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Abstract: This study uses a relatively complex model to analyze the influence
of various system parameters on the attitude behavior of a rocket-type variable
mass system moving in a torque-free environment. Some of the parameters
studied include the system’s size, the nozzle expansion ratio, and the location
of the propellant within the system’s casing. Results obtained indicate that
the spin rate as well as the transverse rate can increase, decrease, or stay
constant depending on the choice of system parameters. Dramatic changes in
the character of these variables can result from relatively minor changes in a
rocket’s nozzle expansion ratio.

Keywords: Variable mass processes; rockets.

Mathematics Subject Classification (2000): 70P05, 70M20, 34C60.

1 Introduction

The behavior of mechanical systems with varying mass is of interest to scientists and
engineers because of the vast array of physical systems (both natural and engineered)
that exhibit variable mass characteristics. Aerospace systems have high visibility as
variable mass systems, and are the main focus of this study.

One of the earliest studies of the dynamics of variable mass systems was performed
by Buquoy [1]. He developed his “motion formula” for these systems, and presented so-
lutions to a large number of examples in this area. Another early and major contributor
to the field is Meshcherskii [8, 9], who essentially laid the foundation for the theoretical
study of variable mass systems in mechanics. The focus of practically all the early work
in this area was on the translational motion of such systems. This paper investigates the
rotational dynamics of rocket-type variable mass systems in a torque-free environment.
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Attitude dynamics studies of rotating bodies usually involve the derivation of the equa-
tions of motion of the system of interest, followed by some attempt at extracting useful
motion information from these equations. Strategies for the development of equations of
motion of mechanical systems, especially those with a solid base, have been presented
by a number of authors (see, for example, Kovalev [5], Eke and Wang [3]). For variable
mass systems in general, and rocket systems in particular, equation derivation can pro-
ceed along one of at least two different paths — the discrete model approach, and the
control volume method. When used in the study of rocket-type systems, the discrete
model approach introduces simplifying assumptions very early in the equation derivation
process. For example, it is common in this approach to consider that all the particles
leaving the system during a propellant burn, do so at the same velocity relative to the
main rocket body, and that this relative velocity is always parallel to the rocket axis.
This method was popularized by Thomson in the 1960’s [11 – 13], and was effectively
used by him and others in the analysis of rocket motion.

The control volume approach starts by viewing the system, in a general way, as con-
sisting of solid and fluid phases contained in a region that is delimited by a closed surface
of constant or variable internal volume. Equations of motion for such a general variable
mass system are then derived using well-known methods of fluid and classical dynamics.
At this stage, the resulting equations are generally very complex, containing several sur-
face and volume integrals. They are then reduced to tractable forms by specializing them
to the specific system under study. Thus, unlike the discrete model approach, the control
volume method introduces most of its simplifying assumptions at the end of the equation
derivation process. Equations of motion derived in this way are now readily available in
the literature (see, for example, references [2, 3, 7]).

There are three basic types of physical model that have been used in the study of the
dynamics of rocket systems: the variable mass cylinder, the general axisymmetric model,
and the two-body axisymmetric system. The variable mass cylinder models a typical
rocket system as a simple right circular cylinder. Wang, Eke, and Mao [4, 6] exploited
such a simple-minded model to great advantage. Its main merit is its simplicity; yet,
surprisingly, it does capture a great deal of the important features of a real rocket. The
disadvantage is that it does not permit certain refinements in the study. For example,
the model does not include a nozzle, and so, nozzle effects cannot be explored. Nor is
it possible to study the effect of the geometric location of the propellant grain within a
rocket system, since the model normally views the whole of the cylinder as combustible.

The general axisymmetric model represents a rocket as an axisymmetric body (not
just a cylinder) of diminishing mass and inertia [7]. In this case, the manner in which the
system’s inertia properties vary with mass depletion is not known and cannot be precisely
determined. Because of this shortcoming, it is difficult to push analytical studies of the
system’s motion to their limit; one is thus limited to qualitative inferences in this case.
Some authors have tried to circumvent this difficulty by assigning simple, decreasing
functions of time to the mass, as well as to the axial and the transverse inertia. The
difficulty with such a strategy is that the transverse and axial inertia scalars vary in a
dependent manner as the system’s mass decreases. It is thus next to impossible to make
correct guesses for all the inertia functions as well as the system mass. This problem is
discussed in some detail in reference [6].

The two-body axisymmetric model is the most versatile of the three models mentioned
above. It separates the system into two parts — a constant mass part, and a variable
mass portion. In a rocket system for example, the fuel or propellant would represent
the variable mass part, and the other parts of the system outside the fuel would be the
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Figure 2.1. Two-body axisymmetric model.

constant mass section. Mass loss comes from the burning and expulsion of particles of the
propellant. The model can provide for the existence of a nozzle; there is some flexibility
in the geometric location of the fuel within the system; and various propellant depletion
geometries can be explored with this model. The goal of this study is to use this two
body axisymmetric model to examine how the attitude motion of a rocket system is
influenced by substantial mass loss and by changes in various system parameters, and to
compare the outcome with results obtained in previous studies that used much simpler
models. In particular, we wish to explore the effect of the nozzle on attitude motion —
a study that has not as yet been done, and that could not really be done with a less
sophisticated model than the one employed here.

2 Equations of Attitude Motion

As stated earlier, the model used for this study is the two-body axisymmetric system as
shown in Figure 2.1. B represents the entire system with the exception of the propellant,
and it is assumed to constitute a constant mass, axisymmetric rigid body. For the
purposes of this study, the fuel F is also assumed to be a rigid body, whose shape at
ignition is that of a uniform, right, circular cylinder, with its axis aligned with that of
the main body B. F is shown in a partially burned state in the figure; it is assumed to
burn in such a way that its unburned part is always axisymmetric with respect to the
longitudinal axis z of the original, unburned, cylindrical fuel. The overall system, that
is, the combination of B and F is designated S and has its mass center at S∗. B∗ and
F ∗ are the mass centers of B and F respectively.

One version of the vector equation of attitude motion for the type of variable mass
system under study here is given as equation (1) below. This equation comes from Eke
and Wang [3], and is, in its simplified form, equivalent to versions of rotational equations
derived by other authors [2, 7, 12]

M = I · α+ ω × I · ω +

(

dI

dt

)

· ω +

∫

C

ρ[p × (ω × p)](v · n) dS

+

∫

C

ρω × (p× v) dV +
d

dt

∫

C

ρ(p× v) dV +

∫

C

ρ(p× v)(v · n) dS.

(1)
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In this equation, M is the sum of the moments of external forces on the system S about
the system mass center, S∗; I is the system’s instantaneous central inertia dyadic; p is
the position vector from S∗ to a generic particle of the system; ρ is the mass density;
v is the velocity of a generic particle relative to B; C is a fictitious outer shell that
encloses the whole system; n is a unit vector that is normal to, and pointing outwards
of the surface C; and ω and α are, respectively, the inertial angular velocity and angular
acceleration of the main body B of the system. All the vector and dyadic time derivatives
are taken in the reference frame of the rigid body B.

There are at least two arguments that can be used to bring equation (1) down to
a manageable form. First, one can exploit the symmetry of the system and assume
that at steady state, the motion of gas particles inside the system’s combustion chamber
is symmetric relative to the z-axis, and that whirling motion (helical motion) of these
particles relative to B is negligible. Because of these assumptions, the last three terms
on the right hand side of equation (1) vanish (see details in [3]), and the equation reduces
to

M = I · α+ ω × I · ω +

(

dI

dt
· ω
)

+

∫

C

ρ [p × (ω × p)](v · n) dS. (2)

A second argument that can be used to obtain the same result is based on the fact that
there are situations where the velocity v of the gas particles can be considered negligible
within the system’s boundary but not at an exit from the boundary, such as the nozzle.
An example is an inflated balloon with a small hole. Velocities of gas particles within the
balloon are negligible in magnitude compared to those of gas particles leaving through
the hole. Whenever v can be considered negligible within a system’s boundary, but is
finite and forms a symmetric field at each exit from the system, equation (1) reduces
once more to equation (2). It is reasonable to assume that such is approximately the
situation for the system under study.

Equation (2) can be broken down into three scalar components by expressing each
of the terms on the right hand side of the equation in terms of the unit vectors bi

(i = 1, 2, 3) shown in Figure 2.1. Assuming that the velocity distribution of the gas
particles as they leave the nozzle exit plane is uniform as shown in Figure 2.1, we have
that

v · n = u = const (3)

over the nozzle exit. If we then restrict the study to the case of zero external moment
(M = 0), equation (2) takes the scalar forms

Iω̇1 +

[

İ − ṁ

(

z2

e +
R2

1

4

)]

ω1 + [(J − I)ω3]ω2 = 0, (4)

Iω̇2 +

[

İ − ṁ

(

z2

e +
R2

1

4

)]

ω2 − [(J − I)ω3]ω1 = 0, (5)

Jω̇3 +

(

J̇ − ṁR2

1

2

)

ω3 = 0, (6)

where m represents the instantaneous mass of the system, I and J are, respectively, the
central transverse and spin moment of inertia for the system, ze is the distance from S∗ to
the nozzle exit plane, R1 is the radius of the circular nozzle exit area, and ωi (i = 1, 2, 3)
are the scalar components of the inertial angular velocity of B in the bi (i = 1, 2, 3) unit
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vector basis. We note here that the unit vectors bi are assumed fixed to the body B.
Details of the transition from equation (2) to (4), (5), and (6) can be found in several
places, including Morris [10].

Equations (4) through (6) can be non-dimensionalized as follows. First, we note that
the rate, mr, of mass depletion from the system can be written as a surface integral

Mr = −ṁ =

∫

(v · n)ρ dS = πρuR2

1 = const, (7)

where ρ is the mass density of the fluid products of combustion — considered constant
over the nozzle exit plane. The time, tb, taken for the mass mF of the propellant to go
from its initial value, mF0, to the final value of zero (that is, burnout) can be expressed
as

tb = mF0/mr. (8)

We choose as dimensionless time variable, the quantity τ given by

τ = t/tb = (mr/mF0)t, (9)

where t is time measured from the beginning of the propellant burn (ignition). We then
note that τ = 0 at propellant ignition, and τ = 1 at burnout. Furthermore,

dτ

dt
=

1

tb
, (10)

so that the time derivative of any quantity can be written as

˙( · ) =
d( · )
dt

=
d( · )
dτ

· dτ
dt

=
1

tb
· d( · )
dτ

=
1

tb
( · )′, (11)

where a prime ( ′ ) indicates derivative with respect to τ . We define other dimensionless
quantities as

m = m/mF0, Ī = I/mF0R
2, J̄ = J/mF0R

2, and ωi = ωitb (i = 1, 2, 3) (12)

and use these to convert equations (4) – (6) to

Īω′

1
+

{

Ī ′ −m′

[

(ze

R

)2

+
β2

4

]}

ω1 + [(J̄ − Ī)ω3]ω2 = 0, (13)

Īω′

2
+

{

Ī ′ −m′

[

(ze

R

)2

+
β2

4

]}

ω2 + [(J̄ − Ī)ω3]ω1 = 0, (14)

and

J̄ω′

3
+

(

J̄ ′ −m′
β2

2

)

ω3 = 0. (15)

In these equations, R is the external radius of the cylindrical propellant, and β is the
ratio R1/R.

From equation (15),

ω3(τ)

ω3(0)
= exp

[

−
τ
∫

0

ψ(τ)

J̄
dτ

]

, (16)
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where

ψ(τ) = J̄ ′ −m′
β2

2
. (17)

By defining a dimensionless, complex angular velocity

ωT = ω1 + iω2, (18)

where i =
√
−1, equations (13) and (14) are combined to give

ωT (τ)

ωT (0)
=

{

exp

[

−
τ
∫

0

ϕ(τ)

Ī
dτ

]}

·
[

exp

(

i

τ
∫

o

Θ dτ

)]

, (19)

where

ϕ(τ) = Ī ′ −m′

[(

ze

R

)2

+
β2

4

]

(20)

and

Θ = [(J̄/Ī) − 1]ω3. (21)

The function ϕ(τ) determines the magnitude of the transverse angular velocity vector,
Θ(τ) governs the frequency, and ψ(τ) [see equation (17)] tells us whether the spin rate
will increase or decrease with τ . We will limit this study to an examination of how the
spin rate and transverse angular velocity magnitude vary with propellant burn.

3 Spin Motion

We now take an in depth look at the spin rate, to see how it is affected by mass loss or
propellant burn. It is clear from equations (16) and (17) that expressions for the system’s
mass and inertia as functions of the dimensionless time variable τ are needed in order to
make progress with the study of the spin rate. On the other hand, these functions can
only be determined if a propellant depletion geometry is stipulated. For this study, we
choose to examine the case of a burn that is an idealization of a common burn pattern in
solid rocket motors. In this burn, which is often referred to as radial burn, it is imagined
that the propellant has the shape of a hollow cylinder at ignition. The interior surface
is ignited, and the fuel then burns radially outwards in a uniform manner, so that the
interior surface always remains cylindrical. Figure 3.1 shows an intermediate shape for
the propellant during such a burn. We now proceed to determine the elements that are
needed to express the function ψ in equation (17) in terms of the variable τ .

From Figure 3.1, the mass of the fuel just before ignition is

mF0
= ρFπL(R2 − r2

0
) (22)

and the mass m
F

at a general instant during the burn is

mF = ρFπL(R2 − r2). (23)
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Figure 3.1. Rocket with radially burning propellant.

Here, L is the length of the cylindrical fuel, ρF is the mass density of F , r0 is the initial
internal radius of F , and r is the internal radius at some general instant after ignition.
From equations (8), (22), and (23),

tb =
m

F0

mr

=
m

F0

−ṁ
F

=
R2 − r20
d

dt
(r2)

. (24)

Equation (24) is integrated to give

r2(t) = r2
0

+
R2 − r2

0

tb
t (25)

so that
(

r

R

)2

=

(

r0
R

)2

=

[

1 −
(

r0
R

)2]

τ = γ2 + (1 − γ2)τ, (26)

where γ is the ratio r0/R. We thus have from equations (22), (23), and (26), that the
non-dimensional mass mF for the propellant is

mF =
m

F

m
F0

=
ρ

F
πL(R2 − r2)

ρ
F
πL(R2 − r2

0
)

=
1 − (r/R)2

1 − (r
0
/R)2

= 1 − τ, (27)

which yields
m′ = m′

F = −1. (28)

In a similar way, we use equations (26) and (27) to show that the dimensionless axial
inertia of the propellant F is given by

J̄F =
J

F

m
F0
R2

=
mF

2

[

1 +

(

r

R

)2]

=

[

1 − τ

2

]

[1 + γ2 + (1 − γ2)τ ]. (29)

The overall system axial moment of inertia is thus given, in dimensionless form, as

J̄ = J̄B + J̄F = J̄B +
1 + γ2

2
− γ2τ − 1 − γ2

2
τ2. (30)
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Figure 3.2. Possible shapes for ψ(τ).

Equations (28), (30), and (17) lead to

ψ(τ) =

[

β2

2
− γ2

]

+ (γ2 − 1)τ. (31)

3.1 Qualitative discussion

The function ψ(τ) is linear in τ with slope (γ2−1), which is negative for the burn we have
selected. Hence ψ(τ) decays linearly with τ , and ψ(0) = β2/2−γ2, with ψ(1) = β2/2−1.
ψ(0) is almost certain to be positive for real rocket systems, since, for these systems one
would expect γ ≪ 1 and β ≥ 1. For example, picking such conservative numbers as
γ = 0.5, and β = 1 still results in ψ(0) > 0. On the other hand, ψ(1) can, conceivably,
take on a value that is either positive or negative depending on whether or not the
quantity β, which we shall refer to in the remainder of this paper as the nozzle expansion
ratio, is greater than or less than

√
2. Figure 3.2 summarizes the behavior of the function

ψ(τ) for three values of β. We conclude from this figure that the spin rate will always
decrease initially. This trend will continue all the way to burnout if the nozzle expansion
ratio is greater than some threshold value, βL (

√
2 for radial burn). If β happens to be

less than βL, then, the decreasing trend in the spin rate will be reversed at some point
during the burn, and the spin rate will increase for the remainder of the burn. The point
at which this change in trend occurs is (ψ = 0)

τ = (β2/2 − γ2)/(1 − γ2). (32)

For a variable mass cylinder with no nozzle, β = 1, and only one scenario (β < βL)
is possible. As explained above for this case, the spin rate will decrease initially until τ
attains a value given by equation (32). After this, the spin rate increases till burnout.
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Figure 3.3. Spin rate for radial burn.

By substituting β = 1 into equation (32), and putting the resulting value for τ into
equation (26), we find that the minimum value of the spin rate will occur when the

ratio r/R = 1/
√

2. This is the same result obtained in [6] for the simple variable mass
cylinder.

3.2 Closed form solution

If equations (30) and (31) are substituted into equation (16), a closed form solution can
be obtained for equation (16) as follows:

ω3(τ)

ω3(0)
=

[

Π2 − γ4

Π2 − [γ2 + (1 − γ2)τ ]2

]

× exp

{−β2

Π

[

tanh−1 [γ2 + (1 − γ2)τ ]

Π
− tanh−1 γ

2

Π

]}

,

(33)

where

Π =
√

2J̄B(1 − γ2 + 1). (34)

The curves shown in Figure 3.3 come from equation (33), and they confirm the initial
negative slope of the spin rate, and the fact that the spin rate can change from a decreas-
ing to an increasing function of τ during a propellant burn, for small values of the nozzle
expansion ratio. It would appear, from equation (33) that besides the parameters γ and
β, the axial inertia J̄B can also play a role in the behavior of the spin rate. Figure 3.4
is obtained from equation (33), and shows how a change in axial inertia J̄B for the main
body B affects the spin rate. The smaller the value of J̄B the more the spin rate curve
deviates from that which is expected from a constant mass rigid body; that is, a constant.
This is certainly in agreement with engineering intuition. However, the basic character
of the spin rate curve is not affected by a change in J̄B . It turns out that a change in
the ratio γ of the initial internal radius to external radius of the fuel without a change
in J̄B has minimal effect on the spin rate.
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Figure 3.4. Influence of spin interia on the spin rate.

3.3 Stable spin

It is not desirable to have the spin rate grow substantially, nor is it acceptable for the spin
rate to decrease excessively during a propellant burn. In one case, the system’s structural
integrity can become impaired, and in the other case, there is loss of spin rigidity. It is
therefore useful to find ways to limit variations in spin rate during a burn. One way to
accomplish this is to force the spin rate at the end of the burn to be the same as that at
ignition; that is, ω3(1) = ω3(0). From equation (33), we have

ω3(1)

ω3(0)
=

[

Π2 − γ4

Π2 − 1

]

· exp

{−β2

Π

[

tanh−1 1

Π
− tanh−1 γ

2

Π

]}

= 1, (35)

which leads eventually to

βb =

√

Π · ln[(Π2 − γ4)/(Π2 − 1)]

tanh−1(1/Π) − tanh−1(γ2/Π)
. (36)

Equation (36) gives the value of the nozzle expansion ratio that will bring the spin
rate at burnout back to its value at ignition, and in so doing, limit the overall variation
in the spin rate. Figure 3.5 shows that the necessary nozzle expansion ratio is sensitive
to the axial inertia J̄B of the main rocket body, especially at low values of J̄B . Figure 3.6
gives an indication of the level of sensitivity of the spin rate to deviations in the choice
of β. This figure also shows that when β is taken to be βb, the difference between the
extreme values of the spin rate is not as large as when β 6= βb.
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Figure 3.5. Relationship between J̄B and βb.

Figure 3.6. Spin rate deviations for β 6= βb.
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4 Transverse Angular Speed

The system’s central transverse moment of inertia can be written, in non-dimensional
form as

Ī = ĪB + ĪF + (mBb
2 = mFa

2)/mF0R
2, (37)

where the subscripts B and F refer to the main body and the fuel respectively, and the
distances a and b as well as other distances such as L, Li (i = 1, 2, 3) are as shown in
Figure 3.1. The transverse inertia of B is ĪB = IB/mF0R

2. Keeping in mind that we
are assuming a radial burn for the fuel,

ĪF =
IF

mF0R2
= mF

[

1

4
+

1

4

(

r

R

)2

+
1

12

(

L

R

)2 ]

= (1−τ)
[

1 + γ2 + (1 − γ2)τ

4
+
δ2

12

]

. (38)

The distances a and b can be expressed as

a =
mBL3

mB +mF

(39)

and

b =
mFL3

mB +mF

. (40)

Substituting equations (38), (39), and (40) into (37), we obtain, after some algebra,

Ī = ĪB + (1 − τ)

[

1 + γ2 + (1 − γ2)τ

4
+
δ2

12

]

+
mB(1 − τ)δ2

3

mB + 1 − τ
(41)

so that

Ī ′ = −
{

γ2 + (1 − γ2)τ

2
+
δ2

12
+

(

mBδ3
mB + 1 − τ

)2}

. (42)

The distance

ze = L1 +
L

2
+ a. (43)

Hence, equations (43), (39), and (27) give

ze

R
=

(mB +mF )(δ1 + δ/2) +mBδ3
mB +mF

=
(mB + 1 − τ)(δ1 + δ/2) +mBδ3

mB + 1 − τ
, (44)

where δ = L/R, and δi = Li/R (i = 1, 2, 3). From equations (20), (28), (42), and (44),

ϕ(τ) = −
[

γ2 + (1 − γ2)τ

2

]

+
δ2

6
+ δδ1 + δ21 +

β2

4
+

2mBδ3
mB + 1 − τ

(

δ

2
+ δ1

)

. (45)

4.1 Qualitative discussion of transverse motion

The transverse angular speed is given by [see equation (19)]

∣

∣

∣

∣

ωT (τ)

ωT (0)

∣

∣

∣

∣

= exp

[

−
τ
∫

0

ϕ(τ)

Ī
dτ

]

. (46)
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The function Ī decreases with τ but is always positive. Hence, the sign of ϕ(τ) determines
whether the transverse rate increases or decreases with the burn. We can rewrite equation
(45) as

ϕ(τ) = ϕ1(τ) + ϕ2(τ) (47)

where

ϕ1(τ) = −
[

γ2 + (1 − γ2)τ

2

]

(48)

and

ϕ2(τ) =
δ2

6
+ δδ1 + δ21 +

β2

4
+

2mBδ3
mB + 1 − τ

(

δ

2
+ δ1

)

. (49)

The function ϕ1 is clearly negative, since γ < 1. On the other hand, ϕ2 is positive because
δ, δ1, δ3, β and mB are all positive quantities for real rocket systems, and 0 ≤ τ ≤ 1. At
τ = 0, ϕ1 = −γ2/2; and, since γ = r0/R would be expected to be less than 1/2 for a
real system, |ϕ1| ≤ 1/8. Similarly, ϕ2 > β2/4 > 1/4 in practice. Hence, ϕ(0) is likely to
be positive. As τ varies between 0 and 1, ϕ1 decreases linearly with τ while ϕ2 increases
with τ . It appears unlikely that ϕ2 will ever become less than ϕ1 in absolute value, or
that ϕ will change sign from positive to negative during the propellant burn. Thus, the
transverse angular speed is likely to decrease between ignition and burnout.

There are several factors that can change this state of affair for the transverse angular
speed. They include small values of what may be referred to as the propellant aspect
ratio δ = L/R, low values of the nozzle expansion ratio β, proximity of the propellant
grain to the nozzle (δ1), and closeness of the propellant center of mass to that of the
rocket’s main body. These can lower the value of ϕ2 to the point where |ϕ2| < |ϕ1| and
ϕ < 0. Of these, the parameters that a rocket designer has most control over are δ and β.

We note here that relatively recent studies [4, 6] that used the cylinder model came
to the conclusion that a “fat and short” propellant grain (i.e. low δ) can cause the
transverse angular speed to grow without bounds for a radial burn. This paper arrives
at the same result, but adds another component that the nozzle expansion ratio can
also have an important damping influence on the transverse angular speed. In fact, a
large enough expansion ratio can, single-handedly, reverse the potential for a runaway
growth in transverse rate. For instance, the maximum value that ϕ1 can have during a
radial burn is [see equation (48)] −1/2, and this occurs at τ = 1. Hence, it suffices that

β ≥
√

2 [see equation (49)] to guarantee that ϕ > 0 and that ωT will decrease with the
burn.

Figure 4.1 is obtained by numerical integration of equation (46), and shows the trans-
verse angular speed as a function of the time variable τ . This figure confirms that a
low value of δ, coupled with a small β can indeed cause the transverse rate to reverse
its initial decreasing trend sometime during the burn, and increase continuously through
burnout.

5 Modified Radial Burn

So far, what has been presented is a general study of the radial burn. We now move
briefly to the case where the system mass center, S∗, does not shift relative to the rocket’s
main body B. In other words, we assume that, prior to ignition, the mass centers B∗

of the rocket body and F ∗ of the solid fuel are coincident, so that S∗ is also located at
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Figure 4.1. Transverse angular speed.

the same point. During a radial burn, F ∗ does not shift relative to B. Hence, all three
points F ∗, B∗ and S∗ remain coincident throughout the burn. This can be accomplished
in a real system by balancing the system in such a way that S∗ and F ∗ (or F ∗ and B∗)
coincide prior to propellant ignition. Our interest here is to see whether there is anything
to be gained, from the point of view of attitude dynamics, in balancing the system in
this way.

As before, the focus here is again on the functions ϕ(τ) and ψ(τ) given in equations
(45) and (31) respectively. In this case, the parameter δ3 becomes zero. The function
ϕ1 is unaffected, but the last term of ϕ2 (a positive term) drops. Thus, ϕ(0) is reduced
somewhat but remains positive. It is now slightly easier for ϕ(1) to become negative,
leading to a possibility of transverse rate increase during a propellant burn. The ex-
pression for ψ(τ) remains as given in equation (31), so the spin rate is unaffected by
the proposed change. Overall, we can state that there is no advantage whatsoever in
balancing the system in such a way as to avoid system mass center shift. In fact, such
an action renders the system more sensitive to divergence in transverse angular speed.

6 Conclusion

This study deals with the dynamic behavior of spinning bodies of the rocket type, that
lose mass while moving in a torque-free environment. The attitude behavior of systems
of this type is known to be influenced by the manner in which mass loss affects the
geometry of the system. One specific mass loss scenario — the radial burn — was studied.
This scenario assumes that the propellant of the rocket system is a hollow cylindrical
solid whose internal radius grows uniformly as the propellant burns. This appears to
restrict the study to rockets with solid propellants. However, the results of this study
can in fact be applied to some systems with liquid propellant. When liquid propellant
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is used in rocket systems that spin, it is generally distributed in several tanks positioned
symmetrically with respect to the spin axis. As the solid portion of the system spins,
centrifugal effects cause the liquid propellant to move outward and the overall behavior
of the fuel system becomes very similar to that of a solid propellant undergoing radial
burn.

Results obtained indicate that the spin rate always begins by decreasing with propel-
lant burn. If the ratio, β, of the nozzle exit radius to the external radius of the propellant

grain is greater than
√

2, then the spin rate will continue to decrease until propellant
burnout. If, however, the value of β is less than

√
2, the spin rate attains a minimum

value during the burn, begins to increase as the burn proceeds, and continues this trend
through burnout. The value of the nozzle expansion ratio thus plays a pivotal role in
determining the character of the spin rate curve.

The transverse angular speed will normally decrease with propellant burn. However,
there are circumstances under which growth in transverse angular speed becomes pos-
sible. Such a situation can arise if the ratio of the length of the propellant grain to
its radius is very small at the same time that the nozzle expansion ratio is also small.
In this case, the curve of the transverse rate as a function of propellant burn decreases
initially, but flattens out sometime during the burn, and then rises for the remainder of
the burn. This study brings out the important role that the nozzle expansion ratio can
play in determining how both the spin rate and the transverse angular speed evolve with
propellant burn.

Balancing a rocket system so that its mass center does not shift during propellant
burn actually renders the system more prone to growth in transverse rate if the nozzle
expansion ratio is low. Another way of viewing this is that studies that assume no shift
in system mass center will in general produce conservative results.
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