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1 Introduction

Markovian jump systems are also called hybrid systems, that is, the state space of a
system contains both continuous (differential equation) and discrete states (Markov pro-
cess). The Markovian jump system has been widely used to describe a physical system
that changes abruptly from one mode to another mode. These abrupt changes may be
caused by environmental disturbances, component and interconnection failures, param-
eters shifting, tracking, and fast variations in the operating point of the system. Over
the past few decades, the Markovian jump system has been extensively studied by many
researchers (see [1 – 7]).

It is a well known fact that engineering processes frequently contain time delays. Sta-
bility and control synthesis for time delay systems have been one of the most significant

c© 2004 Informath Publishing Group. All rights reserved. 257



258 W. ASSAWINCHAICHOTE AND SING KIONG NGUANG

issues in control engineering applications. Linear systems with Markovian jumps and
time delays have been addressed by a number of researchers (see, for example, [9 – 11]).
In [11], the delay-dependent robust stability and the H∞ control of time delay linear
Markovian jump systems have been investigated. Although many researchers have stud-
ied the control design for time delay linear Markovian jump systems for many years,
the control design for time delay nonlinear Markovian jump systems remains as an open
area.

In the past two decades, the H∞ control design for a class of nonlinear systems de-
scribed by a Takagi-Sugeno (TS) fuzzy model has been studied by a number of researchers
(see [12 – 25]). In this TS fuzzy model, local dynamics in different state space regions
are represented by local linear systems. The overall model of the system is obtained
by “blending” of these linear models through nonlinear membership functions. In other
words, a TS fuzzy model is essentially a multi-model approach in which simple sub-models
are combined to represent the global behavior of the system. Recently, the design of fuzzy
H∞ control for a class of nonlinear systems without delays has been significantly con-
sidered and many results have been reported (e.g., [12 – 14]). Furthermore, there have
been also some attempts in [18 – 23] in which robust fuzzy control analysis and synthesis
for nonlinear time-delay systems have been examined. To the best of our knowledge, the
global robust H∞ fuzzy state-feedback control problem for a class of uncertain nonlinear
Markovian jump systems with time-varying delay via an LMI approach has not yet been
considered in the literature.

The main contribution of this paper is to design an H∞ fuzzy state-feedback controller
for a class of time delay nonlinear Markovian jump systems described by a Takagi-Sugeno
(TS) fuzzy model. Based on an LMI approach, we develop a state-feedback controller that
guarantees the L2-gain of the mapping from the exogenous input noise to the regulated
output to be less than a prescribed value. The solutions are given in terms of a family
of linear matrix inequalities.

This paper is organized as follows. In Section 2, system description and definition are
presented. In Section 3, based on an LMI approach we develop a technique for designing
a robust H∞ fuzzy state-feedback controller that guarantees the L2-gain of the mapping
from the exogenous input noise to the regulated output to be less than a prescribed
value. The validity of this approach is demonstrated by an example from the literature
in Section 4. Finally in Section 5, the conclusion is given.

2 System Description and Definition

The class of time delay uncertain nonlinear Markovian jump system under consideration
is described by the following TS fuzzy models:

Plant Rule i: If ν1(t) is Mi1 and · · · and νϑ(t) is Miϑ then

ẋ(t) = [Ai(η(t)) + ∆Ai(η(t))]x(t) +Adi
(η(t))x(t − τ(t))

+B1i
(η(t))w(t) + [B2i

(η(t)) + ∆B2i
(η(t))]u(t), x(0) = 0,

z(t) = [C1i
(η(t)) + ∆C1i

(η(t))]x(t) + [D12i
(η(t)) + ∆D12i

(η(t))]u(t)

x(t) = ψ(t), t ∈ [−τ, 0], τ(t) ≤ τ

(2.1)

where Miq (j = 1, 2, . . . , ϑ) is fuzzy sets q for rule i, νi(t) are the premise variables,
x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input, w(t) ∈ Rp is the disturbance
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which belongs to L2[0,∞), z(t) ∈ Rs is the controlled output, the matrices Ai(η(t)),
Adi

(η(t)), B1i
(η(t)), B2i

(η(t)), C1i
(η(t)) and D12i

(η(t)) are of appropriate dimensions,
r is the number of IF-THEN rules, τ(t) is the bounded time-varying delay in the state
with the following assumption

0 ≤ τ(t) ≤ τ and τ̇(t) ≤ β < 1

and ψ(t) is a vector-valued initial continuous function defined on the interval [−τ, 0].
{η(t)}, t ≥ 0 is a continuous-time discrete-state homogenous Markov process taking
values on a finite set S = {1, 2, . . . , s} with transition probability matrix Pr = {Pık(t)}
given by

Pık(t) = Pr(η(t + ∆) = k | η(t) = ı)

=

{
λık∆ +O(∆) if ı 6= k,

1 + λıı∆ +O(∆) if ı = k,

(2.2)

and
s∑

k=1

Pık(t) = 1, where ∆ > 0; lim
∆→0

O(∆)

∆
= 0; λık ≥ 0, ı 6= k is the transition rate

from mode ı to mode k; λıı = −
s∑

k=1, k 6=ı

λık, ı, k ∈ S gives the infinitesimal generator of

the Markov process {η(t), t ≥ 0}.
The matrices ∆Ai(η(t)), ∆B2i

(η(t)), ∆C1i
(η(t)) and ∆D12i

(η(t)) represent the
uncertainties in the system and satisfy the following assumption.

Assumption 2.1 Following equalities take place

∆Ai(η(t)) = E1i
(η(t))F (x(t), η(t), t)H1i

(η(t)),

∆B2i
(η(t)) = E2i

(η(t))F (x(t), η(t), t)H2i
(η(t)),

∆C1i
(η(t)) = E3i

(η(t))F (x(t), η(t), t)H3i
(η(t)),

∆D12i
(η(t)) = E4i

(η(t))F (x(t), η(t), t)H4i
(η(t)),

where Eji
(η(t)) and Hji

(η(t)), j = 1, 2, . . . , 4, are known matrix functions which cha-
racterize the structure of the uncertainties. Furthermore, the following inequality holds:

‖F (x(t), η(t), t)‖ ≤ ρ(η(t)) (2.3)

for any known positive constant ρ(η(t)).

Let

̟i(ν(t)) =

n∏

q=1

Miq(νq(t)), and µi(ν(t)) =
̟i(ν(t))

r∑
i=1

̟i(ν(t))
,

where Miq(νq(t)) is the grade of membership of νq(t) in Miq. It is assumed in this paper
that

̟i(ν(t)) ≥ 0, i = 1, 2, . . . , n, and
r∑

i=1

̟i(ν(t)) > 0,

where r are the number of local plant rules, for all t. Therefore,

µi(ν(t)) ≥ 0, i = 1, 2, . . . , n, and
r∑

i=1

µi(ν(t)) = 1
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for all t. For the convenience of notations, let ̟i = ̟i(ν(t)), µi = µi(ν(t)), η = η(t)
and any matrix N(µ, η(t) = ı) = N(µ, ı).

The resulting fuzzy system model is inferred as the weighted average of the local
models of the form

ẋ(t) = [A(µ, ı) + ∆A(µ, ı)]x(t) +Ad(µ, ı)x(t− τ(t))

+B1(µ, ı)w(t) + [B2(µ, ı) + ∆B2(µ, ı)]u(t), x(0) = 0,

z(t) = [C1(µ, ı) + ∆C1(µ, ı)]x(t) + [D12(µ, ı) + ∆D12(µ, ı)]u(t),

(2.4)

where

A(µ, ı) =

r∑

i=1

µiAi(ı), Ad(µ, ı) =

r∑

i=1

µiAdi
(ı), B1(µ, ı) =

r∑

i=1

µiB1i
(ı),

B2(µ, ı) =

r∑

i=1

µiB2i
(ı), C1(µ, ı) =

r∑

i=1

µiC1i
(ı), D12(µ, ı) =

r∑

i=1

µiD12i
(ı),

∆A(µ, ı) =
r∑

i=1

µi∆Ai(ı) = E1(µ, ı)F (x(t), ı, t)H1(µ, ı),

∆B2(µ, ı) =

r∑

i=1

µi∆B2i
(ı) = E2(µ, ı)F (x(t), ı, t)H2(µ, ı),

∆C1(µ, ı) =
r∑

i=1

µi∆C1i
(ı) = E3(µ, ı)F (x(t), ı, t)H3(µ, ı),

∆D12(µ, ı) =

r∑

i=1

µi∆D12i
(ı) = E4(µ, ı)F (x(t), ı, t)H4(µ, ı)

with

E1(µ, ı) =
r∑

i=1

µiE1i
(ı), E2(µ, ı) =

r∑

i=1

µiE2i
(ı), E3(µ, ı) =

r∑

i=1

µiE3i
(ı),

E4(µ, ı) =

r∑

i=1

µiE4i
(ı), H1(µ, ı) =

r∑

i=1

µiH1i
(ı), H2(µ, ı) =

r∑

i=1

µiH2i
(ı),

H3(µ, ı) =

r∑

i=1

µiH3i
(ı), H4(µ, ı) =

r∑

i=1

µiH4i
(ı).

Definition 2.1 Suppose γ is a given positive real number. A system of the form
(2.4) is said to have L2[0, Tf ] gain less than or equal to γ if

E

[ Tf∫

0

{zT(t)z(t) − γwT(t)w(t)} dt

]
< 0, (2.5)

where E[ · ] denotes as the expectation operator.
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In this paper, we consider the following H∞ fuzzy state-feedback which is inferred as
the weighted average of the local models of the form:

u(t) = K(µ, ı)x(t), (2.6)

where K(µ, ı) =
r∑

j=1

µjKj(ı). Before ending this section, we describe the problem under

our study as follows.
Problem Formulation Given the system (2.4), design an H∞ fuzzy state-feedback

controller of the form (2.6) such that the L2 gain γ-performance (2.5) is guaranteed.

3 Main Result

First, let us consider the closed-loop state space form of the fuzzy system model (2.4)
with the controller (2.6) which is given by

ẋ(t) = [A(µ, ı) +B2(µ, ı)K(µ, ı)]x(t) +Ad(µ, ı)x(t− τ(t))

+ [∆A(µ, ı) + ∆B2(µ, ı)K(µ, ı)]x(t) +B1(µ, ı)w(t), x(0) = 0,
(3.1)

or in a more compact form

ẋ(t) = [A(µ, ı) +B2(µ, ı)K(µ, ı)]x(t) +Ad(µ, ı)x(t − τ(t)) + B̃1(µ, ı)w̃(t),

x(0) = 0,
(3.2)

where
B̃1(µ, ı) = [E1(µ, ı) E2(µ, ı) B1(µ, ı) 0 0 ] ,

w̃(t) =




F (x(t), ı, t)H1(µ, ı)x(t)

F (x(t), ı, t)H2(µ, ı)K(µ, ı)x(t)

w(t)

F (x(t), ı, t)H3(µ, ı)x(t)

F (x(t), ı, t)H4(µ, ı)K(µ, ı)x(t)



.

(3.3)

To provide LMI-based solutions to the problem of designing a robust H∞ controller
that guarantees the L2-gain of the mapping from the exogenous input noise to the regu-
lated output to be less than some prescribed value for a class of time delay uncertainty
nonlinear Markovian jump systems, the following theorem is given.

Theorem 3.1 Given the system (2.4), the inequality (2.5) holds if there exist a
prescribed H∞ performance γ > 0, positive definite symmetric matrices P (ı) and W (ı)
for ı = 1, 2, . . . , s, such that the following conditions hold:

Ωii(ı) < 0, i = 1, 2, . . . , r, (3.5)

Ωij(ı) + Ωji(ı) < 0, i < j ≤ r, (3.6)

where

Ωij(ı) =




Ψij(ı) (∗)T (∗)T (∗)T (∗)T (∗)T (∗)T

Bij(ı) −M + ẼT
i (ı)Ẽj(ı) (∗)T (∗)T (∗)T (∗)T (∗)T

W (ı)Adi
(ı) 0 −(1 − β)W (ı) (∗)T (∗)T (∗)T (∗)T

P (ı) 0 0 −W (ı) (∗)T (∗)T (∗)T

Γij(ı) 0 0 0 −I (∗)T (∗)T

Υij(ı) 0 0 0 0 −I (∗)T

ZT(ı) 0 0 0 0 0 −P(ı)




, (3.7)
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Ψij(ı) = Ai(ı)P (ı) + P (ı)AT
i (ı) +B2i

(ı)Yj(ı) + Y T
j (ı)BT

2i
(ı)+λııP (ı), (3.8)

Bij(ı) = B̃T
1i

(ı) + ẼT
i (ı)C1i

(ı)P (ı) + ẼT
i (ı)D12i

(ı)Yj(ı), (3.9)

Γij(ı) = C1i
(ı)P (ı) +D12i

(ı)Yj(ı), (3.10)

Υij(ı) = C̃i(ı)P (ı) + D̃i(ı)Yj(ı), (3.11)

M = diag{I, I, γI, I, I}, (3.12)

Z(ı) =
(√

λı1P (ı) . . .
√
λı(ı−1)P (ı)

√
λı(ı+1)P (ı) . . .

√
λısP (ı)

)
, (3.13)

P(ı) = diag {P (1), . . . , P (ı− 1), P (ı+ 1), . . . , P (s)} , (3.14)

with

B̃1i
(ı) = [E1i

(ı) E2i
(ı) B1i

(ı) 0 0 ] , (3.15)

C̃i(ı) = [ ρ(ı)HT
1i

(ı) ρ(ı)HT
3i

(ı) 0 0 ]T , (3.16)

D̃i(ı) = [ 0 0 ρ(ı)HT
2i

(ı) ρ(ı)HT
4i

(ı) ]
T
, (3.17)

Ẽi(ı) = [ 0 0 0 E3i
(ı) E4i

(ı) ]]. (3.18)

Furthermore, a suitable choice of the fuzzy controller is

u(t) =

r∑

j=1

µjKj(ı)x(t) (3.19)

where

Kj(ı) = Yj(ı)(P (ı))−1. (3.20)

Proof Consider a Lyapunov-Krasovskii functional candidate as follows:

V (x(t), ı) = xT(t)Q(ı)x(t) +

t∫

t−τ(t)

xT(v)G(ı)x(v) dv, ∀ ı ∈ S, (3.21)

where Q(ı) > 0 and G(ı) > 0. Now let us consider the weak infinitesimal operator ∆̃ of
the joint process {(x(t), ı), t ≥ 0}, which is the stochastic analog of the deterministic
derivative [28]. {(x(t), ı), t ≥ 0} is a Markov process with infinitesimal operator given
by [3]

∆̃V (x(t), ı) = xT(t)[Q(ı)(A(µ, ı) +B2(µ, ı)K(µ, ı)) + (A(µ, ı) +B2(µ, ı)K(µ, ı))TQ(ı)

+G(ı)]x(t) + xT(t)Q(ı)B̃1(µ, ı)w̃(t) + w̃T(t)B̃T
1 (µ, ı)Q(ı)x(t)

+ xT(t)
s∑

k=1

λıkQ(k)x(t) − (1 − τ̇ )xT(t− τ(t))G(ı)x(t − τ(t)) (3.22)

+ xT(t)Q(ı)Ad(µ, ı)x(t− τ(t)) + xT(t− τ(t))AT
d (µ, ı)Q(ı)x(t).
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Using the fact that for any vectors x(t) and x(t− τ(t))

xT(t)Q(ı)Ad(µ, ı)x(t − τ(t)) + xT(t− τ(t))AT
d (µ, ı)Q(ı)x(t)

≤
1

(1 − β)
xT(t)Q(ı)Ad(µ, ı)G

−1(ı)AT
d (µ, ı)Q(ı)x(t)

+ (1 − β)xT(t− τ(t))G(ı)x(t − τ(t)),

(3.22) becomes

∆̃V (x(t), ı) ≤ xT(t)

[
Q(ı)(A(µ, ı) +B2(µ, ı)K(µ, ı)) + (A(µ, ı) +B2(µ, ı)K(µ, ı))TQ(ı)

+
1

(1 − β)
Q(ı)Ad(µ, ı)G

−1(ı)AT
d (µ, ı)Q(ı) +G(ı) +

s∑

k=1

λıkQ(k)

]
x(t)

+ xT(t)Q(ı)B̃1(µ, ı)w̃(t) + w̃T(t)B̃T
1 (µ, ı)Q(ı)x(t).

(3.23)
Adding and subtracting −zT(t)z(t) + w̃T(t)Mw̃(t) to and from (3.23), we get

∆̃V (x(t), ı) ≤ −zT(t)z(t) + w̃T(t)Mw̃(t) + zT(t)z(t) +

[
x(t)
w̃(t)

]T

×




[A(µ, ı) +B2(µ, ı)K(µ, ı)]TQ(ı)
+Q(ı)[A(ı) +B2(µ, ı)K(µ, ı)]

+
s∑

k=1

λıkQ(k) +G(ı)

+ 1
(1−β) Q(ı)Ad(µ, ı)G

−1(ı)AT
d (µ, ı)Q(ı)

(∗)T

B̃T
1 (µ, ı)Q(ı) −M




[
x(t)
w̃(t)

]
,

(3.24)

where M = diag{I, I, γI, I, I}.
Now let us consider the following terms

w̃T(t)Mw̃(t) =




F (x(t), ı, t)H1(µ, ı)x(t)

F (x(t), ı, t)H2(µ, ı)K(µ, ı)x(t)

w(t)

F (x(t), ı, t)H3(µ, ı)x(t)

F (x(t), ı, t)H4(µ, ı)K(µ, ı)x(t)




T

M




F (x(t), ı, t)H1(µ, ı)x(t)

F (x(t), ı, t)H2(µ, ı)K(µ, ı)x(t)

w(t)

F (x(t), ı, t)H3(µ, ı)x(t)

F (x(t), ı, t)H4(µ, ı)K(µ, ı)x(t)




≤ ρ2(ı)xT(t){HT
1 (µ, ı)H1(µ, ı) +KT(µ, ı)HT

2 (µ, ı)H2(µ, ı)K(µ, ı)

+HT
3 (µ, ı)H3(µ, ı) +KT(µ, ı)HT

4 (µ, ı)H4(µ, ı)K(µ, ı)}x(t) + γwT(t)w(t)

(3.25)

and

zT(t)z(t) = xT(t)[C1(µ, ı) + E3(µ, ı)F (x(t), ı, t)H3(µ, ı) +D12(µ, ı)K(µ, ı)

+ E4(µ, ı)F (x(t), ı, t)H4(µ, ı)K(µ, ı)T[C1(µ, ı) + E3(µ, ı)F (x(t), ı, t)H3(µ, ı)

+D12(µ, ı)K(µ, ı) + E4(µ, ı)F (x(t), ı, t)H4(µ, ı)K(µ, ı)]x(t)

=

[
x(t)
w̃(t)

]T



[C1(µ, ı) +D12(µ, ı)K(µ, ı)]T×

[C1(µ, ı) +D12(µ, ı)K(µ, ı)]
(∗)T

ẼT(µ, ı)[C1(µ, ı) +D12(µ, ı)K(µ, ı)] ẼT(µ, ı)Ẽ(µ, ı)




[
x(t)
w̃(t)

]
,

(3.26)
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where

Ẽ(µ, ı) = [ 0 0 0 E3(µ, ı) E4(µ, ı) ] .

Substituting (3.25) and (3.26) into (3.24), we have

∆̃V (x(t), ı) ≤ −zT(t)z(t) + γwT(t)w(t) +

[
x(t)
w̃(t)

]T

Φ(µ, ı)

[
x(t)
w̃(t)

]
, (3.27)

where

Φ(µ, ı) =




[A(µ, ı) + B2(µ, ı)K(µ, ı)]TQ(ı)

+ Q(ı)[A(µ, ı) + B2(µ, ı)K(µ, ı)]

+ [C1(µ, ı) + D12(µ, ı)K(µ, ı)]T

× [C1(µ, ı) + D12(µ, ı)K(µ, ı)]

+ [C̃(µ, ı) + D̃(µ, ı)K(µ, ı)]T

× [C̃(µ, ı) + D̃(µ, ı)K(µ, ı)]

+
s∑

k=1
λıkQ(k) + G(ı)

+ 1
(1−β)

Q(ı)Ad(µ, ı)G−1(ı)AT
d

(µ, ı)Q(ı)

(∗)T

B̃T
1 (µ, ı)Q(ı) +

ẼT(µ, ı)[C1(µ, ı) + D12(µ, ı)K(µ, ı)]
−M + ẼT(µ, ı)Ẽ(µ, ı)




(3.28)

with

C̃(µ, ı) = [ ρ(ı)HT
1 (µ, ı) ρ(ı)HT

3 (µ, ı) 0 0 ]T ,

D̃(µ, ı) = [ 0 0 ρ(ı)HT
2 (µ, ı) ρ(ı)HT

4 (µ, ı) ]
T
.

Using the fact

r∑

i=1

r∑

j=1

r∑

m=1

r∑

n=1

µiµjµmµnM
T
ij(ı)Nmn(ı) ≤

1

2

r∑

i=1

r∑

j=1

µiµj [M
T
ij(ı)Mij(ı) +Nij(ı)N

T
ij (ı)],

we can rewrite (3.27) as follows:

∆̃V (x(t), ı) ≤ −zT(t)z(t) + γwT(t)w(t) +
r∑

i=1

r∑

j=1

µiµj

[
x(t)
w̃(t)

]T

Φij(ı)

[
x(t)
w̃(t)

]

= −zT(t)z(t) + γwT(t)w(t) +

r∑

i=1

µ2
i

[
x(t)
w̃(t)

]T

Φii(ı)

[
x(t)
w̃(t)

]

+

r∑

i=1

r∑

i<j

µiµj

[
x(t)
w̃(t)

]T

(Φij(ı) + Φji(ı))

[
x(t)
w̃(t)

]
,

(3.29)
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where

Φij(ı) =




[Ai(ı) + B2i
(ı)Kj(ı)]

TQ(ı)

+ Q(ı)[Ai(ı) + B2i
(ı)Kj(ı)]

+ [C1i
(ı) + D12i

(ı)Kj(ı)]T

× [C1i
(ı) + D12i

(ı)Kj(ı)]

+ [C̃i(ı) + D̃i(ı)Kj (ı)]T

× [C̃i(ı) + D̃i(ı)Kj(ı)

+
s∑

k=1
λıkQ(k) + G(ı)

+ 1
(1−β)

Q(ı)Adi
(ı)G−1(ı)AT

di
(ı)Q(ı)

(∗)T

B̃T
1i

(ı)Q(ı) + ẼT
i (ı)[C1i

(ı) + D12i
(ı)Kj (ı)] −M + ẼT

i (ı)Ẽj(ı)




. (3.30)

Using (3.20) and pre and post multiplying (3.30) by

Ξ(ı) =

[
P (ı) 0

0 I

]
,

we obtain

Ξ(ı)Φij(ı)Ξ(ı) =




P (ı)AT
i (ı) + Y T

j (ı)BT
2i

(ı)

+Ai(ı)P (ı) + B2i
(ı)Yj (ı)

+[C1i
(ı)P (ı) + D12i

(ı)Yj(ı)]T

×[C1i
(ı)P (ı) + D12i

(ı)Yj (ı)

+[C̃i(ı)P (ı) + D̃i(ı)Yj (ı)]T

×[C̃i(ı)P (ı) + D̃i(ı)Yj(ı)]

+
s∑

k=1
λıkP (ı)P−1(k)P (ı)

+P (ı)G(ı)P (ı) + 1
(1−β)

Adi
(ı)G−1(ı)AT

di
(ı)

(∗)T

B̃T
1i

(ı) + ẼT
i (ı)C1i

(ı)P (ı) + ẼT
i (ı)D12i

(ı)Yj (ı) −M + ẼT
i (ı)Ẽj(ı)




. (3.31)

Note that (3.31) is the Schur complement of Ωij(ı) defined in (3.7). Using (3.5), (3.6)
and (3.31), we learn that

Φii(ı) < 0, (3.32)

Φij(ı) + Φji(ı) < 0. (3.33)

Following from (3.29), (3.32) and (3.33), we know that

∆̃V (x(t), ı) < −zT(t)z(t) + γwT(t)w(t). (3.34)

Applying the operator E

[ Tf∫
0

(·) dt

]
on both sides of (3.34), we obtain

E

[ Tf∫

0

∆̃V (x(t), ı) dt

]
< E

[ Tf∫

0

(−zT(t)z(t) + γwT(t)w(t)) dt

]
. (3.35)
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From the Dynkin’s formula [29], it follows that

E

[ Tf∫

0

∆̃V (x(t), ı) dt

]
= E[V (x(Tf ), ı(Tf))] − E[V (x(0), ı(0))]. (3.36)

Substitute (3.36) into (3.35) yields

0 < E

[ Tf∫

0

(−zT(t)z(t) + γwT(t)w(t)) dt

]
− E[V (x(Tf ), ı(Tf ))] +E[V (x(0), ı(0))].

Using (3.34) and the fact that V (x(0) = 0, ı(0)) = 0 and V (x(Tf ), ı(Tf )) > 0, we have

E

[ Tf∫

0

{
zT(t)z(t) − γwT(t)w(t)

}
dt

]
< 0. (3.37)

Hence, the inequality (2.5) holds. This completes the proof of Theorem 3.1.

In order to demonstrate the effectiveness and advantages of the proposed design
methodology, an illustrative example is given in next section.

4 An Illustrative Example

Consider an uncertain nonlinear system which is governed by the following state equa-
tion [21]

ẋ1(t) = −0.1c(t)x3
1(t) − α(η(t))x1(t− τ(t)) − 0.02x2(t) − 0.67x3

2(t)

− 0.1x3
2(t− τ(t)) − 0.005x2(t− τ(t)) + u(t) + 0.1w1(t),

ẋ2(t) = x1(t) + 0.1w2(t),

z(t) =

[
x1(t)
x2(t)

]
,

(4.1)

where x1(t) and x2(t) are the state vectors, u(t) is the control input, w1(t) and w2(t) are
the disturbance input, z(t) is the regulated output, η(t) is the discrete state of the Markov
process, τ(t) = 4 + 0.5 cos(0.9t) and c(t) is the uncertain term, that is, c(t) ∈ [0 2.25].
It is assumed that

x1(t) ∈ [−1.5 1.5] and x2(t) ∈ [−1.5 1.5].

Using the same procedure as in [14], the nonlinear term can be represented as

−0.67x3
2(t) = M1 · 0 · x2(t) − (1 −M1) · 1.5075x2(t),

−0.1x3
2(t− τ(t)) = M1 · 0 · x2(t− τ(t)) − (1 −M1) · 0.225x2(t− τ(t)).
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Figure 4.1. Membership functions for two fuzzy set.

Solving the above equations, M1 is obtained as follows:

M1(x2(t)) = 1 −
x2

2(t)

2.25
,

M2(x2(t)) = 1 −M1(x2(t)) =
x2

2(t)

2.25
.

Note that M1(x2(t)) and M1(x2(t)) can be interpret as the membership functions of
fuzzy set.

Using these two fuzzy set, the uncertain nonlinear Markovian jump system with time-
varying delay can be represented by the following TS fuzzy model:

Plant Rule 1: If x2(t) is M1(x2(t)) then

ẋ(t) = [A1(ı) + ∆A1(ı)]x(t) +Ad1
(ı)x(t − τ(t)) +B1(ı)w(t) +B2(ı)u(t), x(0) = 0,

z(t) = C1(ı)x(t),

Plant Rule 2: If x2(t) is M2(x2(t)) then

ẋ(t) = [A2(ı) + ∆A2(ı)]x(t) +Ad2
(ı)x(t − τ(t)) +B1(ı)w(t) +B2(ı)u(t), x(0) = 0,

z(t) = C1(ı)x(t),

where

A1(ı) =

[
−0.1125 −0.02

1 0

]
, A2(ı) =

[
−0.1125 −1.5275

1 0

]
,

Ad1
(ı) =

[
−α(ı) −0.005

0 0

]
, Ad2

(ı) =

[
−α(ı) −0.23

0 0

]
,

B1(ı) =

[
0.1 0
0 0.1

]
, B2(ı) =

[
1
0

]
, C1(ı) =

[
1 0
0 1

]
,

∆A1(ı) = E11
(ı)F (x(t), ı, t)H11

(ı), ∆A2(ı) = E12
(ı)F (x(t), ı, t)H12

(ı),
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x(t) = [xT
1 (t) xT

2 (t)]T and w(t) = [wT
1 (t) wT

2 (t)]T.

Assuming ‖F (x(t), ı, t)‖ ≤ ρ(ı) = 1 and letting

E11
(ı) = E12

(ı) =

[
0.1 0
0 0.1

]
,

we have

H11
(ı) = H12

(ı) =

[
−1.1250 0

0 0

]
.

Assume that the system is a three modes Markov process as shown in Table 4.1.

Table 4.1 Modes of the Markov process.

Mode ı α(ı)

1 0.0120
2 0.0125
3 0.0130

The transition probability matrix that relates the three modes is given as follows:

Pık =




0.67 0.17 0.16
0.30 0.47 0.23
0.26 0.10 0.64



 .

Using the LMI optimization algorithm and Theorem 3.1 with β = 0.6, we obtain
γ = 0.1680

P (1) =

[
2.4912 −0.2673

−0.2673 0.0718

]
, W (1) =

[
1.1072 −0.1535

−0.1535 16.1836

]
,

Y1(1) = [−16.9067 −0.1051 ] , Y2(1) = [−17.2552 −0.0235 ] ,

K1(1) = [−11.5635 −44.5276 ] , K2(1) = [−11.5934 −43.5022 ] ,

P (2) =

[
2.3815 −0.2881

−0.2881 0.0841

]
, W (2) =

[
1.1489 −0.1931

−0.1931 16.4120

]
,

Y1(2) = [−15.9725 0.0589 ] , Y2(2) = [−16.3401 0.1485 ] ,

K1(2) = [−11.3092 −38.0433 ] , K2(2) = [−11.3526 −37.1260 ] ,

P (3) =

[
2.4793 −0.2638

−0.2638 0.0857

]
, W (3) =

[
0.9718 −0.1883

−0.1883 15.8428

]
,

Y1(3) = [−17.0602 −0.0867 ] , Y2(3) = [−17.4006 0.0530 ] ,

K1(3) = [−10.3932 −33.0111 ] , K2(3) = [−10.3394 −31.2150 ] .

The resulting fuzzy controller is

u(t) =

2∑

j=1

µjKj(ı)x(t) (4.2)
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Figure 4.2. The result of the changing between modes during the simulation with

the initial mode at Mode 2.

Figure 4.3. The histories of the state variables, x1(t) and x2(t).

where
µ1 = M1(x2(t)) and µ2 = M2(x2(t)).

Remark 4.1 Figure 4.2 shows the changing between modes with the initial mode at
Mode 2. The histories of the state variables, x1(t) and x2(t) are given in Figure 4.3. The
disturbance input signal, w(t), which was used during simulation is given in Figure 4.4.
The ratio of the regulated output energy to the disturbance input noise energy obtained
by using the H∞ fuzzy controller (4.2) is depicted in Figure 4.5. After 3 seconds, the ratio
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Figure 4.4. The disturbance input noise, w(t).

Figure 4.5. The ratio of the regulated output energy to the disturbance noise

energy,

(Tf∫
0

zT(t)z(t) dt

/Tf∫
0

wT(t)w(t) dt

)
.

of the regulated output energy to the disturbance input noise energy tends to a constant
value which is about 0.1680. From Figure 4.5, we can conclude that the inequality (2.5)
is guaranteed by the fuzzy controller (4.2).

5 Conclusion

In this paper, we have developed a technique for designing a robust H∞ fuzzy state-
feedback controller for a class of time delay nonlinear Markovian jump systems that
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guarantees the L2-gain of the mapping from the exogenous input noise to the regulated
output to be less than some prescribed value. In addition, solutions to the problem are
given in terms of linear matrix inequalities which make them more useful. Finally, an
illustrative example is provided to demonstrate the effectiveness and advantages of the
proposed design methodology.
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