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Abstract: In this paper we study the robust stability properties of a large class
of nonlinear discrete-time systems by addressing the following question: given
a nonlinear discrete-time system with specified exponentially stable equilib-
ria, under what conditions will a perturbed model of the discrete-time sys-
tem possess exponentially stable equilibria that are close (in distance) to the
exponentially stable equilibria of the unperturbed discrete-time system? In
arriving at our results, we establish robust stability results for the perturbed
discrete-time systems considered herein. We apply the above results in the
robustness analysis of a large class of discrete-time recurrent neural networks.
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1 Introduction

We consider discrete-time systems described by first-order ordinary difference equations
of the form

x(k + 1) = f(x(k)) + h(x(k)), (1)

where x(k) is a real n-vector, k ∈ Z+ (the set of nonnegative integers) and f and h
are continuously differentiable n-vector valued functions. We view (1) as a perturbation
model of systems described by

x(k + 1) = f(x(k)). (2)
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Thus, h(x(k)) in (1) represents uncertainties or perturbation terms.
In the present paper we study robustness properties of system (2) with respect to

perturbations. Of particular interest to us will be the robust stability of equilibria and
estimates of the perturbations of the equilibrium locations. To demonstrate applicability,
we apply these results in the qualitative analysis of a large class of discrete-time recurrent
neural networks.

Qualitative robustness results for linear and nonlinear dynamical systems abound (re-
fer to the references cited in pp. II-144 – II-147 of [1] concerning robustness for linear
systems and pp. II-147 – II-148 of [1] concerning robustness for nonlinear systems). Al-
though several of these works are tangentially related to the present work, to the best of
our knowledge the present results are new. In particular, results involving perturbations
of equilibrium locations for discrete-time systems do not seem to have received much
attention. Rather, the present results are more in the spirit of those established in [24]
for the case of continuous-time systems. We emphasize, however, that the present results
are not straightforward translations of the results given in [24] to the case of discrete-time
systems.

In Section 2 we provide the necessary notation and definitions used throughout the
paper. Given an exponentially stable equilibrium xe for (2), we establish in Section 3
sufficient conditions for the exponential stability of an equilibrium x̄e for (1) with the
property the x̄e is near xe, i.e., |xe − x̄e|∞ < ǫ, where ǫ is sufficiently small. To establish
these results, we require several preliminary results which are established in the appendix.

In Section 4, we apply the above results in a perturbation analysis of a large class
of discrete-time recurrent neural networks described by systems of first-order ordinary
difference equations

xi(k + 1) = bixi(k) + cisi

(

n
∑

j=1

Tijxj(k) + Ii

)

, i = 1, ·, n, (3)

where xi represents the state of the i-th neuron, T = (Tij)n×n is the real-valued matrix
of the synaptic connection weights, Ii is a constant external input to the i-th neuron, si(·)
is the i-th nonlinear activation function, and the self-feedback constant and the neural
gain are assumed to satisfy −1 ≤ bi ≤ 1 and ci 6= 0, k ∈ Z+, respectively.

The paper is concluded with some pertinent remarks in Section 5.

2 Notation and Definitions

Let R denote the set of real numbers, let R+ = [0,∞), and let Rn denote real n-
dimensional vector space. If x ∈ Rn, then xT = (x1, · · · , xn) denotes the transpose
of x. Let Z and Z+ denote the set of integers and the set of nonnegative integers,
respectively.

If X and Y are subsets of Rn and Rm, respectively, we let C[X, Y ] denote the set of
all continuous functions from X to Y . When X is an open subset of Rn, we let CN [X, Y ]
denote the set of all functions from X to Y whose partial derivatives up to order N are
continuous, N ≥ 1.

In Rn, we let | · | denote any equivalent norm if we do not specify a particular norm.

The norms | · |p, p ≥ 1, are defined by |x|p =
( n
∑

i=1

|xi|
p
)1/p

, and, in particular, when
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p = 1, p = 2, and p = ∞, then |x|1 =
n
∑

i=1

|xi|, |x|2 =
( n
∑

i=1

x2
i

)1/2

, and |x|∞ = max
1≤i≤n

|xi|,

respectively.

Let A = [aij ] denote an n × n matrix and let AT denote the transpose of A. The
matrix norms | · |p, 1 ≤ p ≤ ∞, induced by the norms | · |p on Rn, 1 ≤ p ≤ ∞, are defined

as |A|p = sup
06=x∈Rn

[|Ax|p/|x|p], 1 ≤ p ≤ ∞. In particular, we have |A|1 = max
1≤j≤n

n
∑

i=1

|aij |,

|A|2 =
( n
∑

i,j=1

a2
ij

)1/2

, and |A|∞ = max
1≤i≤n

n
∑

j=1

|aij |.

Let xe ∈ Rn and ǫ0 > 0 be an appropriate positive number. We define B(xe, ǫ0) by
B(xe, ǫ0) = {x : |x − xe| < ǫ0}. In this paper, we assume that f, h ∈ C2[B(xe, ǫ0), R

n].

Definition 2.1 A square matrix A is said to be Schur stable, if all eigenvalues of A
are located within the unit circle.

Definition 2.2 For f : Rn → Rn and xe ∈ Rn, ∂f
∂xi

(xe) is defined by ∂f
∂xi

(xe) =
(

∂f1

∂xi
(xe), . . . ,

∂fn

∂xi
(xe)

)T

and Df(xe) is defined by the Jacobian matrix ∂f
∂x (x)

∣

∣

x=xe
.

In the present paper we use E to denote the n × n identity matrix.

3 Robustness Analysis of Perturbed Discrete-Time Systems

This section consists of three parts.

3.1 Robust stability: Perturbed discrete-time systems with fixed equilibria

In this subsection we first consider the special case where an equilibrium xe of the original
system (2) is unchanged in the resulting perturbed system (1).

In order to establish our first result, we consider the discrete-time systems with un-
certainties and perturbations of the form

x(k + 1) = (A + ∆A)x(k) + m(x(k)), (4)

where x(k) ∈ Rn, A and ∆A are constant and uncertain n×n matrices, respectively, k ∈

Z+, x(k) ≡ 0 is an equilibrium of (4), m ∈ C[U, Rn] satisfies the condition lim
x→0

|m(x)|
|x| =

0, U ⊂ Rn is an open subset containing xe.

Lemma 3.1 In addition to the assumptions xe = 0 and lim
x→0

|m(x)|
|x| = 0, we assume

for system (4) that

(i) A is Schur stable;

(ii) |∆A|∞ < σ, where σ ∈
(

0,−|A|2 +
(

|A|22 + 1
|P |2

)1/2)

, and P is a symmetric and

positive definite matrix determined by AT PA − P = −E.

Then the equilibrium x(k) ≡ 0 of (4) is exponentially stable.

Proof In applying the second method of Lyapunov, we choose the Lyapunov function
given by v(x(k)) = xT (k)Px(k). Let ∆v(x(k))(4) = v(x(k+1))−v(x(k)), where x(k+1)
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satisfies the difference equation (4). For all x(k) ∈ U , we have, using condition (i) and
(ii) as well as the relation |∆A|∞ ≤ |∆A|2,

∆v(x(k))(4) = [Ax(k) + (∆A)x(k) + m(x(k))]T P [Ax(k)

+ (∆A)x(k) + m(x(k))] − xT (k)Px(k)

= xT (k)[AT PA − P ]x(k) + xT (k)[(∆A)T PA

+ AT P (∆A) + (∆A)T P (∆A)]x(k)

+ 2[Ax(k) + (∆A)x(k)]T Pm(x(k))

+ m(x(k))T Pm(x(k))

= xT (k)[−E + (∆A)T PA + AT P (∆A)

+ (∆A)T P (∆A)]x(k) + 2[Ax(k)

+ (∆A)x(k)]T Pm(x(k)) + m(x(k))T Pm(x(k))

≤ [−1 + 2σ|P |2|A|2 + σ2|P |2]x
T (k)x(k)

+ 2xT (k)[A + ∆A]T Pm(x(k)) + m(x(k))T Pm(x(k))

< −4ǫxT (k)x(k) + 2xT (k)[A + ∆A]T Pm(x(k))

+ m(x(k))T Pm(x(k)),

(5)

where −4ǫ = −1+2σ|P |2|A|2 +σ2|P |2 < 0 by condition (ii). Since lim
x→0

(|m(x)|/|x|) = 0,

it is clear that there exists an open subset of the origin, V ⊂ U , such that for all x ∈ V ,
2xT [A + (∆A)]T Pm(x) < 2ǫxT x and m(x)T Pm(x) < ǫxT x. Therefore, from (5) we
obtain for x(k) ∈ V , ∆v(x(k))(4) < −ǫxT (k)x(k). By the basic stability theorem of
Lyapunov, the equilibrium x(k) ≡ 0 of (4) is exponentially stable.

Remark 3.1 The existence and uniqueness of solutions of the Lyapunov equation
AT PA−P = −E are guaranteed by the assumption that A is Schur stable (see, e.g., [3]).

We will require the following assumption.

Assumption 3.1 For systems (1) and (2), it is true that

(i) xe is an equilibrium of both (1) and (2);
(ii) A = Df(xe) is Schur stable;

(iii) |∆A|∞ < σ, where ∆A = Dh(xe), σ ∈
(

0,−|A|2 +
(

|A|22 + 1
|P |2

)1/2)

, and P is

a symmetric and positive definite matrix determined by AT PA − P = −E.

Theorem 3.1 Under Assumption 3.1, the equilibrium x(k) ≡ xe of system (1) is
exponentially stable.

Proof By the assumption that f, h ∈ C2[B(xe, ǫ0), R
n] and x(k) ≡ xe is an equi-

librium of (1), we can express (1) in the following equivalent form

x(k + 1) − xe = f(x(k)) − f(xe) + h(x(k)) − h(xe). (6)

The right-hand side of (6) can be rewritten in the form

f(x(k)) − f(xe) + h(x(k)) − h(xe)

= Df(xe)(x(k) − xe) + Dh(xe)(x(k) − xe) + m(x(k) − xe)

= (A + ∆A)(x(k) − xe) + m(x(k) − xe),

(7)
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where m(·) denotes the remaining higher-order terms with respect to (x(k) − xe).
Let y(k) = x(k) − xe. Then system (1) can be rewritten in the following equivalent

form
y(k + 1) = (A + ∆A)y(k) + m(y(k)). (8)

It is clear that y(k) ≡ 0 is an equilibrium of (8) and all conditions of Lemma 3.1 are
satisfied. Therefore, the equilibrium y(k) ≡ 0 of (8) is exponentially stable and thus the
equilibrium x(k) ≡ xe of (1) is exponentially stable.

3.2 Robust stability: Perturbed discrete-time systems with perturbed

equilibria

In this subsection, we will consider the case where the equilibrium x̄e of the perturbed
discrete-time system (1) differs from the equilibrium xe of the unperturbed discrete-time
system (2).

Assumption 3.2 Let x̄e and xe denote the equilibrium of (1) and (2), respectively.
Assume that

(i) A = Df(xe) is Schur stable;
(ii) |Dh(xe)|∞ < a1,

where a1 = σ
2 , σ ∈

(

0,−|A|2 +
(

|A|22 + 1
|P |2

)
1

2

)

, A is given in (i) and P is a positive

definite and symmetric matrix which is determined by AT PA − A = −E; and

(iii) |x̄e − xe|∞ < ǫ,

where 0 < ǫ < ǫ1, ǫ1 = min
{

σ
2M2

, ǫ0

}

, M2 = sup
x,y∈B(xe,ǫ0)

|Q2(x, y)|∞, σ is given in part

(ii), and Q2(x, y) satisfies the properties of Lemma A.1 with respect to q = f + h (see
the Appendix).

Theorem 3.2 If Assumption 3.2 is satisfied, then the equilibrium x(k) ≡ x̄e of the
perturbed system (1) is exponentially stable.

Proof Since x(k) ≡ x̄e is an equilibrium of (1), we can rewrite (1) as

x(k + 1) − x̄e = f(x(k)) + h(x(k)) − (f(x̄e) + h(x̄e)) (9)

or its equivalent form

x(k + 1) − x̄e = (Df(x̄e) + Dh(x̄e))(x(k) − x̄e) + m(x(k) − x̄e). (10)

Let A = Df(xe) and ∆A = Df(x̄e) + Dh(x̄e) − Df(xe). Then we can rewrite (10) as

x(k + 1) − x̄e = (A + ∆A)(x(k) − x̄e) + m(x(k) − x̄e). (11)

Letting y(k) = x(k) − x̄e, (11) can be rewritten as

y(k + 1) = (A + ∆A)y(k) + m(y(k)). (12)

Using Lemma A.1 in the Appendix and Remark A.1, we have

∆A = Df(x̄e) + Dh(x̄e) − Df(xe)

= Df(x̄e) + Dh(x̄e) − (Df(xe) + Dh(xe)) + Dh(xe)

= Q2(x̄e, xe)Λ(x̄e − xe) + Dh(xe),

(13)
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where Q2 and Λ satisfy the properties of Lemma A.1 with respect to q = f + h (see the
Appendix).

Using parts (ii) and (iii) of Assumption 3.2, we have

|∆A|∞ ≤ |Q2(x̄e, xe)|∞ · |x̄e − xe|∞ + |Dh(xe)|∞

≤ M2|x̄e − xe|∞ + |Dh(xe)|∞ ≤ M2ǫ + a1 <
1

2
σ +

1

2
σ = σ.

(14)

It is clear that all conditions of Lemma 3.1 are satisfied for (12). We conclude that the
equilibrium y(k) ≡ 0 of (12) is exponentially stable and thus the equilibrium x(k) ≡ x̄e

of (1) is exponentially stable.

3.3 Example

In the following, we utilize a specific example to demonstrate the applicability of Theo-
rem 3.1. In the next section, we consider a general class of problems.

In (1) and (2), let x = [x1, x2]
T , f(x) = [f1(x), f2(x)]T , h(x) = [h1(x), h2(x)]T ,

f1(x) = x1 − 1
2 arctanx1, f2(x) = x2 − 1

2 arctan(x1 + x2), h1(x) = δ1 arctanx1, and
h2(x) = δ2 arctan(x1 + x2), where δ1 and δ2 are perturbation parameters. Presently,
systems (1) and (2) assume the form

x1(k + 1) = x1(k) −
1

2
arctanx1(k) + δ1 arctanx1(k),

x2(k + 1) = x2(k) −
1

2
arctan(x1(k) + x2(k)) + δ2 arctan(x1(k) + x2(k))

(15)

and

x1(k + 1) = x1(k) −
1

2
arctanx1(k),

x2(k + 1) = x2(k) −
1

2
arctan(x1(k) + x2(k)),

(16)

respectively.

xe = 0 is an equilibrium for both (15) and (16). We have

A = Df(0) =

[

1
2 0

− 1
2

1
2

]

,

which is Schur stable. Also, AT PA − P = −E with P = PT yields

P =

[ 56
27 − 4

9

− 4
9

3
4

]

.

In our result we have σM = −|A|2 +
(

|A|22 + 1
|P |2

)1/2

= 0.2432 and ∆A = Dh(0) =
[

δ1 0
δ2 δ2

]

, |∆A|∞| = min{|δ1|, 2|δ2|}. If min{|δ1|, 2|δ2|} < σ < 0.2030. Theorem 3.1

implies that the state xe = 0 is an exponentially stable equilibrium of (15).
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4 Applications to Neural Networks

This section consists of three parts.

4.1 Model of discrete-time recurrent neural networks

In the present section we consider discrete-time recurrent neural networks described by
systems of nonlinear difference equations of the form

xi(k + 1) = bixi(k) + cisi

(

n
∑

j=1

Tijxj(k) + Ii

)

, i = 1, · · · , n, (17)

where xi represents the state of the i-th neuron, T = (Tij)n×n is the real-valued matrix
of the synaptic connection weights, Ii is a constant external input to the i-th neuron, si(·)
is the i-th nonlinear activation function, and the self-feedback constant and the neural
gain are assumed to be −1 ≤ bi ≤ 1 and ci 6= 0, k ∈ Z+, respectively.

In (17), the neural activation function si(·) is chosen to be a continuously differen-
tiable nonlinear sigmoidal function (i.e., si(·) maps the real axis R into the real interval
(−1, 1), it is smooth and monotonically increasing, and its graph in the plane is sym-
metric with respect to the origin). Typical examples of activation functions include:

si(yi) = 2
π arctan

(

π
2 yi

)

, si(yi) = 1−e−yi

1+e−yi
, and si(yi) = tanh(yi) = eyi−e−yi

eyi +e−yi
.

We can represent the neural network (17) in vector form as

x(k + 1) = Bx(k) + Cs(Tx(k) + I), (18)

where x = (x1, · · · , xn)T is the state vector and s(y) = (s1(y1), · · · , sn(yn))T for y =
(y1, · · · , yn)T ∈ Rn. Also, B = diag [b1, · · · , bn], C = diag [c1, · · · , cn], T = (Tij)n×n,

and I = (I1, · · · , In)T .
Stability properties of recurrent discrete-time neural networks have been widely stud-

ied (see, e.g., [4, 10, 16, 18, 19, 21, 22]). Some of the most important applications of such
networks concern associative memories (see, e.g., [4, 16, 18]).

For system (18) we consider the perturbation model

x(k + 1) = (B + ∆B)x(k) + (C + ∆C)s[(T + ∆T )x(k) + (I + ∆I)], (19)

where ∆B, ∆C, ∆T , and ∆I are the uncertain or perturbation matrices with the same
dimension as B, C, T , and I, respectively.

In Feng and Michel [5], a robustness analysis for the neural network (18) is given.
In the present section, we will consider the neural network (18) as a special case of (2)
and apply the robustness results in Section 3 to the discrete-time system (2) to establish
robustness results for the neural network (18).

4.2 Stability of perturbed neural networks with unperturbed equilibria

In this subsection we first consider the special case where an equilibrium xe of the original
system (18) is unchanged in the resulting perturbed system (19).

Let xe be an equilibrium of system (18), let ǫ0 be an appropriate fixed positive number,
and let R0, L1, and L2 denote positive real numbers satisfying R0 ≥ |xe|∞, L1 ≥
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sup
x∈B(xe,ǫ0)

|s′(x)|, and L2 ≥ sup
x∈B(xe,ǫ0)

|s′′(x)|, where s′(x) = diag [s′1(x1), · · · , s′n(xn)],

and s′′(x) = diag [s′′1 (x1), · · · , s′′n(xn)], s′i(·) and s′′i (·) denote the first-order and the
second-order derivatives of si(·), respectively. In practice, L1 and L2 can frequently
be chosen independently of xe and ǫ0. For example, if sj(xj) = arctan(λjxj) with
λj > 0, 1 ≤ j ≤ n, then for all x ∈ Rn we have |s′(x)|∞ ≤ max

1≤j≤n
{λj} and |s′′(x)|∞ ≤

max
1≤j≤n

{λ2
j}. Therefore, in the present example, we may choose L1 = max

1≤j≤n
{λj} and

L2 = max
1≤j≤n

{λ2
j}.

We will require the following assumption.

Assumption 4.1 For systems (18) and (19), it is true that

(i) xe is an equilibrium of both (18) and (19);
(ii) A = B + Cs′(Txe + I)T is Schur stable;
(iii) max{|∆B|∞, |∆C|∞, |∆T |∞, |∆I|∞} < K0, where K0 is given by

K0 =
1

2L1

[

− β + (β2 + L1σ)1/2
]

,

where

β = 1 + L1|T |∞ + L1|C|∞ + L2|C|∞|T |∞(R0 + 1),

σ ∈
(

0,−|A|2 +
(

|A|22 +
1

|P |2

)1/2)

,

and where P = PT is a positive definite matrix that is determined by AT PA −
P = −E, and A is defined in (ii) above.

We note that in Assumption 4.1, K0 is a positive number determined by system (18)
and is independent of the system perturbations. The following result shows that K0 is
an admissible bound for robust stability.

Proposition 4.1 Under Assumption 4.1, the equilibrium x = xe of system (18) is
exponentially stable.

Proof Let
f(x) = Bx + Cs(Tx + I) (20)

and

h(x) = (B + ∆B)x + (C + ∆C)s[(T + ∆T )x + (I + ∆I)] − [Bx + Cs(Tx + I)]. (21)

Then (19) can be expressed in the form of x(k + 1) = f(x(k)) + h(x(k)), or in the form
of (1). We have that

Df(xe) = B + Cs′(Txe + I)T (22)

and

Dh(xe) = (∆B) + (C +∆C)s′[(T +∆T )xe +(I +∆I)](T + ∆T )−Cs′(Txe + I)T. (23)

To show that the equilibrium x = xe of (19) is exponentially stable, we only need to
verify that all conditions of Theorem 3.1 are satisfied, or to verify that all statements in
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Assumption 3.1 are true. By part (ii) of Assumption 4.1, B + Cs′(Txe + I)T is Schur
stable and thus part (ii) of Assumption 3.1 is satisfied.

To show that part (iii) of Assumption 3.1 is also satisfied, it suffices to show that

|Dh(xe)|∞ < σ, where σ ∈
(

0,−|A|2 +
(

|A|22 + 1
|P |2

)1/2)

, and where P is given by

AT PA − P = −E. Using part (iii) of Assumption 4.1, we have

Dh(xe) = ∆B + (C + ∆C)s′[(T + ∆T )xe

+ (I + ∆I)](T + ∆T ) − Cs′(Txe + I)T

= ∆B + Cs′[(T + ∆T )xe + (I + ∆I)](∆T )

+ (∆C)s′[(T + ∆T )xe + (I + ∆I)]T

+ (∆C)s′[(T + ∆T )xe + (I + ∆I)](∆T )

+ CQ2((T + ∆T )xe + (I + ∆I), Txe + I)Λ((∆T )xe + ∆I)T,

(24)

where Q2 and Λ satisfy the properties of Lemma A.1 in the Appendix with respect to
q = s. Using part (iii) of Assumption 4.1 and noticing that

sup
x,y∈B(xe,ǫ0)

|Q2(x, y)|∞ ≤ L2 = sup
x∈B(xe,ǫ0)

|s′′(x)|∞,

we obtain

|Dh(xe)|∞ ≤ |∆B|∞ + L1|C|∞|∆T |∞ + L1|∆C|∞|T |∞ + L1|∆C|∞|∆T |∞

+ L2R0|C|∞|∆T |∞|T |∞ + L2|C|∞|∆I|∞|T |∞ ≤ L1K
2
0 + βK0 < σ.

(25)

This shows that part (iii) of Assumption 3.1 is satisfied. Therefore, the results follow
from Theorem 3.1.

4.3 Stability of perturbed neural networks with perturbed equilibria

In this subsection, we will consider the case where the equilibrium x̄e of the perturbed
neural network (19) differs from the equilibrium xe of the original neural network (18).

Assumption 4.2 Let xe and x̄e denote equilibria of systems (18) and (19), respec-
tively. Assume that

(i) A = B + Cs′(Txe + I)T is Schur stable and therefore there exists a positive
definite matrix P = PT determined by the matrix equation AT PA − P = −E;

(ii) max{|∆B|∞, |∆C|∞, |∆T |∞, |∆I|∞} < K1, where K1 is given by

K1 =
1

2L1

[

− β +
(

β2 +
L1σ

2

)1/2]

,

where

β = 1 + L1(|T |∞ + |C|∞) + L2|C|∞|T |∞(R0 + 1),

σ ∈
(

0,−|A|2 +
(

|A|22 +
1

|P |2

)1/2)

;

and

(iii) |x̄e − xe| ≤ ǫ, where 0 < ǫ < ǭ1, ǭ1 = min
{

σ
2α1L2

, ǫ0

}

, where α1 = (|C|∞ +

K1)L2(|T |2 + 2|T |K1 + K2
1 ) and ǫ0 is given in the previous section.
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Proposition 4.2 If Assumption 4.2 is true, then the equilibrium x̄e of the perturbed
system (19) is exponentially stable.

Proof Let f(x) and h(x) be given by (20) and (21), respectively. To prove the result,
it suffices to verify all conditions in Assumption 3.2.

From part (i) of Assumption 4.2, it follows that A = Df(xe) is Schur stable and thus
part (i) of Assumption 3.2 is true.

Using similar statements as in the proof of Proposition 4.1 (see (24) and (25)), we can
prove that part (ii) of Assumption 4.1 implies part (ii) of Assumption 3.1.

To show part (iii) of Assumption 3.1 is also satisfied, it suffices to verify that ǭ1 ≤ ǫ1,

where ǫ1 = min
{

σ
2M2

, ǫ0

}

or M2 ≤ α1L2, where M2 = sup
x,y∈B(xe,ǫ0)

|Q2(x, y)|, where

Q2 is a function satisfying the properties of Lemma A.1 with respect to f + h with
f(x) + h(x) = (B + ∆B)x + (C + ∆C)s[(T + ∆T )x + (I + ∆I)]. Using part (iii) of
Assumption 4.2 and the definition of L2, we have

M2 = sup
x,y∈B(xe,ǫ0)

|Q2(x, y)|∞ = sup
x,y∈B(xe,ǫ0)

∣

∣

∣

∣

1
∫

0

(C + ∆C)

× s′′[(T + ∆T )(x + t(y − x)) + (I + ∆I)](T + ∆T )2 dt

∣

∣

∣

∣

∞

≤ |C + ∆C|∞ sup
x∈B(xe,ǫ0)

|s′′(x)|∞|T + ∆T |2

≤ (|C|∞ + |∆C|∞)L2(|T |2∞ + 2|T |∞|∆T |∞ + |∆T |2∞) ≤ α1L2

(26)

which implies ǭ1 ≤ ǫ1.
This shows that all conditions of Assumption 3.2 are satisfied. Therefore, the result

of Proposition 4.2 follows from Theorem 3.2.

Remark 4.1 It should be noted that in Assumption 4.2, the existence of an equilibrium
of the perturbed system (19) is hypothesized to be not far away from the corresponding
equilibrium of the unperturbed system (18). It is reasonable to expect that when the
perturbations of the system in question are sufficiently small, this assumption will be
satisfied.

5 Concluding Remarks

A robustness analysis was conducted for a large class of nonlinear discrete-time systems
described by ordinary difference equations under perturbations. The results presented
aimed to give an answer to the following question: given a nonlinear discrete-time sys-
tem with specified exponentially stable equilibria, under what conditions will a perturbed
model of the discrete-time system possess exponentially stable equilibria that are close (in
distance) to the exponentially stable equilibria of the unperturbed model? Robustness
stability results for perturbed nonlinear discrete-time systems were established. Using
these results, a set of sufficient conditions was established for robust stability of a large
class of discrete-time recurrent neural networks for associative memories under pertur-
bations of system parameters.

Appendix

We require the following result in the proofs of Theorem 3.2 and Proposition 4.2.
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Lemma A.1 Let q ∈ C2[Ū , Rn], where U ⊂ Rn is a convex open set and Ū denotes

the closure of U. Then there exists a Q1 ∈ C1[U ×U, Rn×n] and Q2 ∈ C1[U ×U, Rn×n2

]
satisfying the following properties for all x, y ∈ U :

(i) q(x) − q(y) = Q1(x, y)(x − y), where Q1(x, y) is given by

Q1(x, y) =

1
∫

0

DqT (x + t(y − x)) dt; (A.1)

(ii) Dq(x) − Dq(y) = Q2(x, y)Λ(x − y), where Q2(x, y) and Λ(x − y) are given by

Q2(x, y) = [Q21(x, y), · · · , Q2n(x, y)] (A.2)

with

Q2i(x, y) =

1
∫

0

D

(

∂q

∂xi

)

(x + t(y − x)) dt, (A.3)

and

Λ(x − y) =









x − y 0 . . . 0
0 x − y . . . 0
...

...
. . .

...
0 0 . . . x − y









, (A.4)

respectively.

Proof Part (i) can be proved by using the following formula from the calculus (refer
to pp. 48–49 in Chapter 2 of [3]):

q(x) − q(y) =

( 1
∫

0

Dq(x + t(y − x)) dt

)

(x − y). (A.5)

Part (ii) can be obtained by using part (i) for every column of Dq:

Dq(x)−Dq(y) =

[ 1
∫

0

D

(

∂q

∂x1
(x+ t(y−x)

)

dt, · · · ,

1
∫

0

D

(

∂q

∂xn
(x+ t(y−x)

)

dt

]

. (A.6)

Remark A.1 In the following we assume that U = B(xe, ǫ0), where xe ∈ Rn, ǫ0 > 0.
As a consequence of Lemma A.1, for any x, y ∈ U , if U ∈ Rn is bounded, then we have

|q(x) − q(y)|∞ ≤ |Q1(x, y)|∞ · |x − y|∞ ≤ M1|x − y|∞ (A.7)

and
|Dq(x) − Dq(y)|∞ ≤ |Q2(x, y)|∞ · |x − y|∞ ≤ M2|x − y|∞, (A.8)

where M1 = sup
x∈U

|Dq(x)|∞ and M2 = sup
x,y∈U

|Q2(x, y)|∞.
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