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Abstract: In this paper, we develop a nonlinear observer for switching linear
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1 Introduction

Estimation of switching systems has rapidly increased in importance with the develop-
ment of new circuits technologies. Recently, we witnessed an increasing interest in the
so-called switching systems. We call herein switching systems all dynamical systems
described by differential inclusions of the form

ẋ(t) ∈ {fσ(x(t), u(t))}σ∈A ,

where x(t) is the state variable, u(t) is the control input, and fσ( · , · ) is a collection
of continuously differentiable functions parameterized by σ belonging to some given set
A. Such systems are composed of both discrete and continuous subsystems. Control,
observation, and supervision of this kind of systems appear in many ongoing research
projects such as multimedia protocols, electrical circuits, systems subject to failure and
so on.

Numerous control procedures are based on the knowledge of all state variables of
the considered system. This assumption is not always true since the measurements
of the states variables are, in most cases, not possible or simply too expensive. For
this reason, observer design has received widespread attention since the introduction of
Kalman theory and remains of great importance nowadays.
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Estimation of hybrid systems is one of the challenging research problems that necessi-
tate a particular attention. Extension of available results in observation of linear systems
to hybrid linear systems is not quite easy due to the variation of nominal models and
others technical problems. Switching between different models to compensate or analyze
system variations is a well-known technique in modern control theory. It is obvious that
if both the switching instants and the switching modes are known, then it is easy to
construct a switching gain observer that switches among different gains. We refer the
reader to the references [1 – 5], and [6] for more details.

The question we are addressing in this paper is how one can estimate the unmeasured
states of a given switching system if the current mode is unknown? The answer to this
question will be detailed in the present work where we assume that there is no switching
law that defines the passage of the switching system from a mode to another. The goal
of this paper is to develop a new observation technique for switching linear systems. The
developed observers are nonlinear and do not necessitate the mode estimation of the
system to be observed. We mean by mode estimation, the ability to track a system’s
discrete dynamics as it moves between different behavioral modes. We show that a
constant high-gain observer is sufficient to observe the unmeasured dynamics whatever
the changes in the nominal matrices of the considered switching system. The present work
eliminates two major frequently-faced problems: detection of the switching instants and
identification of the current mode. The whole observer design is efficiently accomplished
by using an LMI procedure.

The paper is organized as follows. Section 2 is devoted to the design of the observer
for regular switching systems. In Section 3, the results of the previous section are then
extended to uncertain switching systems. Section 4 treats a numerical observation exam-
ple of a switching system. The paper ends with general conclusions and some concluding
remarks. Throughout this paper, we note by I and 0 the identity matrix and the null
matrix of appropriate dimensions, respectively. A > 0 (resp. A < 0) denotes that the
matrix A is a symmetric and positive-definite (resp. symmetric and negative-definite).
We note by A′ the matrix transpose of the matrix A. ‖ ·‖ stands for the Euclidean norm.

2 Constant-Gain Observer for Switching Systems

Our objective is to conceive an observer for the following switching system

dx(t)

dt
= A(σ(t))x(t) + B(σ(t))u(t),

y(t) = Cx(t),

(2)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input, and y(t) ∈ Rp is the
system output. σ(t) is a switching signal that maps the index time [0, +∞[ into an index
set S = {1, 2, . . . , s}. Each mode j ∈ S corresponds to a specific model characterized
by A(j) ∈ A = {A(1), A(2), . . . , A(s)} and B(j) ∈ B = {B(1), B(2), . . . , B(s)}. We
assume that the switchs in the output matrix C are absent. For the observer design, we
suppose that the following assumptions are verified.
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Assumption 1 The switch between two different modes is instantaneous and arbi-
trary.

Assumption 2 There is no information on the current mode of the switching system,
and the switching instants are not known.

Assumption 3 For any time t, the control input u(t) is smooth, i.e., it can be written
as

u(t) =

t∫

0

v(τ) dτ. (3)

where v(t) ∈ Rm is the new control input.

For the class of systems we are considering, different types of observability have been
studied in the past and for more details on this subject, we refer the reader to [1] and
the references therein. Here, we will assume that the pairs (A(σ(t)), C), ∀σ(t) are
observable. This means that the system is observable, in the sense of Kalman, for each
mode.

Based on the last assumptions, the switching system is rewritten in the following form:

dx(t)

dt
= A(σ(t))x(t) + B(σ(t))u(t),

du(t)

dt
= v(t),

y(t) = Cx(t).

(4)

For the simplicity of the representation, let

Ã(σ(t)) =

[
A(σ(t)) B(σ(t))

0 0

]
, B̃ =

[
0
I

]
,

z =

[
x(t)
u(t)

]
, C̃ = [ C 0 ] ,

then the dynamics (4) is rewritten as:

dz(t)

dt
= Ã(σ(t))z + B̃v(t),

y(t) = C̃z(t).

(5)

We propose an observer of the following form:

dẑ(t)

dt
=

(
s∑

j=1

Ã(j)

)
ẑ(t) + B̃v(t) +

(
s∑

i=1

Pi

)−1

Y
(
y(t) − C̃ẑ(t)

)
− ρ(y(t), ẑ(t)), (6)

where P1, P2, . . . , Ps are (m+n)× (n+m) symmetric and positive definite matrices, Y
is a constant matrix of appropriate dimensions, and ρ(y(t), ẑ(t)) is a nonlinear additive
term that depends on the output y(t), and the observer state vector ẑ(t). The dynamics
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of the proposed observer is the sum of the dynamics of classical Luemberger observers
written for each mode plus a nonlinear additive term ρ(·, ·) that attenuates the effects
of the difference between the observer and the system outputs. The design of (Pi)1≤i≤s,

and ρ(·, ·) will be given latter. Let e(t) = ẑ(t) − z(t) be the observation error, and let

de(t)

dt
=

(
s∑

j=1

Ã(j)

)
ẑ(t) − Ã(σ(t))z(t) − ρ(y(t), ẑ(t)) −

(
s∑

i=1

Pi

)−1

Y C̃e(t),

be the dynamics of the observer error, then we can write

de(t)

dt
=

(
Ã(σ(t)) −

(
s∑

i=1

Pi

)−1

Y C̃

)
e(t) +

∑

j∈S
j 6=σ

Ã(j)ẑ(t) − ρ(y(t), ẑ(t)). (7)

The time derivative of the Lyapunov function V (e(t)) = eT(t)

(
s∑

i=1

Pi

)
e(t) along the

trajectory of (7) is

dV (e(t))

dt
=

deT(t)

dt

( s∑

i=1

Pi

)
e(t) + eT(t)

( s∑

i=1

Pi

)
de(t)

dt

= eT(t)

(
ÃT(σ(t))

( s∑

i=1

Pi

)
+

( s∑

i=1

Pi

)
Ã(σ(t)) − C̃TY T − Y C̃

)
e(t)

− 2eT(t)

( s∑

i=1

Pi

)
ρ(y(t), ẑ(t)) + eT(t)

( s∑

i=1

Pi

)∑

j∈S
j 6=σ

Ã(j)ẑ(t)

+ ẑT(t)
∑

j∈S
j 6=σ

Ã T(j)

( s∑

i=1

Pi

)
e(t).

We have for arbitrary vectors w1 and w2 and a given positive definite matrix Z of
appropriate dimensions [7]

2wT
1 w2 ≤ wT

1 Z−1w1 + wT
2 Zw2.

If we take

w1 =

( s∑

i=1

Pi

)
e(t), w2 =

∑

j∈S
j 6=σ

Ã(j)ẑ(t), Z = µσI,

then

eT(t)

( s∑

i=1

Pi

)∑

j∈S
j 6=σ

Ã(j)ẑ(t) + ẑT(t)
∑

j∈S
j 6=σ

Ã T(j)

( s∑

i=1

Pi

)
e(t)

= 2eT(t)

( s∑

i=1

Pi

)∑

j∈S
j 6=σ

Ã(j)ẑ(t)

≤ µ−1
σ eT(t)

( s∑

i=1

Pi

)( s∑

i=1

Pi

)
e(t) + µσ ẑT(t)

∑

j∈S
j 6=σ

Ã T(j)
∑

j∈S
j 6=σ

Ã(j)ẑ(t).
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If the matrices (Pi)1≤i≤s are selected so as to

Ã T(σ(t))

( s∑

i=1

Pi

)
+

( s∑

i=1

Pi

)
Ã(σ(t)) − C̃TY T − Y C̃

+ µ−1
σ

( s∑

i=1

Pi

)( s∑

i=1

Pi

)
= −Q(σ) < 0,

(8)

then we obtain

dV (e(t))

dt
= −eT(t)Q(σ)e(t) + µẑT(t)

∑

j∈S
j 6=σ

Ã T(j)
∑

j∈S
j 6=σ

Ã(j)ẑ(t) − ρ(y(t), ẑ(t)).

If we choose µmax = max
σ

µσ and

ρ(y(t), ẑ(t)) =





µmax̟ẑT(t)ẑ(t)

(
s∑

i=1

Pi

)−1

C̃TC̃e(t)

2‖C̃e(t)‖2
if ‖C̃e(t)‖ 6= 0,

0 if ‖C̃e(t)‖ = 0,

(9)

where

̟ = sup
σ(t)

∥∥∥∥∥∥∥

∑

j∈S
j 6=σ

Ã T(j)
∑

j∈S
j 6=σ

Ã(j)

∥∥∥∥∥∥∥
, (10)

then
dV (e(t))

dt
≤ −eT(t)Q(σ)e(t),

which implies that the observer error decays exponentially to the origin.

Remark 1 The formulae of ρ(·, ·) given by equation (9) is just a conceptual one. When
the observation error is close to zero, it is recommended to modify the nonlinear term
ρ(·, ·) as follows:

ρ(y(t), ẑ(t)) =





µmax̟ẑT(t)ẑ(t)

(
s∑

i=1

Pi

)−1

C̃TC̃e(t)

2‖C̃e(t)‖2
if ‖C̃e(t)‖ > ǭ,

0 if ‖C̃e(t)‖ ≤ ǭ,

where ǭ > 0 is some prescribed small parameter. We summarize the result in the following
statement.

Theorem 1 System

ẑ(t)

dt
=

(
s∑

j=1

Ã(j)

)
ẑ(t) + B̃v(t) +

(
s∑

i=1

Pi

)−1

Y
(
y(t) − C̃ẑ(t)

)
− ρ(y(t), ẑ(t)), (11)
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is an asymptotic observer for system (5) if there exist a set of positive constants M =
{µ1, µ2, . . . , µs}, and a set of symmetric and positive definite matrices P = {P1, P2,
. . . , Ps} such that the following coupled LMIs are feasible



J (P1, . . . , Ps, Y, j)

(
s∑

i=1

Pi

)

(
s∑

i=1

Pi

)
−µjI


 < 0, 1 ≤ j ≤ s,

where

J (P1, . . . , Ps, Y, j) = Ã T(j)

( s∑

i=1

Pi

)
+

( s∑

i=1

Pi

)
Ã(j) − C̃ TY T − Y C̃.

Proof The LMIs conditions (12) and (8) are equivalent by the Schur complement
lemma.

3 Extension to Uncertain Switching Systems

Consider the uncertain switching system

dx(t)

dt
= (A(σ(t)) + ∆A(σ(t)))x(t) + (B(σ(t)) + ∆B(σ(t)))u(t),

du(t)

dt
= v(t),

y(t) = Cx(t),

(13)

which satisfies the assumptions of system (4). The aim of this section is to design a robust
nonlinear observer that can estimates the states of (13) without a priori knowledge of the
current mode and or the switching instants. The uncertain terms ∆A(σ(t)) and ∆B(σ(t))
are written respectively as ET

AFA(σ(t))DA and ET
BFB(σ(t))DB . he matrices EA, EB ,

DA, and DB are constant known matrices and FA(σ(t)), FB(σ(t)) are unknown matrices
satisfying the inequalities FT

A (σ(t))FA(σ(t)) < I, FT
B (σ(t))FB(σ(t)) < I, respectively.

In matrix notation system (13) is rewritten as

dξ(t)

dt
=
(
Ã(σ(t)) + ∆Ã(σ(t))

)
ξ(t) + B̃v(t),

y = C̃ξ(t),

(14)

where

∆Ã(σ(t)) =

[
∆A(σ(t)) ∆B(σ(t))

0m×n 0m×m

]
, ξ(t) =

[
x(t)
u(t)

]
, (15)

and Ã(σ(t)), B̃, C̃ are defined as in equation (5). The uncertain term ∆Ã(σ(t)) can be

rewritten as ẼT
AF̃A(σ(t))D̃A where

ẼA =

[
EA 0
EB 0

]
, F̃A(σ(t)) =

[
FA(σ(t)) 0

0 FB(σ(t))

]
, D̃A =

[
DA 0
0 DB

]
.

The observer design is given in the following statement:
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Theorem 2 Consider system (13). If there exist a set of (n+m)×(n+m) symmetric
and positive-definite matrices (Pi)1≤i≤s > 0, a matrix Y of appropriate dimensions, and

positive constants (µi)1≤i≤s, (ǫA(i))1≤i≤s, (ǫB(i))1≤i≤s such that the following coupled

LMIs hold




K (P1, P2, . . . , Ps, Y ) ẼA

(
s∑

i=1

Pi

) (
s∑

i=1

Pi

) (
s∑

i=1

Pi

)

(
s∑

i=1

Pi

)
ẼA

T −ǫA(j)I 0 0
(

s∑
i=1

Pi

)
0 −ǫB(j)I 0

(
s∑

i=1

Pi

)
0 0 −µjI




< 0, 1 ≤ j ≤ s,

(16)
where

K (P1, P2, . . . , Ps, Y ) = Ã T(j)

( s∑

i=1

Pi

)
+

( s∑

i=1

Pi

)
Ã(j)− C̃ TY T −Y C̃ + ǫA(j)D̃T

AD̃A.

Then system

ξ̂(t)

dt
=

(
s∑

j=1

Ã(j)

)
ξ̂(t) + B̃v(t) +

(
s∑

i=1

Pi

)−1

Y
(
y(t) − C̃ξ̂(t)

)
− ρ(y(t), ξ̂(t)),

is an asymptotic observer for the uncertain switching system (13) where ρ(y(t), ξ̂(t)) is
defined as

ρ(y(t), ẑ(t)) =






(
̟µmax + ǫmax‖ẼA‖

2‖D̃A‖
2
)

ξ̂ T(t)ξ̂(t)

(
s∑

i=1

Pi

)−1

C̃TC̃e(t)

‖C̃e(t)‖2

if ‖C̃e(t)‖ 6= 0,

0 if ‖C̃e(t)‖ = 0,

where ǫmax = max
σ

(ǫA(σ)) and ̟ is defined as in Theorem 1.

Proof Let e(t) = ξ̂(t)− ξ(t) be the observation error. Then its dynamics is given by

de(t)

dt
=

(
s∑

j=1

Ã(j)

)
ξ̂(t) − Ã(σ)ξ(t) − ∆A(σ(t))ξ(t) −

(
s∑

i=1

Pi

)−1

Y C̃e − ρ(y, ξ̂(t))

=


Ã(σ(t)) −

(
s∑

i=1

Pi

)−1

Y C̃ + ∆Ã(σ(t))


 e(t)

+
∑

j∈S
j 6=σ

Ã(j)ξ̂(t) − ∆Ã(σ(t))ξ̂(t) − ρ(y, ξ̂(t)). (17)
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Choosing the Lyapunov function as V (e(t)) = eT(t)

(
s∑

i=1

Pi

)
e(t), we obtain

dV (e(t))

dt
= eT(t)

(
ÃT(σ(t)) − C̃TY T

(
s∑

i=1

Pi

)−1

+ ∆ÃT(σ(t))

)( s∑

i=1

Pi

)
e(t)

+ eT(t)

( s∑

i=1

Pi

)(
Ã(σ(t)) −

(
s∑

i=1

Pi

)−1

Y C̃ + ∆Ã(σ(t))

)
e(t)

+ 2e(t)

( s∑

i=1

Pi

)∑

j∈S
j 6=σ

Ã(j)ξ̂(t) + 2eT(t)

( s∑

i=1

Pi

)
∆Ã(σ(t))ξ̂(t)

− 2eT(t)

( s∑

i=1

Pi

)
ρ(y, ξ̂(t)).

We have for any µσ > 0

2eT(t)

( s∑

i=1

Pi

)∑

j∈S
j 6=σ

Ã(j) ξ̂(t) ≤ µ−1
σ eT(t)

( s∑

i=1

Pi

)( s∑

i=1

Pi

)
e(t)

+ µσ ξ̂ T(t)
∑

j∈S
j 6=σ

Ã T(j)
∑

j∈S
j 6=σ

Ã(j)ξ̂(t),

furthermore,

∆Ã T(σ(t))

( s∑

i=1

Pi

)
+

( s∑

i=1

Pi

)
∆Ã(σ(t))

= D̃T
AF̃T

A (σ(t))ẼA

( s∑

i=1

Pi

)
+

( s∑

i=1

Pi

)
ẼT

AF̃AD̃A

≤ ǫA(σ)D̃T
AD̃A + ǫ−1

A (σ)

( s∑

i=1

Pi

)
ẼT

AẼA

( s∑

i=1

Pi

)
.

In addition, we have

2eT(t)

( s∑

i=1

Pi

)
∆Ã(σ(t))ξ̂(t) ≤ ǫ−1

B (σ)eT(t)

( s∑

i=1

Pi

)( s∑

i=1

Pi

)
e(t)

+ ǫB(σ)ξ̂ T(t)∆Ã T(σ(t))∆Ã(σ(t))ξ̂(t).

Using the definition of ρ(·, ·), we obtain

ǫB(σ)ξ̂ T(t)∆Ã T(σ(t))∆Ã(σ(t))ξ̂(t) + µσ ξ̂ T(t)
∑

j∈S
j 6=σ

Ã T(j)
∑

j∈S
j 6=σ

Ã(j)ξ̂(t)

− 2eT(t)

( s∑

i=1

Pi

)
ρ(·, ·)

≤
(
̟µmax + ǫmax‖ẼA‖

2
‖D̃A‖

2
)

ξ̂ T(t)ξ̂(t) − 2eT(t)

( s∑

i=1

Pi

)
ρ(·, ·) ≤ 0.
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This implies that

dV (e(t))

dt
≤ eT(t)

(
Ã T(σ(t))

( s∑

i=1

Pi

)
+

( s∑

i=1

Pi

)
Ã(σ(t)) − C̃TY T − Y C̃

+ ǫA(σ)D̃
′

AD̃A + ǫ−1
B (σ)

( s∑

i=1

Pi

)( s∑

i=1

Pi

)
+ µ−1

σ

( s∑

i=1

Pi

)( s∑

i=1

Pi

))
e(t).

(18)

If for each mode 1 ≤ j ≤ s the matrices

Ã T(j)

( s∑

i=1

Pi

)
+

( s∑

i=1

Pi

)
Ã(j) − C̃TY T − Y C̃ + ǫA(j)D̃

T

AD̃A

+ ǫ−1
A (j)

( s∑

i=1

Pi

)
ẼT

AẼA

( s∑

i=1

Pi

)
+ ǫ−1

B

( s∑

i=1

Pi

)( s∑

i=1

Pi

)

+ µ−1
j

( s∑

i=1

Pi

)( s∑

i=1

Pi

)
< 0,

(19)

then dV (e(t))/dt becomes always negative and the observer error decays exponentially
to the origin. The last inequality is equivalent by the Schur complement to (12). This
ends the proof.

An observer for uncertain single-mode systems can be deduced from result of Theo-

rem 2. It is sufficient to replace

(
s∑

i=1

Pi

)
by a one positive definite matrix X in the LMIs

of Theorem 2 to deliver a sufficient conditions for the existence of the observer gain. We
summarize the result in the following corollary.

Corollary 1 Consider the uncertain system

dx(t)

dt
= (A + ∆A)x(t) + (B + ∆B)u(t),

du(t)

dt
= v(t),

y(t) = Cx(t),

(20)

where x(t) ∈ Rn, u(t) ∈ Rm, and y ∈ Rp. The uncertain parts of ∆A = ET
AFA(x(t))DA

and ∆B(σ(t)) = ET
BFB(x(t))DB are supposed to satisfy the inequalities FT

A (σ(t)) ×

FA(σ(t)) < I, FT
B (σ(t))FB(σ(t)) < I, respectively. If there exist a matrix X > 0, a

matrix Y of appropriate dimensions, and positive constants ǫA, and ǫB such that the
following LMI is feasible



H(X, Y ) ẼAX X

XẼT
A −ǫAI 0

X 0 −ǫBI


 < 0, (21)
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where

H(X, Y ) = Ã TX + XÃ − C̃ TY T − Y C̃ + ǫAD̃T
AD̃A,

then system

ξ̂(t

dt
) = Aξ̂(t) + B̃v(t) + X−1Y

(
y(t) − C̃ξ̂(t)

)
− ϕ(y(t), ξ̂(t)), (22)

is an asymptotic observer for the uncertain switching system (22) where ϕ(y(t), ξ̂(t)) is
defined as

ϕ(y(t), ẑ(t)) =





ǫB‖ẼA‖

2‖D̃A‖
2ξ̂ T(t)ξ̂(t)

X−1C̃TC̃e(t)

‖C̃e(t)‖2
if ‖C̃e(t)‖ 6= 0,

0 if ‖C̃e(t)‖ = 0,

where ẼA and D̃A are defined as in Section 3.

4 Illustrative Example

4.1 Observation of a switching system without uncertainties

Consider the following switching system described by:

A(1) =

[
0.1 −0.5
0 −1

]
, A(2) =

[
−1 −1
0.9 −1

]
, B(1) =

[
1
1

]
,

B(2) =

[
0.1
−1

]
, C = [ 1 0 ] .

Applying the result of Theorem 1 with ǫA(j) = ǫB(j) = 1 ∀ j, ̟ = 1.7818, we obtain
µ = 103 and

P1 =




27.8287 −0.1325 5.6453

−0.1325 53.9905 2.6926

5.6453 2.6926 39.0959



 , P2 =




571.9220 −99.1576 −201.2708

−99.1576 140.3128 48.5049

−201.2708 48.5049 176.2018



 ,

Y =




389.7613

−242.2155

260.9596



 ,

and the observer gain is

(P1 + P2)
−1

Y =




1.3246

−1.2869

2.7216


 .
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The nonlinear term in the observer dynamics can be computed in terms of the solutions
P1, P2, µ, and ̟.

4.2 Observation of a switching system with uncertainties

Taking the same switching model with the following additional data:

EA =

[
0.2 0.5
0.4 0.4

]
, DA =

[
0.1 0.2
0.3 0

]
, EB = [ 0.3 0.6 ] , DB = 0.2.

By the application of result of Theorem 2, with µ = 10, and ǫA(j) = ǫB(j) = 1 ∀ j, we
have

P1 =




0.1337 −0.0303 −0.0486

−0.0303 0.0486 0.0143

−0.0486 0.0143 0.0605


 , P2 =




0.2767 −0.0625 −0.1029

−0.0625 0.1010 0.0303

−0.1029 0.0303 0.1248


 ,

Y =




0.9465

−0.1669

0.1946


 , (P1 + P2)

−1
Y =




3.8608

0.0266

4.1977


 .

5 Conclusion

A new observer design methodology is proposed to estimate the unmeasured states of
switching systems and uncertain switching systems. We showed that a constant-gain
observer is sufficient to observe the system states whatever the switch in the nominal
matrices, and the existence of the observer gain is related to the feasibility of a set of
coupled LMIs. The proposed observer design is an alternative to the technique of switch-
ing observers that necessitates both the construction of several observers and estimation
of the current modes of the switching system being observed.

References

[1] Li, Z.G., Wen, C.Y. and Soh, Y. Observer-based stabilization of switching linear systems.
Automatica 39 (2003) 517–524.

[2] Liu, Y. Switching observer design for uncertain nonlinear systems. IEEE Trans. Automat.

Control 42(12) (1997) 1699–1703.
[3] Kamas, L.A. and Sanders, S.R. Parameter and state estimation in power electronic cir-

cuits. IEEE Trans. Circuits and Systems-I: Fundamental Theory and Appl. 40(12) (1993)
920–928.
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