Nash-Optimisation Enhanced Distributed Model Predictive Control

Shao-Yuan Li¹, Xiao-Ning Du¹ and Quan-Min Zhu²

¹Institute of Automation, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, P.R.China

² Faculty of CEMS, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK

Received: May 28, 2003; Revised: September 15, 2003

Abstract: This study presents an efficient distributed model predictive control scheme based on Nash optimality, in which the on-line optimisation of the whole system is decomposed into that of several small co-operative agents in distributed structures, thus it can significantly reduce computational complexity in model predictive control of large-scale systems. The relevant nominal stability and the performance on single-step horizon under the communication disturbance are investigated. A three input and three output linear model is simulated to test the effectiveness of the proposed control algorithm.

Keywords: Model predictive control (MPC); distributed control system; Nash optimality; multi-agents.

Mathematics Subject Classification (2000): 93C55, 93C10, 49K99.