connections which transfer an input essentially un-
modulated to the output layer, and b) there is no attempt or potential for interpretation;
the process is simply one of data transmission. Clearly, to produce this kind of informa-
tion processing, we could have done no growing at all in our net: The three input neurons
will certainly respond with different steady levels of activity to various inputs, simply
by the established rule that the applied inputs are to be felt initially (with some aver-
aging) by the mother neurons. This process will certainly define a (trivial) input-output
relationship like the mentioned example of the visual system.

The second, non-trivial kind of information processing is harder to define, and we
follow natural observation for a tentative definition. In biological observations, a typical
reaction to a stimulus in a subunit of a neural net is a transformation from a rest state
which may be noisy or chaotic ([15]) to oscillations with characteristic frequency and
amplitude. It is this type of transformation which must be interpreted as a transition
from a rest state to a cognitive state. Presumably, information processing via oscillatory
states defines a much larger volume of all “cognitive” states than just steady states of
neuron arrays ([3]), thus enhancing cognitive capacity; besides, oscillatory states may
be easy to attain if certain parameter ranges and connectivity types are permitted, thus
setting a natural path for evolution.

Our experiments indicate that this is a feasible path; as the results from the next
section show, the mother neurons tend to respond with characteristic oscillations for
most of the stimuli one can apply at the input layer; the option of a steady output is still
there, but it is supplemented by a multitude of characteristic oscillations with varying
frequencies and amplitudes for each neuron. The fact that this happens for an apparently
open set of choices in parameter space led to the term “generic” in the title of this paper.

4.4 Results

We describe one particular realization of our network-building algorithm. Applying input
to the three mother neurons in the sequence described in Section 3.6 resulted in a network
that stabilized after t = 64 time intervals or 32 iterations with a total of 27 neurons.
Snapshots of this growth process are depicted in Figure 4.1. A summary of the parameters
for each of these 27 neurons at the end of this process is listed in Table 4.1.
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i (xi, yi) li ai si ri Zi i (xi, yi) li ai si ri Zi

1 5, 30 1 1 0 4/4 1 15 3, 24 2 0 0 1/3 1

2 15, 30 1 2 0 1/4 1 16 13, 16 3 0 0 - -1

3 25, 30 1 1 0 4/4 1 17 23, 23 2 2 0 3/3 1

4 30, 23 2 2 0 2/3 1 18 28, 16 3 0 1 - -1

5 12, 23 2 1 0 - -1 19 17, 17 3 0 0 2/2 1

6 22, 16 3 0 0 2/2 1 20 1, 18 3 2 0 0/2 1

7 8, 25 2 4 0 - -1 21 9, 9 4 0 0 - -1

8 4, 16 3 0 0 - -1 22 24, 9 4 2 1 1/1 1

9 18, 9 4 0 0 1/1 1 23 2, 2 5 0 2 - -1

10 26, 25 2 1 0 0/3 1 24 9, 18 3 2 0 2/2 1

11 29, 9 4 0 0 - -1 25 14, 10 4 2 1 - -1

12 11, 2 5 1 0 0/0 1 26 5, 9 4 2 3 - -1

13 19, 23 2 0 0 - -1 27 21, 25 2 5 3 - -1

14 16, 25 2 0 0 1/3 1

Table 4.1. This table lists the parameters for all of the 27 neurons in our
particular realization. Recall that ai and si denote the number of unused
axonal and synaptic connections for the i-th neuron respectively. The values
in the ri column are of the form p/q where p is the number of sprouts actually
made out of a total possible of q. For example neuron 14 is located in level
li = 2 at position (16,25). It is an excitatory neuron that has used all of its
synapses, sprouted once and made four other connections since a14 = 0.

From the table one can see that this example network is fairly saturated in that there
are very few synapses left for a neuron to connect to and very few axons to connect to
these synapses. In addition, there are 15 excitatory and 12 inhibitive neurons. With few
exceptions it is the inhibitive neurons that have a significant number of potential axonal
connections remaining once the network stops growing. Recall that inhibitive neurons
are not allowed to sprout.

The last image in Figure 4.1 shows the fully grown network. Two structures that seem
to be essential to the development of oscillations are that all the mother neurons have
at least one inhibitive connection and that there are various inhibitive neurons that have
fan-like connections into the levels above them. Four of these latter structures extend
from neurons 8, 16 and 18 in level 3 and neuron 11 in level 4. While similar in appearance,
neuron 12 in level 5 is an excitatory neuron that has 3 inhibitive synaptic connections.

Once the network is fully grown, the time evolution of the membrane potential of the
three mother neurons is observed when a delta function of strength u0 = 11 is applied
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Figure 4.1. Shown here is the evolution of the network. The six figures corre-

spond to times t = 6, 16, 40, 46, 56 and 64. Each iteration of the growth process

takes up two time units. After t = 64 the network experiences no further growth.

to the bottom of the network. For a given input location the set of neurons that directly
experience the input lie inside a cone as described in Section 2. Neurons outside the
cone can also receive input but only through their connections. Figure 4.2 shows the
membrane potentials of the three mothers with no input applied. The network tends to
return to this state whenever the input application ceases.

We refer to Figure 4.3 for typical responses of the mother neurons upon stimulation
at the input locations. We observed that there are large basins of attraction that extend
from input locations a = 1 to a = 7 and from a = 20 to a = 30. When input is
applied from a = 8 to a = 19 the network responds in a complicated fashion so that the
three training locations have been effectively encoded. We emphasize that this without
a Hebbian learning rule.
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Figure 4.2. Illustrated is the response of the three mother neurons as a function

of time when no input is applied to the network. The membrane potential of the

neuron at position (5,30) is the solid line. The second and third neurons are at

(15,30) and (25,30) and their membrane potentials are the dashed and dashed-dot

lines respectively. Without any input, the activities of these two neurons oscillate

in phase with each other.

By having various oscillatory responses the dimension of output space is increased.
One can think of time as the extra dimension, or the frequency of each oscillation; an
extra dimension is added for each output neuron. This has the clear advantage that the
network grows “smarter” without adding many more neurons; the extra “intelligence” is
implicitly encoded in the network structure. The main point of our work lies in the fact
that this type of enhanced network performance arises generically for a range of growth
rules, and it is therefore reasonable that the type of oscillatory behaviour we observe is
commonplace in nature.
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Figure 4.3. The above six figures show the response of the three mother neurons

to an input of strength u0 = 11 applied at locations a = 7, 9, 11, 13, 15 and 20.

Applying input to any of the locations a ∈ [1, 7] gives the same response as the

first figure and is the same response as the rest state. As well, input applied to any

a ∈ [20, 30] results in the same response as the last figure.

5 Conclusions

We demonstrated that there are simple growth rules for a multi-layer neural network con-
sisting of excitatory and inhibitive neurons such that the finished network will display
characteristic oscillatory responses corresponding to classes of inputs. This behaviour is
consistent with observed biological behaviour. We conclude that the emergence of oscil-
latory responses is generic in the sense that it will occur for growth rules and parameter
ranges that are sufficiently general to be accessible to an evolutionary process. While
our model does not directly simulate the development of biological neural systems, it
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demonstrates the feasibility of such a process in an idealized context and the ability to
grow networks in ‘sensible’ ways.
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