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1 Introduction

In many cases the motion of uncertain systems is successfully analysed in terms of the
development of ideas of direct Lyapunov method [1]. Recent surveys by Corless [2] and
Leitmann [3] of papers in this direction provide a comprehensive idea of what has been
done in the field of uncertain system investigations for the last decades. The aim of this
paper is to give an account of results of qualitative investigation of solutions to uncertain
systems with respect to the moving invariant set. To this end the method of matrix
Lyapunov functions is applied.

It should be noted that the investigation of uncertain system dynamics in terms of
matrix-valued functions allows the extension of the set of the direct Lyapunov method.

2 Statement of the Problem

2.1 Description of the system

We consider a mechanical system whose motion is modelled by the differential equations

dx

dt
= f(t, x, α), x(t0) = x0, (2.1)

c© 2003 Informath Publishing Group. All rights reserved. 191



192 YU.A. MARTYNYUK-CHERNIENKO

where x(t) ∈ Rn, t ∈ T0 = [t0,+∞), t0 ∈ Ti, Ti ⊆ R and f ∈ C(T0 × Rn × Rd, Rn).
The parameter α ∈ Rd, d ≥ 1, represents the “uncertainties” of the system under
consideration. Here and on it is assumed that the motion of system (2.1) described by

the solution x(t; t0, x0, α) , x(t, α) possesses the following properties.

(A1) for an open neighborhood D of the state x = 0, D ⊆ Rn

(a) system (2.1) has unique solution x(t; t0, x0, α) taking the value x0 for t = t0
for any (t0, x0, α) ∈ Ti ×D × S, S ⊂ Rd, S is a compact set;

(b) the motion x(t; t0, x0, α) of system (2.1) is defined and continuously (differ-
entiable) in (t, t0, x0) ∈ T0 × Ti ×D for any α ∈ S.

Note that the initial values x0 and the uncertainty parameters α may be related by
the correlations which ensure the presence of properties (A1) for the motions of system
(2.1).

Model (2.1) embraces many systems whose dynamics is modelled by ordinary differ-
ential equations with uncertain values of parameters.

According to Leitmann [4], Chen [5], etc., the parameter α:

(a) can represent an uncertain value of some parameter of the system or the outer
perturbation;

(b) can be a function mapping R into Rd and representing some parameter value
which is uncertainly time-varying or input effects;

(c) can be a function mapping T0 ×Rn into Rd and representing nonlinear elements
of the mechanical system in question whose exact description is difficult;

(d) can be just an index showing the existence of some uncertainties in the system;
(e) can be a combination of (a) – (c).

Let a function r = r(α) > 0 be given such that r(α) → r0 (r0 = const > 0) as
‖α‖ → 0 and r(α) → +∞ as ‖α‖ → +∞. In the Euclidean space (Rn, ‖ · ‖) the
moving set

A(r) = {x ∈ Rn : ‖x‖ = r(α)} (2.2)

is determined and the set A(r) is assumed non-empty for any (α 6= 0) ∈ S ⊂ Rd.

Definition 2.0 The solution x(t, α) of system (2.1) is called non-continuable, if for
any x(t, α) there is not a continuation, which would be different from x(t, α) on the
interval of definition J ⊂ T0 for all α ∈ S ⊆ Rd.

Definition 2.1 The set A(r) is called moving invariant set of system (2.1), if for
every x0 ∈ A(r) and all solutions x(t, α) = x(t; t0, x0, α) of system (2.1) determined on
some interval J ⊂ T0 and such that x(t0; t0, x0, α) = x0 for all (α 6= 0) ∈ S ⊂ Rd the
inclusion x(t, α) ∈ A(r) is satisfied for every t ∈ J .

2.2 Definitions

Taking into account the results of paper [6] and monograph [7] we shall formulate defi-
nitions necessary for the subsequent presentation.

Definition 2.2 The solutions of system (2.1) are

(a) stable with respect to the sets A(r) and Ti ⊂ R, iff given r(α) > 0, ε > 0 and
t0 ∈ Ti, given δ = δ(t0, ε) > 0 such that under the initial conditions

r(α) − δ < ‖x0‖ < r(α) + δ,
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the solution of system (2.1) satisfies the estimate

r(α) − ε < ‖x(t, α)‖ < r(α) + ε,

for all t ∈ T0 and all α ∈ S ⊆ Rd;
(b) uniformly stable with respect to the sets A(r) and Ti, iff the conditions of Defini-

tion 2.2(a) are satisfied and for any ε > 0 the corresponding maximal value δM
satisfying the conditions of Definition 2.2( ) is such that

inf [δM (t, ε) : t ∈ Ti] > 0;

(c) stable in the whole with respect to Ti, iff the condition of Remark 2.2 are satisfied
as well as the conditions of Definition 2.2( ) with the function

δM (t, ε) → +∞ as ε→ +∞, ∀ t ∈ Ti;

(d) uniformly stable in the whole with respect to Ti, iff the conditions of Defini-
tions 2.2(b) and 2.2(c) are satisfied.

Definition 2.3 For the solutions of system (2.1) the moving set A(r) is called

(a) attractive with respect to Ti, iff given function r(α) > 0 and t0 ∈ Ti, there exists a
δ(t0) > 0 and for any ζ > 0 a τ(t0, x0, ζ) ∈ [0,∞) exists such that the condition

r(α) − δ < ‖x0‖ < r(α) + δ

implies the estimate

r(α) − ζ < ‖x(t, α)‖ < r(α) + ζ

for all t ∈ (t0 + τ(t0, x0, ζ), +∞) and all α ∈ S ⊆ Rd;
(b) x0-uniformly attractive with respect to Ti, iff the conditions of Definition 2.3(a)

are satisfied and for any t0 ∈ Ti there exists a δ(t0) > 0 and for any ζ ∈ (0,+∞)
a τu(t0,∆(t0), ζ) ∈ [0,∞) exists such that

sup {τm(t0, x0, ζ) : r(α) − ∆ ≤ ‖x0‖ < r(α) + ∆} = τu(t0,∆(t0), ζ);

(c) t0-uniformly attractive with respect to Ti, iff the conditions of Definition 1.3(a)
are satisfied, there exists a ∆∗ > 0 and for any

(x0, ζ) ∈ {r(α) − ∆∗ ≤ ‖x0‖ < r(α) + ∆∗} × (0,+∞)

there exists a τu(Ti, x0, ζ) ∈ [0,+∞) such that

sup {τm(t0, x0, ζ) : t0 ∈ Ti} = τu(Ti, x0, ζ);

(d) uniformly attractive with respect to Ti, if conditions of Definitions 2.3(b) and
2.3(c) are satisfied or, what is the same, the conditions of Definition 2.3( ) are
satisfied and there exists a δ > 0 and for any ζ ∈ (0,+∞) a τu(Ti,∆, ζ) ∈ [0,∞)
exists such that

sup [τm(t0, x0, ζ) : (t0, x0) ∈ Ti × {r(α) − ∆ < ‖x0‖ < r(α) + ∆}] =

= τu(Ti,∆, ζ);

(e) the attraction properties 2.3(a) – 2.3(d) take place in the whole, if conditions of
Definition 2.3(a) are satisfied for any ∆(t0) ∈ (0,+∞) and any t0 ∈ Ti, if
r(α) → +∞ as ‖α‖ → +∞.

The expression “with respect to Ti” in Definitions 2.3 is omitted, iff Ti = R.
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Definition 2.4 For system (2.1) the moving set A(r) is called

(a) asymptotically stable with respect to Ti, iff it is stable with respect to Ti and
attractive with respect to Ti;

(b) equi-asymptotically stable with respect to Ti, if it is stable with respect to Ti and
x0-uniformly attractive with respect to Ti;

(c) quasi-uniformly asymptotically stable with respect to Ti, if it is uniformly stable
with respect to Ti and t0-uniformly attractive with respect to Ti;

(d) uniformly asymptotically stable with respect to the sets A(r) and Ti, if it is uni-
formly stable with respect to the sets A(r) and Ti and uniformly attractive with
respect to the sets A(r) and Ti;

(e) uniformly exponentially stable with respect to Ti, if given function r(α) and con-
stants β1, β2 and λ, there exists a δ > 0 such that the condition

r(α) − δ < ‖x0‖ < r(α) + δ

implies the estimate

r(α) − β1‖x0‖ exp[−λ(t− t0)] ≤ ‖x(t, α)‖ ≤

≤ r(α) + β2‖x0‖ exp[−λ(t− t0)] ∀ t ∈ T0, ∀ t0 ∈ Ti;

(f) exponentially stable in the whole with respect to Ti, if the conditions of Defini-
tion 2.4(e) are satisfied for r(α) → ∞, ‖α‖ → +∞ and δ → +∞.

The expression “with respect to Ti” in Definitions 1.4 is omitted, iff Ti = R.

3 Properties of Matrix-Valued Functions on the Moving Set

Under some assumptions it is possible to construct for system (2.1) a two-index system
of functions (see [8, 10])

U(t, x) = [uij(t, x)] , i, j = 1, 2, . . . , s. (3.1)

Here the elements uij ∈ C(T0 × Rn, R), for all i, j = 1, 2, . . . , s.
We construct by means of vector y ∈ Rs (y 6= 0) the scalar function

V (t, x, y) = yTU(t, x, )y, (y 6= 0) ∈ Rs. (3.2)

The total upper right Dini derivative of function (3.2) along solutions of system (2.1)
is defined by the formula

D+V (t, x, y) = yTD+U(t, x, )y, (y 6= 0) ∈ Rs. (3.3)

Here the upper right Dini derivative of the matrix U(t, x)

D+U(t, x) = lim sup
{

[U(t+ θ, x+ θf(t, x, α)) − U(t, x)]θ−1 : θ → 0+
}

is computed element-wise.
Further for the set A(r) moving in Rn we shall consider its moving σ-neighborhood

and the internal and external parts int A(r) and ext A(r), i.e. the sets

N(A, σ) = {x ∈ Rn : 0 < ρ(x,A) < σ},

where ρ(x,A) = inf
q∈A(r)

ρ(x, q) and σ is some number,

int A(r) = {x ∈ Rn : ‖x‖ < r(α)} and ext A(r) = {x ∈ Rn : ‖x‖ > r(α)} ,

respectively.
In view of results of the monograph [10] we shall cite the following definitions.
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Definition 3.1 The matrix-valued function U : R × Rn → Rs×s is called positive
semi-definite on Tτ = [τ,+∞), τ ∈ R with respect to the moving set A(r), if

(i) U is continuous in (t, x) ∈ Tτ ×N(A, σ),

U ∈ C
(

Tτ ×N(A, σ), Rs×s
)

;

(ii) U is nonnegative on N(A, σ):

yTU(t, x)y ≥ 0 ∀ (t, y) ∈ Tτ ×Rs and ∀x /∈ A(r);

(iii) U vanishes when x ∈ A(r).

Definition 3.2 (see [11]) The continuous function ϕ : [0, β] → R+ belongs to the
class K, i.e. ϕ ∈ K, if ϕ(0) = 0 and ϕ(u) is strictly increasing on [0, β].

Definition 3.3 The matrix-valued function U : R × Rn → Rs×s is called positive
definite on Tτ , τ ∈ R with respect to the moving set A(r), if conditions (i) – (iii) of
Definition 3.1 are satisfied and there exists a function a of classK satisfying the inequality

a(‖x‖) ≤ yTU(t, x)y, ∀ (t, y) ∈ Tτ ×Rs and ∀x /∈ A(r).

The expression “on Tτ” in Definition 3.3(a) is omitted, iff all conditions of these
definitions are satisfied for every τ ∈ R.

Definition 3.4 The matrix-valued function U : R×Rn → Rs×s is called decreasing
on Tτ with respect to the moving set A(r),

(i) U is continuous in (t, x) ∈ Tτ ×N(A, σ),

U ∈ C
(

Tτ ×N(A, σ), Rs×s
)

;

(ii) there exists a function b of class K satisfying the inequality

yTU(t, x)y ≤ b(‖x‖), ∀ (t, y) ∈ Tτ ×Rs and ∀x /∈ A(r);

(iii) U vanishes when x ∈ A(r).

The expression “on Tτ” in Definition 3.4 is omitted, iff the conditions of Definition 3.4
are satisfied for every τ ∈ R.

4 On Stability and Uniform Asymptotic Stability of Uncertain Systems

Theorem 4.1 Assume that in system (2.1) f(t, x, α) is continuous on T0×R
n×Rd

and the following conditions are satisfied

(1) for every α ∈ S ⊆ Rd there exists a function r = r(α) > 0 such that the set
A(r) is nonempty for all α ∈ S ⊆ Rd;

(2) there exists a matrix-valued function U ∈ C(T0 × Rn, Rs×s), U(t, x) is locally
Lipschitzian in x, the vector y ∈ Rs, s×s-matrices θ1(r) and θ2(r) are such that
(a) a(‖x‖) ≤ V (t, x, y) for ‖x‖ > r(α),

and
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(b) V (t, x, y) ≤ b(‖x‖) for ‖x‖ ≤ r(α),
where a and b are of class K;

(c) D+V (t, x, y)|(2.1) ≤ ϕT (‖x‖)θ1(r)ϕ(‖x‖)

if ‖x‖ > r(α) for all α ∈ S ⊆ Rd,
and
(d) D+V (t, x, y)|(2.1) = 0 iff ‖x‖ = r(α) for all α ∈ S ⊆ Rd,

(e) D+V (t, x, y)|(2.1) > ψT (‖x‖)θ2(r)ψ(‖x‖)

if ‖x‖ < r(α) for all α ∈ S ⊆ Rd,

where ϕT (‖x‖) =
(

ϕ
1/2
1 (‖x1‖), . . . , ϕ

1/2
s (‖xs‖)

)

, ϕi ∈ K,

ψT (‖x‖) =
(

ψ
1/2
1 (‖x1‖), . . . , ψ

1/2
s (‖xs‖)

)

, ψi ∈ K;

(3) there exist constant s× s -matrices θ1 and θ2 such that

(a)
1

2

(

θ1(r) + θT
1 (r)

)

≤ θ1 for all α ∈ S ⊆ Rd

and

(b)
1

2

(

θ2(r) + θT
2 (r)

)

≥ θ2 for all α ∈ S ⊆ Rd,

and moreover, θ1 is negative semi-definite and θ2 is positive semi-definite;
(4) for any r(α) > 0 and functions a(r) and b(r)

a(r) = b(r).

Then the set A(r) is invariant with respect to the solutions of system (2.1) and the
solutions of system (2.1) are stable with respect to the set A(r).

For the proof see [12].

4.1 Corollary

In cases when it is possible to construct scalar Lyapunov function for system (2.1) the
stability of solutions can be studied in terms of the following assertion.

Theorem 4.2 The set A(r) is invariant with respect to the solutions of system (2.1)
and the solutions of system (2.1) are stable with respect to the set A(r) if

(1) for every α ∈ S ⊆ Rd there exists a function r = r(α) > 0 such that r(α) → r0
(r0 = const > 0) as ‖α‖ → 0 and r(α) → +∞ as ‖α‖ → +∞;

(2) there exist scalar functions V ∈ C1(T0 × Rn, R+), W1 : Rn × Rd → R and
W2 : Rn ×Rd → R such that
(a) a(‖x‖) ≤ V (t, x) for ‖x‖ > r(α),
(b) V (t, x) ≤ b(‖x‖) for ‖x‖ ≤ r(α),

where a and b are of class K;
(c) DV (t, x)|(2.1) ≤W1(x, α) for ‖x‖ > r(α), α ∈ S ⊆ Rd,

(d) DV (t, x)|(2.1) = 0 iff ‖x‖ = r(α) for all α ∈ S ⊆ Rd,

(e) DV (t, x)|(2.1) ≥W1(x, α) for ‖x‖ < r(α), α ∈ S ⊆ Rd;

(3) there exist functions W 1(x) and W 2(x) such that

(a) W1(x, α) ≤W 1(x) < 0 for all α ∈ S ⊆ Rd,
(b) W2(x, α) ≥W 2(x) > 0 for all α ∈ S ⊆ Rd;

(4) for any r(α) > 0 and the functions a(r) and b(r)

a(r) = b(r).
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The assertion of Theorem 4.2 follows from Theorem 4.1.

4.2 Example

Considered is the uncertain equation

dx

dt
= x− f2(α)x3, x(0) 6= 0, (4.1)

where f(α) is the function of the uncertainty parameter α ∈ S ⊆ Rd, f(α) → f0
(f0 = const > 0) as ‖α‖ → 0 and f(α) → 0 as ‖α‖ → ∞.

Zero solution x = 0 of this equation is unstable by Lyapunov, since its first approxi-
mation

dx

dt
= x, x(0) 6= 0

has the eigenvalue λ = 1 > 0.
Let r(α) = (f(α))−1 > 0. It is clear that r(α) → r0 as α → 0 and r(α) → ∞ as

α→ ∞.
The set A(r) is

A(r) =

{

x : |x| =
1

f(α)

}

. (4.2)

We take V = x2 and compute

dV

dt
= 2x

dx

dt
= 2x2(1 − f2(α)x2).

Hence, it is clear

dV

dt
< 0 for |x| >

1

f(α)
, t ≥ 0,

dV

dt
= 0 for |x| =

1

f(α)
, t ≥ 0,

dV

dt
> 0 for |x| <

1

f(α)
, t ≥ 0.

Therefore, if f(α) satisfies the conditions lim
α→0

f(α) = f0 and lim
α→∞

f(α) = 0, then by

Theorem 4.2 the set A(r) is invariant with respect to the equation (4.1) and all solutions
of this equation are stable with respect to the set (4.2) in the sense of Definition 2.2(a).

Note that the equation (4.1) was considered in [13] for f2(α) = β2, β is a control
parameter.

Theorem 4.3 Assume that in system (2.1) f(t, x, α) is continuous on T0×R
n×Rd

and

(1) for any α ∈ S ⊆ Rd there exists a function r = r(α) > 0 such that the set A(r)
is nonempty for all α ∈ S ⊆ Rd;
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(2) there exists a matrix-valued function U ∈ C(T0 × Rn, Rs×s), U(t, x) is locally
Lipschitzian in x, the vector y ∈ Rs, s × s-matrices Φ1(r) and Φ2(r) are such
that
(a) a(‖x‖) ≤ V (t, x, y) for ‖x‖ > r(α),

and
(b) 0 < V (t, x, y) ≤ b(‖x‖) for ‖x‖ ≤ r(α),

where a and b are of class K;
(c) D+V (t, x, y)|(2.1) < ϕT (‖x‖)Φ1(r)ϕ(‖x‖) for ‖x‖ > r(α),

α ∈ S ⊆ Rd,
and
(d) D+V (t, x, y)|(2.1) = 0 iff ‖x‖ = r(α) for all α ∈ S ⊆ Rd,

(e) D+V (t, x, y)|(2.1) > ψT (‖x‖)Φ2(r)ψ(‖x‖) for ‖x‖ < r(α),

α ∈ S ⊆ Rd,
where

ϕT (‖x‖) =
(

ϕ
1/2
1 (‖x1‖), . . . , ϕ

1/2
s (‖xs‖)

)

, ϕi ∈ K,

ψT (‖x‖) =
(

ψ
1/2
1 (‖x1‖), . . . , ψ

1/2
s (‖xs‖)

)

, ψi ∈ K,

xs ∈ Rns , n1 + n2 + . . . ns = n;

(3) there exist constant s× s-matrices Φ1 and Φ2 such that

(a)
1

2

(

Φ1(r) + ΦT
1 (r)

)

≤ Φ1 for all α ∈ S ⊆ Rd,

(b)
1

2

(

Φ2(r) + ΦT
2 (r)

)

≥ Φ2 for all α ∈ S ⊆ Rd,

and moreover Φ1 is negative definite and Φ2 is positive definite;
(4) for any r(α) > 0 and the functions a(r) and b(r)

a(r) = b(r).

Then the set A(r) is invariant with respect to the solutions of system (2.1) and the
solutions of system (2.1) are uniformly asymptotically stable with respect to the set A(r).

For the proof see [14].

4.3 Corollary

Theorem 4.4 The set A(r) is invariant with respect to the solutions of system (2.1)
and the solutions of system (2.1) are uniformly asymptotically stable with respect to the
set A(r) if

(1) for every α ∈ S ⊆ Rd there exists a function r = r(α) such that r(α) → r0 if
‖α‖ → 0 and r(α) → +∞ if ‖α‖ → +∞;

(2) there exist scalar functions V ∈ C1(T0 × Rn, R+), W1 : Rn × Rd → R and
W2 : Rn ×Rd → R such that
(a) a(‖x‖) ≤ V (t, x) for ‖x‖ > r(α),
(b) V (t, x) ≤ b(‖x‖) for ‖x‖ ≤ r(α),

where a and b are of class K;
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(c) DV (t, x)|(2.1) ≤W1(x, α) for ‖x‖ > r(α), α ∈ S ⊆ Rd
,

(d) DV (t, x)|(2.1) = 0 iff ‖x‖ = r(α) for all α ∈ S ⊆ Rd,

(e) DV (t, x)|(2.1) ≥W1(x, α) for ‖x‖ < r(α), α ∈ S ⊆ Rd
;

(3) there exist functions W 1(x) and W 2(x) of definite sign in the sense of Lyapunov
such that
(a) W1(x, α) ≤W 1(x) < 0 for all α ∈ S ⊆ Rd

,

(b) W2(x, α) ≥W 2(x) > 0 for all α ∈ S ⊆ Rd
;

(4) for any r(α) > 0 and functions a(r) and b(r)

a(r) = b(r).

4.4 Examples

Example 4.4.1 Let the equations

dx

dt
= n(t)y +

(

1 −
1

a2
m2(α)(x2 + y2)

)

x(x2 + y2),

dy

dt
= −n(t)x+

(

1 −
1

a2
m2(α)(x2 + y2)

)

y(x2 + y2)

(4.3)

be given, where n(t) ∈ C(R,R), m(α) is the uncertainty function in system (4.3) with
the same properties that the function f(α) in Example 4.2.

Let r(α) = a
m(α) , α ∈ S ⊆ R. The set A(r) is determined as

A(r) =
{

x, y : (x2 + y2)1/2 = r(α)
}

. (4.4)

We take the function V in the form

V = x2 + y2.

Its derivative by virtue of equations (4.3) is

dV

dt
= 2

(

1 −
1

a2
m2(α)(x2 + y2)

)

(

x2 + y2
)2
.

Hence, it follows

dV

dt
< 0 for

(

x2 + y2
)1/2

> r(α), t ≥ t0,

dV

dt
= 0 for

(

x2 + y2
)1/2

= r(α), t ≥ t0,

dV

dt
> 0 for

(

x2 + y2
)1/2

< r(α), t ≥ t0.

It is easy to see that if the function m(α) satisfies the conditions lim
‖α‖→0

m(α) = m0

and lim
‖α‖→∞

m(α) = ∞, all conditions of Theorem 4.4 are satisfied and the set A(r) is

invariant for system (4.3) and all solutions of the system are uniformly asymptotically
stable with respect to the set A(r).
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Example 4.4.2 We consider the systems

dx

dt
= µx+ y − g(x, y, α)x(x2 + y2),

dy

dt
= µy − x− g(x, y, α)y(x2 + y2), α ∈ S ⊆ Rd,

(4.5)

where µ = const > 0, g(x, y, α) > 0 is a function characteristics of “uncertainties” of
system (4.5) (cf. [15]).

In system (4.5) we substitute the variables

x = −r cos θ, y = r sin θ

and reduce the system to the form

dr

dt
= µr − g(r, θ, α)r3,

dθ

dt
= 1, (4.6)

where
gm ≤ g(r, θ, α) ≤ gM (4.7)

for all (r, θ, α) ∈ R+ × [0, 2π]× S, gm < gM are given constants.
Note that the solution r = 0 of the first approximation equations (4.6) is unstable

in the sense of Liapunov, since the linear approximation
dr

dt
= µr has its eigen value

λ = µ > 0.
Together with system (4.6) consider function V = r2.
For derivative dV/dt by virtue of system (4.6) we get

dV

dt

∣

∣

∣

∣

(2.79)

= 2r
dr

dt
= 2r2[µ− g(r, θ, α)r2], α ∈ S ⊆ Rd. (4.8)

Hence it follows that if for any function g(r, θ, α) satisfying condition (4.7) the following
inequalities hold

dV

dt

∣

∣

∣

∣

(4.6)

< 0 for r2 >
µ

g(r, θ, α)
, t ≥ 0,

dV

dt

∣

∣

∣

∣

(4.6)

= 0 for r2 =
µ

g(r, θ, α)
, t ≥ 0,

dV

dt

∣

∣

∣

∣

(4.6)

> 0 for r2 <
µ

g(r, θ, α)
, t ≥ 0,

then the moving set

S∗(κ) =

{

r : r2 =
µ

g(r, θ, α)

}

, α ∈ S ⊆ Rd

is uniformly asymptotically stable.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 3(2) (2003) 191–202 201

Further consider the motion of system (4.6) with respect to the domains

S1 = {r : r2 < H}, 0 < H <∞,

S2 = {r : r2 ≤ δ}, δ =

(

µ

gM

)1/2

,

S3 = {r : r2 ≥ η}, η =

(

µ

gm

)1/2

under restrictions (4.7).
Let the motion of system (4.6) begin outside the ring with radius r0 + σ, where

r0 =
(

µ
gm

)1/2

and σ is an arbitrary small constant value. Since

dV

dt

∣

∣

∣

∣

(4.6)

= 2µV − 4g(r, θ, α)V 2,

by Theorem 1 from [16] the interval of time for which the solutions of system (4.6) will
get to the moving surface

r2 =
µ

g(r, θ, α)

is estimated by the inequality

τ ≤

κ
∫

κ1

dc

2µc− 4gmc2
, (4.9)

where κ1 < κ, κ1 = 1
2 r

2, κ = 1
2 (r0 + σ)2. Estimate (4.9) implies

τ ≤
1

2µ
ln

∣

∣

∣

∣

(r0 + σ)2

r2
(r2 − r20)

2r0σ + σ2

∣

∣

∣

∣

.

Similarly we estimate the interval of time sufficient for solutions starting in the domain

r∗ − σ ≥ 0, where r∗ =
(

µ
gM

)1/2

, to get to the moving surface r2 = µ
g(r,θ,α) .

Note that the function g(r, θ, α), α ∈ S ⊆ Rd, is not assumed continuously differen-
tiable, therefore equation (4.6) is efficiently studied by qualitative technique whereas its
immediate integration is difficult.

5 Concluding Remarks

This investigation of uncertain system dynamics contributes to the well-known results
for this class of equations in several directions. First, it is shown that under certain
conditions the problem of qualitative analysis of solutions to the uncertain system is
reduced to the investigation of the property of having a fixed sign of special matrices
estimating the matrix-valued function and its total derivative along solutions of the
system under consideration. Second, non-smooth and non-differentiable functions may
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be used as the elements of the matrix-valued function. Note also that our results possess
a considerable potential for their extension to new classes of equations modelling the
dynamics of uncertain systems and in particular uncertain controlled systems.

Acknowledgements

The author expresses his gratitude to Professors P. Borne and E.A. Galperin for their
helpful comments on this paper.

References

[1] Lyapunov, A.M. General Problem on Motion Stability. Izdat. Akad. Nauk SSSR, Moscow,
1956. [Russian].

[2] Corless, M. Control of uncertain nonlinear systems. ASME Journal of Dynamic Systems,

Measurement, and Control 115 (1993) 362–372.
[3] Leitmann, G. One approach to the control of uncertain dynamical systems. Applied Math-

ematics and Computation 70 (1995) 261–272.
[4] Leitmann, G. One approach to the control of uncertain dynamical systems. Sixth Work-

shop of Dynamics and Control, Vienna, Austria, 1993.
[5] Chen, Y.-H. Performance analysis of controlled uncertain systems. Dynamics and Control

6 (1996) 131–142.
[6] Lakshmikantham, V. and Vatsala, A.S. Stability of moving invariant sets. In: Advances

in Nonlinear Dynamics. (Eds.: Sivasundaram, S. and Martynyuk, A.A.), Gordon and
Breach Scientific Publishers, Amsterdam, Vol.5, 1997, 79–83.
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